TEST#4 2023/02/22			3MG Level 2 3MG02
With "formulaire" Give justifications when n	/ 34	Name: _	90'
Exercise 1. /2	2 (10')		
In V_3 we consider the sub	space F generated by $\overrightarrow{v_1}, \overrightarrow{v_2}$ an	d $\overrightarrow{v_3}$ three non-zero vector	s.
What's the condition, and	I how to verify it, these three ve	ectors to form a basis of V_3	7:
Answer: Under what condition(s) of Answer:	$\dim(F) = 1$?		
Evereica 2	8 (15') 1-1-2-1.5-2.5		
		to to a contain by 00	9 in 1/
Give the expression of the	e linear application that corresp	onds to a rotation by -90	in v ₂ .
Answer: $f: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto$	()		
Give an application from	V_3 to V_2 that is not a linear app	lication and Justify why.	
Answer and justification	$ f: \begin{pmatrix} V_3 \to V_2 \\ Y_2 \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \end{pmatrix} $		
Give the matrix of			
a)the linear applicatio	$ \begin{array}{c} V_3 \to V_2 \\ \text{n } g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 3x - z \\ 2y + 5z \end{pmatrix} \text{ in the} \end{array} $	standard basis. Ans	swer:
b)the rotation by +90	° about the vector $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ in V_3 .	Answer:	
c)the symmetry about	t the vector $\binom{2}{-3}$ in V_2 .		
Computations and an			
Evereice 2	16 1151/ 2-3		

a) What is an eigenvector of a linear application f?

- b) The vector $\vec{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ is an eigenvector of $M = \begin{pmatrix} -6 & 4 \\ 2 & k \end{pmatrix}$. Determine the eigenvalue of \vec{a} and the value of k.
- c) Determine the eigenvalues of the transformation whose matrix is $F = \begin{pmatrix} 6 & -1 \\ 2 & 3 \end{pmatrix}$.

Exercise 4. /4 (15') 1.5-2.5

In the orthonormal basis $\mathcal{B} = (\vec{a}, \vec{b}, \vec{c})$ the matrix of the transformation f is $F = \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

a) Write \overrightarrow{v} the image of $\overrightarrow{v}=3\overrightarrow{a}-\overrightarrow{b}+5\overrightarrow{c}$ as a linear combination of \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} .

Answer: $\overrightarrow{v}' = \underline{\vec{a}} + \underline{\vec{b}} + \underline{\vec{c}}$

Give the geometrical description of f, a composition. Illustration welcome.
 Answer:

Exercise 5. /7 (15') 1-3-3

We consider the orthogonal projection on the plane π : 2x - y + 2z = 0. In the standard basis we name F the matrix associated.

a) What is the value of det(F) and why?

Answer:

- b) Determine the second column of F.
- c) Give an eigenbasis \mathcal{B}' and the eigenmatrix F' associated.

Answer:

We consider an orthogonal matrix M with determinant 1.

- a) How to find the axis \vec{a} of the transformation f associated? Answer:
- b) What would make you conclude that f is a symmetry about \vec{a} ? What computations...?
- c) If f is not a symmetry it is a rotation with angle $\alpha \neq 180^{\circ}$. ($f = R(\vec{a}, \alpha)$) Explain how to get the angle α , with its sign. Illustration welcome.
- d) Give the determinant of M^3 with a justification.

Answer:

e) Vector \vec{a} (see question a)) is an eigenvector of M^3 . What is its eigenvalue?

Answer: