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Statistique

J.P. Gabriel et C. Mazza

Table des matières

1 Introduction 3

2 Analyse exploratoire 3
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3.6 Notion de probabilité conditionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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4.5 Modèle des observations d’une variable aléatoire : . . . . . . . . . . . . . . . . . . . . . . . 36
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6.3 Test d’indépendance d’événements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



1 INTRODUCTION Math. propédeutiques, Statistique 3
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1 Introduction

La statistique peut être définie comme la science du dépouillement de données issues de l’observation de
phénomènes naturels. Par exemple, si un fabricant de médicaments désire créer un nouveau médicament
destiné à traiter la migraine, il va effectuer un sondage dans la population pour estimer la proportion
0 < p < 1 des personnes de la population qui souffrent de ce trouble afin d’obtenir une idée sur le
nombre de potentiels acheteurs. Pour ce faire, un institut de sondage va choisir au hasard un nombre n
de personnes dans la population totale, et calculer la proportion p̂ = m/n de ces personnes qui souffrent
de migraine. Cette proportion p̂ fournit une estimation de la vraie proportion (inconue) p. Pourquoi
prendre un échantillon ? Tout simplement parce qu’il est impossible pratiquement de poser la question
à tous les membres d’une population. Quelle est la qualité de cette estimation ? On verra dans ce cours
comment il est possible de quantifier la marge d’erreur commise par une telle estimation. Sans trop entrer
dans les détails, nous verrons que si l’échantillon aléatoire est assez grand, nous pouvons affirmer avec 95
% de confiance que

p = p̂± 1.96

√
p̂(1− p̂)

n
.

Par exemple, si la taille de l’échantillon vaut n = 1000, et si m = 210 personnes de cet échantillon
souffrent de migraine, on trouve que

p = 0.21± 1.96

√
0.21(1− 0.21)

1000
= 0.21± 0.025.

On peut estimer avec une confiance au niveau de 95% que la proportion de personnes souffrant de
migraines dans la population est comprise entre 0.185 et 0.235. L’intervalle ainsi obtenu [0.185, 0.235] est
un intervalle de confiance pour la proportion inconnue p de niveau de confiance 95 %.

Dans de nombreuses situations pratiques, le traitement statistique des données est précédé d’une phase
exploratoire lors de laquelle le scientifique examinera les donnée afin d’en extraire le plus d’information
possible, et de déduire de ceci diverses conjectures.

Nous allons utiliser très souvent la notion de variable aléatoire, qui associe une valeur numérique
au résultat d’une expérience, qui permet ainsi de créer une fonction des valeurs expérimentales. Cette
fonction est déterminée par le résultat de l’expérience et est génériquement notée X.

Si l’on revient à l’exemple du sondage, on peut poser par exemple que X = 1 si la personne souffre
de migraines et poser X = 0 sinon. La question étant posée à toutes les personnes de l’échantillon,
on doit considérer une suite de variables aléatoires Xi, i = 1, · · · , n correspondant aux réponses de
tous les membres de l’échantillon. Cette formalisation mathématique du sondage permet de décrire
mathématiquement diverses quantités naturelles, comme la proportion estimée p̂ qui devient

p̂ =
m

n
=

∑n
i=1Xi

n
,

où on utilise le fait que m =
∑n

i=1Xi.

Dans l’exemple précédent, le résultat de l’exprience est binaire ; dans de nombreuses situations, le réstultat
d’une expérience X est un nombre réel, i.e. X ∈ lR. Un exemple simple consiste mesurer la taille d’une
personne en cm.

Dans le premier cas, on parle de donnée discrète, et dans le deuxième cas, de donnée continue.
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2 Analyse exploratoire

Les données sont des informations quantitatives ou qualitatives.

Ex : {1, 0, 0, 1, 1, 1, 1, 0, 1, 0} sont des données de jets d’une pièce de monnaie.

Modélisées comme réalisations d’une v.a., les données peuvent être :

– Discrètes : catégorielles (ex : H/F, P/F) ou ordinales (ex : dé)

– Continues (ex : poids)

– Univariées quand on ne mesure qu’un phénomène à la fois.

– Multivariées quand on mesure plusieurs phénomènes conjointement.

Red Green Blue Orange Yellow Brown Weight
1 15 9 3 NA 9 19 49.79
2 9 17 190 3 3 8 48.98
...

Pour être utiles, les données doivent être :

– vérifiées : données manquantes, aberrantes ?

– analysées :
– résumées avec des chiffres
– visualisées graphiquement
– disséquées pour en comprendre la structure et proposer des modèles.

– modélisées : trouver un modèle probabiliste le plus simple possible qui est le plus en adéquation avec
la réalité et proche des données.

2.1 Données univariées discrètes

Un casino embauche un statisticien pour trouver de potentiels fraudeurs.

Un jeu consiste à lancer une pièce de monnaie 2 fois et à parier sur le nombre T de Piles.

Des données sont collectées avec :
– Une pièce du casino. Un employé est embauché et récolte N1 = 1000 données (2h de travail) : t1 =

0, t2 = 1, t3 = 2, t4 = 0, . . .
– Une pièce aamenée par un joueur. Observé plus rarement on a N2 = 392 données lors d’une semaine

de jeu en 2006 : t1 = 0, t2 = 2, . . .

On compte les nombres de fois n0, n1, n2 où T = 0, 1, 2.

Comment feriez-vous pour savoir si la pièce du joueur ressemble à celui du casino ou s’il est truqué ?

La table des fréquences des données est :
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CASINO

T 0 1 2

ni 231 517 252
p̂i = ni/N1 0.231 0.517 0.252

JOUEUR

T 0 1 2

ni 209 155 28
p̂i = ni/N2 0.533 0.395 0.071

La pièce du casino est-elle équilibrés ?

Modélisation probabiliste : soit les variables aléatoires :

– X1 ∈ {Pile,Face} et X2 ∈ {Pile,Face} pour les résultats au premier lancé et au deuxième lancé.

– T = nombre de Pile dans {X1, X2}

On dénote par p la probabilité de Pile :

– Quelles sont les valeurs possibles de {X1, X2} ?

– Quelles sont les valeurs possibles de T ?

– Quelles sont les probabilités de réalisation de ces valeurs ?

– Quelles sont les probabilités de réalisation de ces valeurs si la pièce est équilibrée ?
Le même joueur et le même dé sont observés lors d’un tournoi en 2007, ce qui amène le statisticien à mesurer
N3 = 114 lancés.

JOUEUR 2006
T 0 1 2

ni 209 155 28
Probabilités estimées p̂i 0.533 0.395 0.071

JOUEUR 2007
T 0 1 2

ni 46 56 12
Probablités estimées p̂i 0.404 0.491 0.105

DE EQUILIBRE

T 0 1 2

Espérance E(ni) N 1
4

N 1
2

N 1
4

Probabilités pi si p = 1
2

0.25 0.50 0.25
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Le rôle des probabilités et des statistiques est de :

– Faire une analyse exploratoire des données pour proposer un modèle probabiliste

– Estimer ce modèle à partir de données

– Vérifier que le modèle colle bien aux données ; sinon, proposer un autre modèle

– Faire de l’inférence, par exemple tester si, pour la pièce du joueur, la probabilité d’un Pile est bien
p = 0.5.

Couleur de M&M’s

Le nombre X de M&M’s Rouge est mesuré dans n = 30 paquets :

15 9 14 15 10 12 6 14 4 9 9 8 12 9 6
4 3 14 5 8 8 9 20 12 8 4 10 5 15 11

Pour les Verts on mesure :

9 17 8 7 3 7 7 11 2 9 11 8 9 7 6
6 5 5 5 9 7 8 2 6 9 6 12 4 11 6

Voyez-vous une différence entre Rouge et Vert ?

L’ensemble fondamental est Ω = {0, 1, 2, . . .}.

Table des fréquences pour les Rouge :

X 0,1,2 3 4 5 6 7 8 9 . . .

ni 0 1 3 2 2 0 4 5
p̂i 0 0.03 0.10 0.07 0.07 0 0.13 0.17∑

j≤i p̂j 0 0.03 0.13 0.20 0.27 0.27 0.40 0.57

X 10 11 12 13 14 15 16,17,18,19 20

ni 2 1 3 0 3 3 0 1
p̂i 0.07 0.03 0.10 0 0.10 0.10 0 0.03∑

j≤i p̂j 0.63 0.67 0.77 0.77 0.87 0.97 0.97 1.00

où :
– ni sont les comptages/fréquences
– p̂i = ni/n sont les fréquences relatives/probabilités estimées
–
∑
j≤i p̂j sont les fréquences relatives cumulées.

> summary(as.factor(Red))

3 4 5 6 8 9 10 11 12 14 15 20

1 3 2 2 4 5 2 1 3 3 3 1

> round(summary(as.factor(Red))/30,2)
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Figure 1 – Les nombres de M&M’s trouvés dans les 30 paquets sont résumés graphiquement

3 4 5 6 8 9 10 11 12 14 15 20

0.03 0.10 0.07 0.07 0.13 0.17 0.07 0.03 0.10 0.10 0.10 0.03

> round(cumsum(summary(as.factor(Red))/30),2)

3 4 5 6 8 9 10 11 12 14 15 20

0.03 0.13 0.20 0.27 0.40 0.57 0.63 0.67 0.77 0.87 0.97 1.00

Les logiciels statistiques permettent de résumer les données en utilisant divers types de méthodes de statistique
exploratoire. La figure ?? nous donne un résumé du nombre de M&M’s rouges trouvés dans 30 paquets.

Le mode est 9 : valeur la plus fréquente.

2.2 Données univariées continues

Certaines mesures ne sont par discrètes ou dénombrables.

Exemple 2.1 Le poids de chaque paquet de M&M’s est une variable aléatoire continue. Données arrondies au
centième :

49.79 48.98 50.40 49.16 47.61 49.80 50.23 51.68 48.45 46.22 50.43 49.80 46.94 47.98 48.49 48.33 48.72 49.69
48.95 51.71 51.53 50.97 50.01 48.28 48.74 46.72 47.67 47.70 49.40 52.06

2.2.1 L’histogramme

L’histogramme est l’équivalent du diagramme à bâtons pour les variables/données continues :

– Diagramme à bâtons = estimateur des probabilités d’une variable aléatoire discrète

– Histogramme = estimateur d’une fonction de densité d’une variable aléatoire continue.
Basé sur une partition subjective de l’ensemble fondamental

Ω = (0,∞) =
⋃
i

(bi, bi+1],

l’histogramme est le graphique des densités dans chaque intervalle de la partition
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Figure 2 – Histogramme des poids des paquets de MM’s

(b1, b2) (b2, b3) (b3, b4) (b4, b5) (b5, b6) (b6, b7)
(0,46) [46,48) [48,50) [50,52) [52,54) [54 ,∞)

ni 0 7 14 8 1 0

f̂i 0 0.12 0.23 0.13 0.02 0

où f̂i = ni
n(bi+1−bi)

est la densité estimée.

2.2.2 Statistiques de centralité

Définition : une statistique est une fonction des données x1, . . . , xn.

La moyenne : (données discrètes ordinales et continues)

x̄ = µ̂ =

∑n
i=1 xi

n
.

Le mode : (données discrètes) réalisation/donnée la plus fréquente (pas forcément unique).

Le mode : (données continues) valeur où la densité a un maximum local (pas forcément unique).

Définition : les statistiques d’ordre x(1), x(2), . . . , x(n) sont les données ordonnées, c’est-à-dire

x(1) ≤ x(2) ≤ . . . ≤ x(n).

La médiane : (données discrètes ordinales et continues) Valeur telle que 50% des données sont plus petites (et
donc que 50% des données sont plus grandes).

x.5 =

{
x

(n+1
2

)
si n est impaire,

1
2
(x(n/2) + x(1+n/2)) si n est paire.

Propriété de la médiane : elle est robuste. La robustesse est la propriété d’une statistique à ne pas être influencée
de façon trop forte par une ‘mauvaise’ donnée. C’est à la fois un avantage et un inconvénient.
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Mode Moyenne Médiane

Red 9 9.6 9
Green {6,7,9} 7.4 7
Blue 7 7.2 6.5

Orange 6 6.6 6
Yellow 7 13.8 13.5
Brown 8 12.5 12.5

2.2.3 Statistiques de dispersion

Etendue : x(n) − x(1), la différence entre valeurs maximum et minimum.

Définition 2.2 Les deux quartiles inférieur q̂(25%) = x.25 et supérieur q̂(75%) = x.75 sont les statistiques telles
qu’environ 25% des données sont plus petites que q̂(25%) et 25% des données sont plus grandes que q̂(75%).

Soit m = b(n+ 1)/2c (partie entière inférieure). On trouve les deux quartiles en comptant (m+ 1)/2 valeurs des
deux extrêmes des statistiques d’ordre :

q̂(25%) = x
(m+1

2
)

et q̂(75%) = x
(n+1−m+1

2
)
.

Note : si m + 1 est impaire, alors prendre la moyenne des deux quantiles gauche et droite. Ex. : n = 15, alors
m = 8 donc x.25 = (x(4) + x(5))/2.

Etendue interquartile : EIQ = x.75−x.25, différence entre quartiles supérieurs et inférieurs. L’intervalle interquartile
[x.25, x.75] contient 50% des données.

Définition 2.3 (Variance empirique) La variance empirique est s2 = 1
n−1

∑n
i=1(xi − x̄)2.

Ecart-type empirique : s =
√

1
n−1

∑n
i=1(xi − x̄)2.

Ecart absolu médian : mad = median(|x− x.5|).
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Figure 3 – Histogrammes associés à deux échantillons de taille 100 d’erreurs normales de précisions
σ = 1 et σ = 2.

Figure 4 – Résumé statistique d’un échantillon gaussien centré ε1, · · · , ε1000 de taille n = 1000 et d’écart
type σ = 2. Dans ce résumé, l’écart type empirique s (=StDev) vaut 2.01209 est proche de la vraie valeur
σ = 2.
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2.2.4 La loi normale

On peut décrire statistiquement la mesure X d’une valeur µ, comme par exemple la longueur d’une barre ou le
poids d’un individu, en posant

X = µ+ ε,

où ε modélise l’erreur de mesure. On dispose d’un échantillon X1, · · · , Xn de n mesures, où

Xi = µ+ εi.

On suppose qu’il n’y a pas d’erreur systématique, ce qui fait que en moyenne l’erreur est nulle. La précision
d’une mesure est décrite par le paramètre

1

σ
,

où σ est l’écart type. La précision est grande si σ est petit.

La fréquence des erreurs εi tombant dans un intervalle [a, b] est approximativement celle de l’aire∫ b

a

f(x)dx, f(x) =
1

σ
√

2π
e
− x2

2σ2 ,

qui est la densité normale de moyenne nulle et de variance σ2. Comme X = µ + ε, on verra dans le cours de
probabilité que X est alors normale de moyenne µ et de variance σ2, de densité

fX(x) =
1

σ
√

2π
e
− (x−µ)2

2σ2 .

X est une variable aléatoire normale N(µ, σ2) ; le lecteur peut voir plusieurs de ces densités dans la figure ??. La
fréquence des données étant plus petites que le nombre a est donn’ee par la fonction de répartition

FX(a) =

∫ a

−∞
fX(x)dx.

On peut voir que sous certaines hypothèses la variance empirique s2 est une bonne approximation de σ2, i.e.,

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 ≈ σ2.

De même, on a l’approximation
x̄ ≈ µ.

Nous verrons dans la suite du cours que s2 et x̄ sont effectivement de bons estimateurs de σ2 et µ (voir par
exemple la figure ??).

2.2.5 Le boxplot

Construction du boxplot :

– la hauteur du rectangle est l’EIQ, le bord bas est à x.25 et le bord haut à x.75.

– le trait épais au centre du rectangle est la médiane.

– la ”moustache” supérieure est la valeur de l’observation la plus proche en deçà de BS = x.75 + 1.5× EIQ.

– la ”moustache” inférieure est la valeur de l’observation la plus proche au delà de BI = x.25 − 1.5× EIQ.
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Figure 5 – Graphes de la densité normale pour différentes valeurs de µ et σ

Figure 6 – Probabilités associées à certains secteurs caractéristiques de la densité normale N(µ, σ2) de
moyenne µ et d’écart type σ.

Figure 7 – Un boxplot associé aux poids des paquets de MM’s
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Figure 8 – Boxplot associé à un échantillon normal N(0,1) de taille 1000. En moyenne, on a 7 données
excentriques.

– les points au delà de ces moustaches sont considérés comme des observations extrêmes, peut-être aberrantes, à
regarder de plus près.

Pour qu’une valeur soit excentrique, il faut la comparer avec un standard, qui est la loi normale ; Pour la loi
normale,

x.5 = µ, x.25 = µ− 0.6745σ, x.75 = µ+ 0.6745σ.

Il s’ensuit que l’étendue interquartile et les moustaches sont données par

EIQ = 1.349σ, BI = µ− 2.698σ, BS = µ+ 2.698σ.

Si FX désigne la fonction de répartition associée à la loi normale N(µ, σ2), on a

FX(BI) = 0.0035 = 1− FX(BS).

Ainsi, sur 1000 observations normales, il y en a en moyenne 7 qui sont excentriques (c.f. figure ??). La statis-
tique accepte un pourcentage (faible) d’erreurs dans le but de pouvoir contrôler correctement et fréquemment la
normalité.

2.3 Données multivariées

Nous illustrons ici un exemple bivarié : Le biologiste T. Carlson a étudié une population de levures (saccharomyce).
Les mesures décrivent l’évolution de la population lorsque le temps t est mesuré en heure [h] et N(t) donne un
nombre proportionnel au nombre de levures vivant en t. Les données obtenures sont de la forme (ti, N(ti)),
i = 0, · · · , n, où n = 19 :

(0, 9.6), (1, 18.3), (2, 29), (3, 47.2), (4, 71.1), (5, 119.1), (6, 174.6), (7, 257.33), (8, 350.7), (9, 441), (10, 513.3),

(11, 559.7), (12, 594.8), (13, 629.4), (14, 640.8), (15, 651.1), (16, 655.9), (17, 659.6), (18, 661.8).

La première chose à faire consiste à représenter les données graphiquement (scatter plot), comme dans la figure
(??) Le scatter plot présente une allure sigmöıdale typique dans ce contexte expérimental. Le modèle standard en
croissance de population est la courbe logistique

N(t) =
K

1 + Ce−lt
,

où K, C et l sont des paramètres positifs que l’on peut ajuster (ou estimer) à partir des données. Cette courbe
est un grand classique, et est solution de l’équation différentielle de Verhulst

dN

dt
= lN(K −N).
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Figure 9 – Scatter plot de N(ti) versus ti. On voit émerger l’allure sigmöıdale typique en croissance de
population.

Figure 10 – Le graphe de Yi = Y (ti) versus ti. La droite est obtenue en appliquant la méthode des
moindres carrés (régression linéaire)

Une telle courbe commence par augmenter exponentiellement vite comme fonction de t puis entre dans une phase
de saturation pour t assez grand, la valeur du niveau de saturation étant K. Le problème statistique consiste à
estimer les paramètres K, C et l de manière à ce que la courbe explique le mieux possible les données.

Une méthode courante en analyse exploratoire consiste à appliquer des transformations sur les données, typique-
ment en prenant le log ou... Cette approche est fructueurse dans notre situation : Posons

Y = ln

(
K −N
N

)
.

On remarque alors que
Y = ln(C)− lt,

qui est une fonction affine de t ! La transformation utilise le paramètre inconnu K que l’on doit estimer à partir
des données. Une méthode simple consiste à faire varier K ; Pour chaque valeur de K, on cherche les paramètres
l et C qui mènent au meilleur ajustement. On pose pour illustrer la méthode K = 662. Le figure (??) donne la
représentation des données transformées (ti, Y (ti)) ; on voit apparâıtre le graphe d’une fonction affine, ce qui nous
indique que le modèle de croissance logistique est bien adapté aux données. Dans le cadre du modèle statistique
donné ci-dessus Y = ln(C)− lt, qui possède la forme classique en mathématique

Y = at+ b,
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Figure 11 – Comparaison des graphes (ti, N(ti)) et (ti, f(ti)) où la première courbe est basée sur les
données expérimentales et la seconde est obtenue par la méthode des moindres carrés

où la pente de la droite vaut a = −l et l’ordonnée à l’origine est b = ln(C).

On cherche ensuite la droite qui passe le mieux au travers du nuage de point (ti, Y (ti)), en utilisant la méthode
des moindres carrés, qui a été inventée par Gauss. Posons

t̄ =

∑18
i=0 ti

n
, Ȳ =

∑18
i=0 Yi

n
, Yi = Y (ti),

Stt =

18∑
i=0

(ti − t̄)2, SY Y =

18∑
i=0

(Yi − Ȳ )2,

et

StY =

18∑
i=0

(ti − t̄)(Yi − Ȳ ).

On verra dans la suite du cours que les paramètres optimaux sont donnés par

a =
StY
Stt

,

b = Ȳ − aX̄.

Ceci nous indique que le point constitué des moyennes arithmétiques (t̄, Ȳ ) appartient à la droite de régression. La
droite est représentée dans la figure (??). On revient ensuite aux paramètres l et C à l’aide des relations a = −l
et b = ln(C). La figure (??) compare les données expérimentales à la courbe obtenue à l’aide de la méthode
des moindres carrés ; On voit sans peine que le modèle logistique est particulièrement bien adapté aux données
expérimentales.

2.4 Conclusions

L’analyse exploratoire prend du temps. Quand on présente ses résultats.

– Les graphiques doivent rester simples et clairs.

– Tout graphique présenté doit être décrit avec précision : quels sont les axes et les unités, quel est le but du
graphique, etc.
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– Tout tableau de statistiques doit être décrit avec précision : quels sont les unités, arrondir les statistiques à la
décimale reflétant la précision de la statistique.

– Tirer des conclusions de chaque graphique et tableau de statistiques présentés.

– Quand le but est de comparer plusieurs graphiques, garder la même échelle pour tous.

3 Probabilités

Nous considérons ici des épreuves dites aléatoires, c’est-à-dire des épreuves dont les issues dépendent du hasard.
En voici quelques exemples :

(1) Jet d’une pièce de monnaie ; issues : pile, face.

(2) Jet d’un dé à 6 faces ; issues : il y en a 6.

(3) n jets consécutifs d’une pièce de monnaie ; issues : il y en a 2n, chacune étant formée d’une suite de longueur
n constituée de pile ou face.

(4) Choix aléatoire d’un individu dans une population ; issues : chaque individu de la population.

(5) Choix aléatoire d’un nombre dans l’intervalle [0, 1] ; issues : chaque nombre compris entre 0 et 1.

Dans un premier temps, nous n’envisageons que des épreuves finies, c’est-à-dire des épreuves comportant un
nombre fini d’issues.

3.1 Modèle d’une épreuve finie

Considérons une épreuve aléatoire comportant N issues. Il est d’usage de désigner celles-ci par ω1, ω2, . . . , ωN et
de former l’ensemble Ω := {ω1, ω2, . . . , ωN}. Nous convenons qu’un sous-ensemble
A = {ωi1 , ωi2 , . . . , ωip} ⊂ Ω, 1 ≤ i1 < i2 < . . . < ii ≤ N , représente l’événement (associé à l’épreuve) qui se
réalise si et seulement si ωi1 ou ωi2 . . . ou ωip se réalise.

Exemple :
On jette un dé à 6 faces

ω1 correspond à : la face no 1 est réalisée
...
ω6 correspond à : la face no 6 est réalisée.

A = {ω2, ω4, ω6} représente donc l’événement : une face portant un nombre pair est réalisée.

L’ensemble Ω correspond ainsi à l’événement certain (celui qui est toujours réalisé) tandis que le sous-ensemble
vide, noté ∅, représente l’événement impossible.

Remarques :

– Les issues d’une épreuve sont aussi appelées événements élémentaires par opposition à un événement com-
posé dont la réalisation est impliquée par plusieurs issues (ex. A = {ω2, ω4, ω6} ci-dessus est un événement
composé).

– Dans ces notations, les issues seront notées {ωi} afin de les comprendre comme sous-ensemble de Ω.

Si Ω = {ω1, ω2, . . . , ωN} est l’événement certain d’une épreuve aléatoire comportant N issues, alors la famille
de tous les événements associés à cette épreuve est donnée par la famille de tous les sous-ensembles de Ω. Cette
famille sera notée P(Ω).
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Figure 12 –

3.2 Plusieurs jets consécutifs d’une pièce de monnaie

On considère l’épreuve consistant à jeter n fois une pièce de monnaie. Cette épreuve joue un rôle fondamental
dans cette théorie. Il s’agit de n répétitions de l’épreuve aléatoire la plus simple puisqu’elle admet 2 issues, à
savoir pile ou face, lors de chaque jet. (Une épreuve avec une seule issue perd bien sûr tout caractère aléatoire !)

Afin de simplifier les notations, pile sera noté 1 et face 0. Ainsi une issue de l’épreuve consistant à jeter n fois
une pièce de monnaie est représentée par une suite de longueur n formée de 0 et de 1 en convenant que le iième

élément donne le résultat du iième jet.

Exemple : n = 5
(0, 1, 1, 0, 1) est l’issue correspondant à face au premier jet, pile au second, pile au troisième, face au quatrième et
pile au cinquième.

Exercice : Vérifier que le nombre d’issues de l’épreuve ci-dessus est 2n.

Ainsi Ω = {ω1, ω2, . . . , ω2n} = ensemble de toutes les suites de longueur n formées de 0 et de 1. (Cet ensemble est
souvent noté {0, 1}n.) Par conséquent le nombre de sous-ensembles de Ω est 2(2n) et donc le nombre d’événements
associé à cette épreuve est 2(2n).

Exemple : Si n = 6, alors 2(26) = 264.

En résumé, une épreuve finie est représentée par
(

Ω,P(Ω)
)

où Ω est l’événement certain dont les points corres-

pondent aux issues de l’épreuve et P(Ω) est la famille de tous les événements.

3.3 Opérations sur les événements

Soit
(

Ω,P(Ω)
)

une épreuve aléatoire finie et A, B, deux événements associées i.e. A,B ∈ P(Ω) (⇐⇒ A,B

sous-ensembles de Ω).

– A ∪B est l’événement réalisé lorsque A ou B est réalisé

– A ∩B est l’événement réalisé lorsque A et B sont réalisés

– A = Ac est l’événement contraire de A, à savoir celui qui est réalisé lorsque A ne l’est pas. Ainsi Ω = ∅.
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Figure 13 –

Définition 3.1 Deux événements A et B associés à une épreuve sont dits incompatibles si A∩B = ∅, c’est-à-dire
si leur réalisation simultanée est impossible.

Exemple :
Epreuve : jet d’un dé à 6 faces, Ω = {ω1, ω2, ω3, ω4, ω5, ω6}.

A = {ω1, ω3, ω5} = une face impaire est réalisée.

B = {ω2, ω4, ω6} = une face paire est réalisée.

Alors A ∩B = ∅.

3.4 La notion de probabilité

Nous nous appuyons ici sur l’interprétation de la probabilité comme limite d’une fréquence. Soit A un événement
lié à une épreuve. Supposons que celle-ci est répétée n fois en prenant garde que ces répétitions n’interfèrent pas

entre elles. On note nA le nombre de realisations de A dans ces n répétitions. Le nombre
nA
n

est compris entre 0

et 1 et est appelé fréquence relative de réalisation de A dans ces n répétitions.

Credo : lorsque n→∞,
nA
n

se rapproche d’un nombre noté P (A) et appelé probabilité de A :

nA
n
 

n→∞
P (A)

! Il ne s’agit pas de la convergence usuelle d’une suite de nombres réels. En effet, si l’on jette une infinité de
fois une pièce symétrique, des événements élémentaires tels que pile n’est jamais réalisé (idem pour face) sont

possibles. Si A est l’événement “pile est réalisé lors d’un jet” alors, pour tout n, nA = 0 (nA = n) et
nA
n

ne tend

pas vers
1

2
comme on pourrait l’espérer pour une pièce symétrique.

3.5 Propriétés d’une probabilité (épreuve finie)

La probabilité d’un événement associé à une épreuve est un nombre compris entre 0 et 1 qui mesure sa chance de

réalisation lors de l’épreuve. Si cette dernière est représentée par
(

Ω(P(Ω)
)

, alors une probabilité P associe un

nombre compris entre 0 et 1 à tout sous-ensemble A de Ω :

A ⊂ Ω 7−→ P (A) ∈ [0, 1].
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Autre notation équivalente :
A ∈ P(Ω) 7−→ P (A) ∈ [0, 1].

Puisque Ω représente l’événement certain il est logique de poser P (Ω) = 1. De plus, soient A et B deux événements
incompatibles (A ∩ B = ∅) liés à l’épreuve. Supposons que lors de n répétitions de l’épreuve, A a été realisé nA
fois et B, nB fois. Puisque A et B sont incompatibles, on a nA∪B = nA + nB et donc

nA∪B
n

=
nA + nB

n
=
nA
n

+
nB
n
.

En faisant tendre n→∞, notre credo suggère que

P (A ∪B) = P (A) + P (B).

Nous réunissons les propriétés précédentes dans la définition suivante :

Définition 3.2 Si
(

Ω,P(Ω)
)

représente une épreuve finie (Ω est fini) alors une probabilité P associée à cette

dernière vérifie :

1) A ∈ P(Ω) 7→ P (A) ∈ [0, 1]

2) P (Ω) = 1

3) Si A,B ∈ P(Ω), A ∩B = ∅, alors P (A ∪B) = P (A) + P (B).

Remarque : La propriété 3) porte le nom d’additivité.

Par induction finie on en déduit que, pour n événements A1, A2, . . . , An ∈ P(Ω) incompatibles deux à deux,
c’est-à-dire Ai ∩Aj = ∅ si i 6= j, 1 ≤ i, j ≤ n, on a

P

(
n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai)

où
n⋃
i=1

Ai = A1 ∪A2 ∪ . . . ∪An .

Conséquences :
Les propriétés ci-dessous découlent toutes de 1), 2) et 3) :

– P (A) = 1− P (A)

– P (∅) = 0

– Si A ⊂ B, alors P (A) ≤ P (B) et P (B rA) = P (B)− P (A)

– P (A ∪B) = P (A) + P (B)− P (A ∩B)

Remarque : Une probabilité P associée à une épreuve finie est complètement déterminée par les probabilités
des événements élémentaires. En effet, si Ω = {ω1, ω2, . . . , ωN} et A ⊂ Ω, alors A = {ωi1 , ωi2 , . . . , ωi`} avec
1 ≤ i1 < i2 < . . . < i` ≤ N , et

P (A) = P

(⋃̀
k=1

{ωik}

) (
les {ωik} sont incompatibles 2 à 2

)

=
∑̀
k=1

P ({ωik}).

On déduit donc la valeur de P (A) de celles des P ({ωi}). Il est clair que 0 ≤ P ({ωi}) ≤ 1 et
N∑
i=1

P ({ωi}) = P (Ω) = 1.

Pour modéliser une épreuve infinie, on doit en général renoncer à P(Ω) et remplacer cette famille par une “σ–
algèbre”.
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Un cas particulier important :
La probabilité uniforme dans une épreuve finie associe la même valeur à tous les événements élémentaires. Plus
précisément, si Ω = {ω1, ω2, . . . , ωN} alors P ({ωi}) = 1

N
pour tout 1 ≤ i ≤ N . Si A = {ωi1 , . . . , ωi`}, alors

P (A) =
∑̀
k=1

P ({ωik}) =
∑̀
k=1

1

N
=

`

N
=

#(A)

N
=

nombre de cas favorables

nombre de cas possibles
.

3.5.1 Le problème des anniversaires

Nous supposons que les années comptent 365 jours et nous réunissons n (n ≤ 365) personnes choisies au hasard
dans une population. Nous nous intéressons à l’événement

An = 2 personnes au moins parmi les n ont un anniversaire commun
(jours identiques mais années éventuellement différentes)

Pour calculer P (An), il est judicieux de passer par l’événement contraire

P (An) = 1− P (An)

où

An = aucun anniversaire commun parmi les n personnes.

En admettant que les jours de naissance sont répartis uniformément dans l’année nous avons :

P (An) =
# cas favorables

# cas possibles
=

365 · 364 · · · (365− (n− 1))

365 · 365 · · · 365

=
365 · 364 · · · (365− (n− 1))

365n
.

P (An) dépasse la valeur 1
2

dès que n ≥ 23.

3.6 Notion de probabilité conditionnelle

Soient A et B deux événements liés à une épreuve avec P (A) > 0 et P (B) > 0. Nous nous intéressons à P (A | B) =
probabilité pour que A se réalise sachant que B est réalisé.

Exemple : On jette un dé symétrique à 6 faces (i.e. les faces sont équiprobables).

A = une face portant un nombre pair est réalisée
B = une face portant un nombre plus grand ou égal à 4 est réalisée.

P (A | B) = ?

Revenons à la situation générale et à notre credo. Supposons que l’épreuve a été répétée n fois et que B et A∩B
ont été réalisés respectivement nB et nA∩B fois. Nous ne tenons pas compte des situations dans lesquelles B n’est

pas réalisé. Ainsi la fréquence relative qui nous intéresse ici est
nA∩B
nB

et sa “limite” lorsque n→∞ doit fournir

P (A)B). Or
nA∩B
nB

=
nA∩B
n
nB
n

 
n→∞

P (A ∩B)

P (B)
= P (A | B).

Ainsi, on peut définir



3 PROBABILITÉS Math. propédeutiques, Statistique 21

Définition 3.3

P (A | B) =
P (A ∩B)

P (B)
ou de façon équivalente P (A ∩B) = P (A | B)P (B) .

Dans notre exemple Ω = {1, 2, 3, 4, 5, 6} et P ({i}) = 1
6
, 1 ≤ i ≤ 6.

A = {2, 4, 6}, B = {4, 5, 6}, A ∩B = {4, 6}

P (A | B) =
P (A ∩B)

P (B)
=

2
6
3
6

=
2

3
.

3.6.1 Le jeu des trois bôıtes

Avant le début du jeu, le présentateur introduit une boule dans une des trois bôıtes dont il dispose. Le joueur
doit deviner la bôıte qui contient la boule. Il désigne donc une bôıte et le présentateur ouvre alors une des deux
autres et lui montre qu’elle est vide. Il laisse au joueur la possibilité de modifier son choix initial. Que doit faire
ce dernier ?

La notion de probabilité conditionnelle sera utilisée pour construire un modèle probabiliste de ce jeu. Numérotons
les bôıtes de 1 à 3 et posons :

X = numéro de la bôıte contenant la boule
Y = numéro de la bôıte désignée par le joueur
Z = numéro de la bôıte vide ouverte par le présentateur.

Nous recensons d’abord les événements élémentaires :

X Y Z X Y Z X Y Z
1 1 2 2 1 3 3 1 2
1 1 3 2 2 1 3 2 1
1 2 3 2 2 3 3 3 1
1 3 2 2 3 1 3 3 2

Afin d’alléger l’écriture nous introduisons la notation suivante

{X = i, Y = j, Z = k} = {X = i} ∩ {Y = j} ∩ {Z = k}

où i, j, k prennent les valeurs précises dans le tableau précédent. Il est clair que

{X = Y } = le joueur gagne en maintenant son choix initial
{X 6= Y } = le joueur gagne en modifiant son choix initial

et P{X 6= Y } = 1− P{X = Y }.

Nous devons discuter deux types d’événements élémentaires, à savoir ceux qui contiennent deux fois un même
numéro et les autres. Ainsi, en utilisant la probabilité conditionnelle :

P (Z = 2, Y = 1, X = 1) = P (Z = 2 | Y = 1, X = 1)P (Y = 1, X = 1)(
P (A ∩B) = P (A | B)P (B) avec A = {Z = 2} et B = {Y = 1, X = 1}

)
.

Si X = 1, et Y = 1, alors le présentateur peut choisir d’ouvrir les boites 2 ou 3. Nous poserons donc

P (Z = 2 | Y = 1, X = 1) =
1

2
.

De même nous aurons
P (Y = 1, X = 1) = P (Y = 1 | X = 1)P (X = 1).
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Le joueur ne sachant pas où se trouve la boule, il est logique de poser P (Y = 1 | X = 1) = P (Y = 1) = 1
3
.

Finalement nous admetterons que P (X = 1) = 1
3
. Par conséquent :

P (Z = 2, Y = 1, X = 1) =
1

2
· 1

3
· 1

3
=

1

18
.

A l’aide du même raisonnement nous obtenons :

1

18
= P (Z = 3, Y = 1, X = 1) = P (Z = 1, Y = 2, X = 2)

= P (Z = 3, Y = 2, X = 2) = P (Z = 1, Y = 3, X = 3)

= P (Z = 2, Y = 3, X = 3).

Par ailleurs,

P (Z = 3, Y = 2, X = 1) = P (Z = 3 | Y = 2, X = 1)P (Y = 2 | X = 1)P (X = 1).

A l’évidence nous poserons :
P (Z = 3 | Y = 2, X = 1) = 1

P (Y = 2 | X = 1) = P (Y = 2) =
1

3

P (X = 1) =
1

3
.

Par conséquent nous aurons :

1

9
= P (Z = 3, Y = 2, X = 1) = P (Z = 2, Y = 3, X = 1)

= P (Z = 3, Y = 1, X = 2) = P (Z = 1, Y = 3, X = 2)

= P (Z = 2, Y = 1, X = 3) = P (Z = 1, Y = 2, X = 3).

Il suffit maintenant de sommer les probabilités des événements élémentaires constituant les événements qui nous
intéressent :

P (X = Y ) =
1

18
+

1

18
+

1

18
+

1

18
+

1

18
+

1

18
=

6

18
=

1

3
.

et donc

P (X 6= Y ) = 1− P (X = Y ) =
2

3
.

Conclusion : le joueur a intérêt à modifier son choix initial.

3.7 Théorème des probabilités totales et formule de Bayes

Soit Ω l’événement certain associé à une épreuve et A, B1, B2, . . . , Bn des événements liés à celle-ci mais tels que :

– Bi ∩Bj = ∅ si i 6= j, 1 ≤ i, j ≤ n (les Bi sont incompatibles 2 à 2)

–
n⋃
i=1

Bi = Ω.

Alors on a :

(a) Théorème des probabilités totales :

P (A) =

n∑
i=1

P (A | Bi)P (Bi).

(b) Formule de Bayes :

Pour 1 ≤ j ≤ n, P (Bj | A) =
P (A | Bj)P (Bj)
n∑
i=1

P (A | Bi)P (Bi)
.
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Figure 14 – La décomposition de A à l’aide d’une partition B1, · · · , Bn

Démonstration :

(a) A = A ∩
(

n⋃
i=1

Bi

)
=

n⋃
i=1

A ∩Bi .

Les événements Bi étant incompatibles 2 à 2, il en va de même des A ∩ Bi. L’additivité de la probabilité
fournit :

P (A) =

n∑
i=1

P (A ∩Bi)

=

n∑
i=1

P (A ∩Bi)
P (Bi)

P (Bi)

=

n∑
i=1

P (A | Bi)P (Bi).

(b)

P (Bj | A) =
P (Bj ∩A)

P (A)

=
P (A ∩Bj)
P (A)

=
P (A | Bj)P (Bj)

P (A)

(a)
=

P (A | Bj)P (Bj)
n∑
i=1

P (A | Bi)P (Bi)
.

Applications : On tire consécutivement (sans remise) deux billets d’un lot de n billets parmi lesquels m sont
gagnants.

G1 = obtenir un billet gagnant lors du premier tirage,
G2 = obtenir un billet gagnant lors du second tirage.

Il est clair que P (G1) = m
n

. Pour calculer P (G2) nous pouvons utiliser le théorème des probabilités totales en
posant :

A = G2, n = 2, B1 = G1, B2 = G1 (G1 ∩G1 = ∅ et G1 ∪G1 = Ω).

Ainsi :

P (G2) = P (G2 | G1)P (G1) + P (G2 | G1)P (G1)

=
m− 1

n− 1

m

n
+

m

n− 1
(1− m

n
)

=
m

n− 1

(
m− 1

n
+ 1− m

n

)
=

m

n− 1

(
1− 1

n

)
=

m

n− 1

n− 1

n
=
m

n
= P (G1).
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Il est possible de démontrer que cette probabilité reste la même pour tous les tirages successifs. (Problème des
billets de loterie discuté dans le cours.)

3.7.1 Applications de la formule de Bayes

On considère 10 pièces de monnaie dont l’une est truquée car ses deux côtés sont des piles. On choisit une pièce au
hasard et on la jette. Sachant que le résultat du jet est pile, calculer la probabilité pour que la pièce en question
soit la pièce truquée.

Numérotons les pièces de 1 à 10 en convenant que la première est la pièce truquée.

Bi = on tire la pièce no i, 1 ≤ i ≤ 10
A = pile est réalisé en jetant la pièce choisie

P (B1 | A) =
P (A | B1)P (B1)

P (A | B1)P (B1) + P (A | B2)P (B2) + · · ·+ P (A | B10)P (B10)

=
1 · 1

10

1 · 1
10

+ 9 1
2
· 1

10

=
1

1 + 9
2

=
1
11
2

=
2

11
.

3.7.2 Détection d’une maladie

Nous considérons un test pour la détection d’une maladie dans une population donnée. Nous introduisons les
notations :

M = un individu, choisi au hasard dans la population, est malade,
A = le test, appliqué à un individu, est positif.

Sachant que
P (M) = 0, 001, P (A |M) = 0, 95 et P (A |M) = 0, 95,

peut-on conclure que le test est de bonne qualité ?

La grandeur qui nous intéresse est en fait P (M | A) et la formule de Bayes nous fournit :

P (M | A) =
P (A |M)P (M)

P (A |M)P (M) + P (A |M)P (M)
.

Remarquons que P (A |M) = 1− P (A |M). En effet, si A et B sont deux événements, alors

P (A | B) =
P (A ∩B)

P (B)
=
P
(
B r (A ∩B)

)
P (B)

=
P (B)− P (A ∩B)

P (B)

= 1− P (A ∩B)

P (B)
= 1− P (A | B).

Par conséquent :

P (M | A) =
0, 95 · 0, 001

0, 95 · 0, 001 + 0, 05 · 0, 999
∼= 0, 0187 .

Seulement 1, 8 % des malades sont détectés par le test !
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3.8 Evénements indépendants :

Considérons deux événements A1 et A2 liés à une épreuve et tels que P (A1) > 0 et P (A2) > 0. Comment
pouvons-nous traduire l’idée “A1 est indépendant de A2” ? Une façon de procéder consiste à exiger :

P (A1 | A2) = P (A1)

pour signifier que la réalisation de A2 n’influence pas celle de A1. Dans ce cas nous avons les équivalences suivantes :

P (A1 | A2) = P (A1) ⇐⇒ P (A1 ∩A2)

P (A2)
= P (A1)⇐⇒ P (A1 ∩A2) = P (A1)P (A2)

⇐⇒ P (A2 ∩A1)

P (A1)
= P (A2)⇐⇒ P (A2 | A1) = P (A2).

Ainsi “A1 est indépendant de A2” équivaut à “A2 est indépendant de A1” entrâınant la symétrie de cette notion.
Afin d’inclure les cas où P (A1) et P (A2) peuvent être nuls, nous travaillerons avec la définition suivante :

Définition 3.4 Deux événements A1 et A2 liés à une épreuve sont dits indépendants si P (A1∩A2) = P (A1)P (A2).

Exemple : On tire consécutivement deux billets d’un lot de n billets parmi lesquels m sont gagnants. Désignons
par G1 et G2 les événements qui consistent respectivement à tirer un billet gagnant en première et seconde position.
Nous avons déjà vu que P (G1) = P (G2) = m

n
. Ces deux événements sont-ils indépendants ?

P (G2 ∩G1) = P (G2 | G1)P (G1) =
m− 1

n− 1

m

n
6= m

n
· m
n

= P (G2)P (G1).

En conclusion G1 et G2 ne sont pas indépendants. Si par contre les tirages s’effectuent avec remise, alors G1 et
G2 sont indépendants car P (G2 | G1) = P (G2) = m

n
et donc

P (G2 ∩G1) = P (G2 | G1)P (G1) =
m

n

m

n
= P (G2)P (G1).

Comment définir l’indépendance de 3 événements ou plus ? Considérons d’abord A1, A2 et A3 liés à une épreuve.
Une façon raisonnable (sous forme conditionnelle) de définir l’indépendance de ces 3 événements est d’exiger :

P (A1 | A2 ∩A3) = P (A1 | A2) = P (A1 | A3) = P (A1)
P (A2 | A1 ∩A3) = P (A2 | A1) = P (A2 | A3) = P (A2)
P (A3 | A1 ∩A2) = P (A3 | A1) = P (A3 | A2) = P (A3).

Un calcul direct montre que cet ensemble de propriétés équivaut à (forme “produit”)

P (A1 ∩A2) = P (A1)P (A2), P (A1 ∩A3) = P (A1)P (A3), P (A2 ∩A3) = P (A2)P (A3),

P (A1 ∩A2 ∩A3) = P (A1)P (A2)P (A3).

Les trois premières propriétés reflètent l’indépendance 2 à 2 deA1,A2 etA3 tandis que la dernière est l’indépendance
3 à 3. Malheureusement ces deux notions ne s’impliquent pas mutuellement. Voici un exemple de 3 événements
indépendants 2 à 2 mais pas 3 à 3.

Ω = {1, 2, 3, 4}, P ({i}) =
1

4
, 1 ≤ i ≤ 4

A1 = {1, 2}, A2 = {1, 3}, A3 = {1, 4}, P (A1) = P (A2) = P (A3) =
1

4
+

1

4
=

1

2
.
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P (A1 ∩A2) = P ({1}) =
1

4
=

1

2
· 1

2
= P (A1)P (A2)

P (A1 ∩A3) = P ({1}) =
1

4
=

1

2
· 1

2
= P (A1)P (A3)

P (A2 ∩A3) = P ({1}) =
1

4
=

1

2
· 1

2
= P (A2)P (A3)

et ainsi A1, A2 et A3 sont indépendants 2 à 2. Par contre

P (A1 ∩A2 ∩A3) = P ({1}) =
1

4
6= P (A1)P (A2)P (A3) =

1

2
· 1

2
· 1

2
=

1

8
.

Nos événements ne sont pas indépendants 3 à 3.

La notion d’indépendance utilisée en théorie des probabilités est :

Définition 3.5 Les événements A1, A2, . . . , An sont dits indépendants si

P (Ai1 ∩Ai2 ∩ . . . ∩Aim) = P (Ai1)P (Ai2) . . . P (Aim)

pour tout sous-ensemble {i1, i2, . . . , im} ⊂ {1, 2, . . . , n}. Ainsi n événements sont indépendants s’ils le sont 2 à 2,
3 à 3, . . ., n à n.

4 La notion de variable aléatoire

Dans le modèle d’une épreuve aléatoire, les éléments de l’événement certain Ω représentent les issues (= événements
élémentaires) de l’épreuve. Une fonction X: Ω→ lR associe donc à chaque issue ω ∈ Ω un nombre X(ω) qui dépend
du hasard puisque tel est est le cas de l’argument ω. Une telle fonction porte le nom de variable aléatoire (v.a.).
Dans le cas d’une épreuve infinie (non dénombrable) une condition technique supplémentaire est exigée.

Exemples :

1) Dans la population humaine du Canton de Fribourg, on choisit au hasard un individu et on mesure son
poids. Si Y désigne ce dernier, alors Y est une variable aléatoire à valeurs dans lR+ (réels positifs).

2) On jette n fois une pièce de monnaie et on désigne par X le nombre de réalisations de pile dans les n jets.
X est une variable aléatoire à valeurs dans {0, 1, . . . , n}.

3) On considère un événement A lié à une épreuve aléatoire. On désigne par T le nombre de répétitions de
l’épreuve pour obtenir la première apparition de A. T est une variable aléatoire à valeurs dans N∗ =
{1, 2, . . .}.

4) Pierre et Paul jouent à un jeu de hasard. Ils disposent chacun d’une même fortune initiale et à chaque coup
le gagnant reçoit 1 franc du perdant. Le jeu s’arrête lorsque la fortune d’un joueur atteint 0. La durée du
jeu est une variable aléatoire ; la fortune de Pierre, tant que le jeu dure, est une variable aléatoire.

Nous considérons deux familles importantes de variables aléatoires.

4.1 Les variables aléatoires à valeurs entières

Soit X une variable aléatoire à valeurs dans lN = {0, 1, . . .}. L’information stochastique d’une telle variable
aléatoire est contenue dans la fonction

k ∈ lN 7−→ P (X = k).

A l’aide de celle-ci il est en effet possible de calculer P (n1 ≤ N ≤ n2), pour n1 ≤ n2 quelconques :
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P (n1 ≤ N ≤ n2) = P

 n2⋃
k=n1

{X = k}


=

n2∑
k=n1

P (X = k) par additivité de P.

Soit fk = P (X = k). On a 0 ≤ fk ≤ 1 et on peut également montrer que
∞∑
k=0

fk = 1.

4.1.1 Les variables de Bernoulli

On jette une pièce de monnaie. A la réalisation de pile on associe la valeur 1 et 0 s’il s’agit de face. Si p désigne
la probabilité de réalisation de pile et si X désigne le résultat du jet, on aura :

X =

{
1 avec probabilité p
0 avec probabilité q = 1− p .

Une telle variable aléatoire est appelée variable aléatoire de Bernoulli de paramètre p et nous noterons X = Ber(p).

4.1.2 Variable binômiale

On jette n fois une pièce de monnaie. On suppose les jets indépendants et on désigne par p la probabilité de
réalisation de pile lors d’un jet. Soit

Xi =


1 avec probabilité p

, 1 ≤ i ≤ n,
0 avec probabilité q = 1− p

le résultat du ième jet avec la convention : 1 pour pile et 0 pour face. L’hypothèse d’indépendance des jets est
traduite par l’indépendance des variables aléatoires
X1, X2, . . . , Xn. Elles sont de plus identiquement distribuées, Xi = Ber(p), 1 ≤ i ≤ n.

Nous nous intéressons au nombre de réalisations de pile dans les n jets. Cette variable aléatoire, que nous noterons
Sn, est donnée par :

Sn =

n∑
i=1

Xi .

Sn prend ses valeurs dans {0, 1, . . . , n} et nous calculons maintenant P (Sn = k) .
L’événement {Sn = k} correspond à la réalisation de k fois pile dans n jets. Calculons d’abord la probabilité pour
que, lors de n jets, les k premiers fournissent pile et les n− k derniers face, i.e. :

P (X1 = 1, X2 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0)

indépendance
= P (X1 = 1)P (X2 = 1) . . . P (Xk = 1)P (Xk+1 = 0) . . . P (Xn = 0)

= p · p · . . . · p q · · · q
= pkqn−k .

Chaque façon de réaliser exactement k fois pile dans n jets a la probabilité pkqn−k d’être réalisée. L’additivité
de la probabilité nous assure alors que P (Sn = k) est donné par le nombre de façons de réaliser k fois pile dans
n jets que l’on multipliera par pkqn−k. Le nombre cherché est identique au nombre de sous-ensembles de taille k
que possède un ensemble de taille n. On peut démontrer que le nombre cherché est donné par(

n

k

)
=

n!

k!(n− k)!
où n! = n(n− 1) . . . 2 · 1. (exercices)
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Figure 15 – Représentation graphique des valeurs prises par la loi binômiale lorsque n = 10, pour
p = 0.4, p = 0.5 et p = 0.8.

Ainsi

P (Sn = k) =

(
n

k

)
pkqn−k .

La figure ?? donne trois représentations graphiques des valeurs P (Sn = k), k = 0, · · · , n, lorsque n = 10, pour
p = 0.4, p = 0.5 et p = 0.8. Une telle variable aléatoire est dite binômiale de paramètre n et p. On notera
Sn = Bin(n, p). Nous avons ainsi montré que la somme de n variables aléatoires Ber(p) indépendantes est une
variable Bin(n, p). Les coefficients

(
n
k

)
sont ceux du binôme de Newton :

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k ,

et on peut ainsi en déduire que :

n∑
k=0

P (Sn = k) =

n∑
k=0

(
n

k

)
pkqn−k = (p+ q)n = 1n = 1.

4.1.3 Variable géométrique

Considérons un événement A lié à une épreuve aléatoire dont la probabilité de réalisation est p. Nous effectuons
des répétitions indépendantes de cette épreuve et nous désignons par T le nombre nécessaire à faire apparâıtre A.
Pour k ≥ 1, nous avons

P (T = k) = qk−1p où q = 1− p.
Une telle variable aléatoire est appelée géométrique de paramètre p et nous noterons T = G(p). En utilisant
l’égalité (série géométrie)

∞∑
k=0

xk =
1

1− x , |x| < 1,

on obtient

∞∑
k=1

P (T = k) =

∞∑
k=1

qk−1p = p

∞∑
k=1

qk−1

= p

∞∑
k=0

qk =
p

1− q =
p

p
= 1.
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4.1.4 Variable de Poisson

Considérons une suite de variables aléatoires Yn = Bin(n, pn) telle que lim
n→∞

npn = λ > 0. Rappelons que

P (Yn = k) =

(
n

k

)
pkn(1− pn)n−k, 0 ≤ k ≤ n.

Un calcul direct montre que, pour tout k fixé,

lim
n→∞

(
n

k

)
pkn(1− pn)n−k = e−λ

λk

k!

où λ = lim
n→∞

npn. Il est clair que

∞∑
k=0

e−λ
λk

k!
= e−λ

∞∑
k=0

λk

k!
= e−λeλ (série de la fonction exponentielle)

= 1.

Une variable aléatoire X vérifiant P (X = k) = e−λ λ
k

k!
, k ∈ lN est dite variable aléatoire de Poisson de paramètre

λ et nous noterons X = Poi(λ). La condition lim
n→∞

npn = λ suggère que pour n grand et p petit, une variable

aléatoire Bin(n, p) peut être approchée par une variable aléatoire Poi(λ) où λ = np. La règle n > 10 et p < 0.05
garantit une approximation convenable (voir les exercices).

4.1.5 La loi des séries

En 2005, 5 avions civils se sont crashés sur une période de 22 jours (Toronto, Palerme, Athènes, Venezuela,
Amazonie). Comment peut-on expliquer cette série noire ? Est-ce dû au hasard ou alors traduisent-ils une baisse
du niveau de sécurité dans les transports aériens ?

On peut faire quelques calculs afin de voir si le hasard peut expliquer cette série noire. La fréquence moyenne des
crashs sur la période 1995-2004 était de 1/500 000. On en déduit que le probabilité que ces 5 avions se crashent
vaut

P (ces 5 avions se crashent) =

(
1

500000

)5

∼ 32 10−30,

qui est donc très petite. On revient à notre question et on essaie de calculer la probabilité qu’au moins 5 avions
se crashent sur une période donnée de 22 jours, soit

P (au moins 5 avions se crashent sur une période donnée de 22 jours).

On va utiliser le fait que le nombre moyen quotidien de décollages vaut environ 20 000 ; les accidents étant
indépendants les uns des autres, on suppose par ailleurs que le nombre de crashs sur les 22 jours suit une loi
binômiale avec n = 22 20000 et p = 1/500000. La probabilité d’avoir k crashs sur 22 jours vaut donc(

n

k

)
pk(1− p)n−k.

Les paramètres étant grands, on observe que

λ = np = 440000
1

500000
= 0.88,

ce qui nous permet d’utiliser l’approximation de la loi binômiale par la loi de Poisson. On trouve que

P (au moins 5 avions se crashent sur une période donnée de 22 jours)

∼ 1− P ({0})− P ({1})− P ({2})− P ({3})− P ({4}),
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où

P ({k}) =
λk

k!
e−λ.

Cette approximation nous donne que P ({0}) = 0.415, P ({1}) = 0.365, P ({2}) = 0.161, P ({3}) = 0.047, P ({4}) =
0.01, et donc,

P (au moins 5 avions se crashent sur une période donnée de 22 jours) ≈ 1− 0.998 = 0.002,

soit une chance sur 500.

Une année comprenant 16 périodes consécutives de 22 jours, on en déduit que la probabilité qu’il n’y ait aucune
série noire sur chacune de ces 16 périodes vaut (998/1000)16, soit environ 97 chances sur 100.

Quelle est la probabilité qu’au moins 5 avions se crashent en 22 jours sur une année entière ? On ne peut plus
calculer simplement une telle probabilité, ceci à cause des chevauchements des périodes de 22 jours sur une année
(les variables aléatoires ne sont plus indépendantes). Un calcul montre que

P ( au moins 5 avions se crashent en 22 jours sur une année) ≈ 0.11,

soit plus d’une chance sur 10 ! !

4.2 Les variables aléatoires réelles avec densité

On dit qu’une variable aléatoire X à valeurs dans lR possède une densité f si pour a ≤ b quelconques on a

P (a ≤ X ≤ b) =

∫ b

a

f(t)dt.

La densité f est une fonction non-négative
(
f(t) ≥ 0

)
qui doit vérifier la condition

+∞∫
−∞

f(t)dt = 1. Remarquons

que P (a ≤ X ≤ b) est donnée par l’aire de la surface indiquée ci-dessus. On constate ainsi que pour des ∆t très
petits, f(t)∆t fournit une approximation de la probabilité pour que X prenne ses valeurs entre t et t+ ∆t.

4.2.1 Variable normale ou gaussienne

La famille la plus célèbre est celle des variables aléatoires dites normales ou gaussiennes et dont les densités sont
de la forme

t ∈ lR 7−→ f(t) =
1√
2πσ

e
− (t−µ)2

2σ2
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Figure 16 – Graphes de la densité normale pour différentes valeurs de µ et σ

Figure 17 – Probabilités associées à certains secteurs caractéristiques

avec µ ∈ lR et σ > 0. Une variable aléatoire X dont la densité est f sera dite normale (ou gaussienne) de
paramètres µ et σ et nous noterons X = N(µ, σ). Un cas particulier important est donné par µ = 0 et σ = 1. Une
variable aléatoire U = N(0, 1) est dite normale standard (ou standardisée) ou encore centrée réduite.

L’allure de la densité ci-cessus est une courbe en forme de cloche :

Les variables aléatoires normales sont sorties des travaux de Gauss consacrés à la théorie des erreurs. Elles jouent
un rôle fondamental notamment à cause des propriétés asymptotiques décrites dans le théorème limite central
(voir après). Il est intéressant de remarquer que l’intégrale∫ t

a

e−s
2

ds

ne se laisse pas exprimer de façon simple à l’aide des fonctions dites élémentaires (théorème difficile). Par
conséquent, certains calculs faisant intervenir les densités de variables aléatoires normales devront être effectués
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numériquement ou à l’aide d’une table. Nous verrons en fait qu’il suffira de disposer d’une table pour la fonction
de répartition d’une variable aléatoire N(0, 1), c’est-à-dire :

t ∈ lR 7−→ FN(0,1)(t) =
1√
2π

∫ t

−∞
e−

s2

2 ds.

Nous utiliserons dorénavant la notation
Φ(t) = FN(0,1)(t).

4.2.2 Variable exponentielle

Une famile importante de variables aléatoires sont celles dont la densité est :

f(t) =


0 si t < 0

où λ > 0.

λe−λt si t ≥ 0

On vérifie facilement que
+∞∫
−∞

λeλt dt = 1. Une variable aléatoire X admettant cette densité est appelée ex-

ponentielle de paramètre λ. Nous noterons alors X = E(λ). Ce type de variables aléatoires intervient dans la
modélisation du temps de vie d’un système.

4.3 Fonction de répartition d’une variable aléatoire :

A chaque variable aléatoire X on peut associer sa fonction de répartition définie par :

t ∈ lR 7−→ FX(t) = P (X ≤ t).

Une telle fonction est croissante et passe du niveau 0 au niveau 1.

Définition 4.1 On dit que deux variables aléatoires X1 et X2 sont identiquement distribuées (ou ont même
répartition) si elles ont la même fonction de répartition (FX1 ≡ FX2).

On dit que deux variables aléatoires X1 et X2 sont indépendantes si pour t1 et t2 quelconques on a

P (X1 ≤ t1, X2 ≤ t2) = P (X1 ≤ t1)P (X2 ≤ t2).

Cette propriété signifie que les événements associés à X1 et ceux associés à X2 sont indépendants. La généralisation
de la définition à une famille quelconque de variables aléatoires se fait de façon identique à celle des événements
indépendants. Le hasard peut donc être responsable de la série de crashs.

4.4 Les notions d’espérance et de variance d’une variable aléatoire :

Considérons les trois jeux dont les gains respectifs X1, X2 et X3 sont donnés par :
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Figure 18 – Graphes de fonctions de répartition normales pour plusieurs valeurs de µ et σ

Jeu 1 : X1 =


gagne 10 francs avec probabilité 1

2

gagne 0 franc avec probabilité 1
2

Jeu 2 : X2 =


gagne 20 francs avec probabilité 1

4

perd 1 franc avec probabilité 3
4

Jeu 3 : X3 =


gagne 20 francs avec probabilité 1

5

gagne 0 franc avec probabilité 4
5

Quel est le jeu le plus avantageux ? Un critère pour les comparer est le gain espéré définit comme suit :

E(X1) = 10 · 1
2

+ 0 · 1
2

= 5

E(X2) = 20 · 1
4

+ (−1) 3
4

= 17
4

E(X3) = 20 · 1
5

+ 0 · 4
5

= 4

Selon ce critère le premier jeu est le plus avantageux des trois. La notion d’espérance d’une variable aléatoire est
une généralisation de l’idée qui précède.

Définition 4.2 Si X est une variable aléatoire à valeurs dans lN, son espérance notée E(X) est définie par

E(X) =
∞∑
k=0

k P (X = k).

Si X est une variable aléatoire réelle avec densité f , son espérance notée E(X) est définie par

E(X) =

∫ +∞

−∞
t f(t)dt.

L’espérance d’une variable aléatoire est donc sa moyenne (théorique) ou encore la position de son “centre de
gravité” si l’on interprète les probabilités comme des masses pesantes. En ce sens l’espérance est un paramètre de
position de la répartition de masse = probabilité.
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4.4.1 Propriétés de l’espérance :

On peut démontrer que l’espérance possède les propriétés suivantes :

– E (constante) = constante

– α ∈ lR, X v.a. : E(αX) = αE(X)

– X, Y v.a. : E(X + Y ) = E(X) + E(Y )

– X ≥ 0 v.a. : E(X) ≥ 0

– X, Y v.a., X ≤ Y : E(X) ≤ E(Y )

– si g est une fonction alors : E
(
g(X)

)
=
∞∑
k=0

g(k)P (X = k) ou E
(
g(X)

)
=

+∞∫
−∞

g(t)f(t)dt suivant que X

prend ses valeurs dans N ou dans lR avec densité f .

Exemples :

– X = Ber(p) : E(X) = 1 · p+ 0 · q = p

– X = Bin(n, p) : nous avons vu que X est alors une somme X = X1 + X2 + . . . + Xn de n variables
aléatoires (indépendantes) Ber(p). On conclut que

E(X) = E(X1) + E(X2) + . . .+ E(Xn)

= p+ p . . .+ p

= np.

– X = G(p) : le calcul montre que E(X) =
∞∑
k=1

k qk−1p = 1
p

.

– X = Poi(λ) : le calcul montre que E(X) =
∞∑
k=0

k e−λ λ
k

k!
= λ

– X = N(µ, σ) : le calcul montre que E(X) = 1√
2πσ

+∞∫
−∞

t e
− (t−µ)2

2σ2 dt = µ

– X = E(λ) : le calcul montre que E(X) =
+∞∫
0

t λ e−λtdt = 1
λ

.

L’espérance est un paramètre de position qui ne nous indique pas si la probabilité est peu ou beaucoup dispersée
autour de son centre de gravité. Pour mesurer cette dispersion on peut faire appel à la variance définie par :

Var(X) = E

((
X − E(X)

)2
)
.

Il s’agit de l’écart quadratique moyen autour de l’espérance. Il est clair que

Var(X) = E

(
X2 +

(
E(X)

)2

− 2XE(X)

)
= E(X2) +

(
E(X)

)2

− 2
(
E(X)

)2

= E(X2)−
(
E(X)

)2

.

Pour le calcul de E(X2) nous avons, suivant le type de variables aléatoires :

E(X2) =

∞∑
k=0

k2P (X = k) ou E(X2) =

∫ +∞

−∞
t2f(t)dt.
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Exemples :
X = Ber(p) E(X2) = 12 · p+ 02 · q = p, E(X) = p

Var(X) = E(X2)−
(
E(X)

)2

= p− p2 = p(1− p) = pq.

Par calcul direct on obtient les résultats suivants :

X = Bin(n, p) Var(X) = npq
X = Poi(λ) Var(X) = λ
X = N(µ, σ) Var(X) = σ2 .

4.4.2 Propriétés de la variance :

– X v.a. Var(X) ≥ 0 et Var(X) = 0⇐⇒ X = constante

– X v.a. α ∈ lR, Var(X + α) = Var(X)

– X v.a. α ∈ lR, Var(αX) = α2Var(X).

Variance d’une somme de variables aléatoires :

Si X1 et X2 sont deux variables aléatoires, que peut-on dire de Var(X1 + X2) ? En général rien sans hypothèse
supplémentaire sur X1 et X2.

Définition 4.3 On dit que deux variables aléatoires X1 et X2 sont non-corrélées si E(X1X2) = E(X1)E(X2).

Si X1 et X2 sont non-corrélées, alors Var(X1 + X2) = Var(X1) + Var(X2) (exercice). On peut démontrer que si
X1 et X2 sont indépendantes, alors elles sont non-corrélées l’inverse étant faux. Ainsi la variance d’une somme de
variables aléatoires indépendantes est égale à la somme des variances. On en déduit facilement que siX = Bin(n, p),
alors Var(X) = npq puisque X est alors somme de n variables aléatoires indépendantes Ber(p) dont la variance
vaut pq.

Il est d’usage de noter σ2 la variance d’une variable aléatoire. L’unité de Var(X) est le carré de celle de X. Pour
cette raison on préférera certaines fois travailler avec σ =

√
Var(X).

Définition 4.4 On appelle écart-type d’une variable aléatoire X le nombre

σ =
√

Var(X).

4.4.3 Utilisation d’une table de loi normale :

Si X = N(µ, σ), alors X−µ
σ

est une variable aléatoire d’espérance 0 et d’écart-type 1. On peut de plus vérifier que
X−µ
σ

est encore une variable aléatoire normale donc X−µ
σ

= N(0, 1). Cette propriété a d’importantes conséquences
pratiques. Supposons en effet que l’on désire calculer

P (a ≤ X ≤ b)

où X = N(µ, σ).

P (a ≤ X ≤ b) = P (a− µ ≤ X − µ ≤ b− µ)

= P

(
a− µ
σ
≤ X − µ

σ
≤ b− µ

σ

)
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=
1√
2π

b−µ
σ∫

a−µ
σ

e−
t2

2 dt

= Φ

(
b− µ
σ

)
− Φ

(a− µ
σ

)

puisque X−µ
σ

= N(0, 1). Il suffit ainsi de disposer d’une table donnant la fonction de répartition Φ(t) d’une variable
aléatoire N(0, 1). On appelle standardisée une variable aléatoire dont l’espérance est 0 et l’écart-type 1.

Exemple : Calculer P (29 ≤ X ≤ 32) où X = N(30, 2).

P (29 ≤ X ≤ 32) = P

(
29− 30

2
≤ X − 30

2
≤ 32− 30

2

)
= P

(
−1

2
≤ X − 30

2
≤ 1

)
= Φ(1)− Φ(−1

2
)

table
= 0.8413− 0.3085 = 0.5328.

4.5 Modèle des observations d’une variable aléatoire :

Nous nous intéressons à la répartition du poids des personnes dans la population d’une région donnée (ville,
canton, pays, ...). Désignons par X le poids d’une personne choisie au hasard dans cette population. X est donc
une variable aléatoire et nous pouvons par exemple nous intéresser à sa moyenne, c’est-à-dire son espérance
µ = E(X). Si la population ne peut pas être observée dans son intégralité (ce qui est le cas dans la pratique),
alors µ est une grandeur qui ne sera jamais connue exactement. On peut cependant essayer de l’estimer sur la
base d’observations de X.

Considérons n observations successives de X, c’est-à-dire n personnes choisies successivement au hasard dont on

mesure le poids. Désignons par X1, X2, . . . , Xn les résultats obtenus i.e. Xi = poids de la iième personne. Dans
un modèle des observations, X1, X2, . . . , Xn sont des variables aléatoires ; certains auteurs désignent les valeurs
effectivement obtenues par des lettres minuscules x1, x2, . . . , xn.

Quelles sont les propriétés de X1, X2, . . . , Xn ? Si l’on s’arrange pour éviter des influences mutuelles entre les
observations (tirage avec remise ou taille de la population très grande), alors on peut supposer l’indépendance des
variables aléatoires X1, X2, . . . , Xn. De plus, chacune d’elle représentant une observation de X, elles ont même
loi que X. Ainsi

X1, X2, . . . , Xn sont i.i.d. comme X

où i.i.d. = indépendantes et identiquement distribuées. Une telle famille est appelée n–échantillon issu de X. Il
est important de noter que les Xi ayant même loi que X, elles ont la même espérance µ.

Comment estimer µ avec X1, X2, . . . , Xn ? La réponse usuelle à cette question est : à l’aide de la moyenne
arithmétique

X1 +X2 + . . .+X2

n
.

Il est légitime de se demander pourquoi et l’une des réponses possibles est fournie par le théorème appelé “loi des
grands nombres” et qui s’énonce ainsi :



5 THÉORÈMES LIMITES Math. propédeutiques, Statistique 37

5 Théorèmes limites

5.1 Théorème (Loi des grands nombres)

Si X1, X2, . . . , Xn, . . . est une suite infinie de variables aléatoires i.i.d. comme la variable aléatoire X, alors

P

(
lim
n→∞

1

n

n∑
i=1

Xi = E(X)

)
= 1.

Dans notre contexte nous interprétons les variables aléatoires comme des observations indépendantes de X. Ainsi

X :=
1

n

n∑
i=1

Xi

est la moyenne des n premières observations qu’on l’appellera aussi moyenne empirique. La loi des grands nombres
nous assure alors que la suite des moyennes empiriques converge vers l’espérance µ = E(X) (moyenne théorique)

avec probabilité égale à 1 lorsque n → ∞. Il est donc pertinent d’estimer µ = E(X) avec X = 1
n

n∑
i=1

Xi. La

question de l’estimation de σ2 (ou σ) se pose de la même façon. Par analogie, en remplaçant E( ) par moyenne

arithmétique dans Var(X) = E
(

(X − E(X))2
)

, on obtient :

1

n

n∑
i=1

(
Xi −X

)2

.

Pour des raisons théoriques (point peu important si n est grand), les statisticiens préfèrent l’expression

S2 :=
1

n− 1

n∑
i=1

(
Xi −X

)2

,

car E(S2) = σ2, alors que la première expression ne possède pas cette propriété.

On appelle variance empirique la grandeur S2 et

S =
√
S2 =

√√√√ 1

n− 1

n∑
i=1

(
Xi −X

)2

,

l’écart-type empirique du n–échantillon X1, . . . , Xn issu de X. A l’aide de la loi des grands nombres, on peut
démontrer que S2 (resp. S) converge avec probabilité 1 vers σ2 (resp. σ) lorsque n→∞.

Nous avons dégagé trois fonctions des observations, à savoir X, S2 et S qui sont utilisées pour estimer respective-
ment µ, σ2 et σ. De telles fonctions sont appelées des estimateurs pour les grandeurs inconnues correspondantes.

Voici le second grand théorème asymptotique de la théorie des probabilités.

5.2 Théorème limite-central

Soient X1, X2, . . . , Xn, . . . une suite de variables aléatoires i.i.d. comme la variable aléatoire X, µ = E(X),

σ2 = Var(X) et Sn =
n∑
i=1

Xi .

Alors, pour tout nombre réel t, on a

lim
n→∞

P

(
Sn − nµ
σ
√
n
≤ t
)

=
1√
2π

t∫
−∞

e−
s2

2 ds.
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Remarque : en transformant Sn en Sn−nµ
σ
√
n

, la nouvelle variable aléatoire a une espérance nulle et un écart-type
égal à 1. En effet :

E(Sn) = E

(
n∑
i=1

Xi

)
=

n∑
i=1

E(Xi) = nµ car E(Xi) = E(X) = µ,

E

(
Sn − nµ
σ
√
n

)
=

1

σ
√
n
E(Sn − nµ) =

1

σ
√
n

(
E(Sn)− nµ

)
=

1

σ
√
n

(nµ− nµ) = 0

Var

(
Sn − nµ
σ
√
n

)
=

1

σ2n
Var(Sn − nµ) =

1

σ2n
Var(Sn)

=
1

σ2n

n∑
i=1

Var(Xi) =
nσ2

nσ2
= 1

car les variables aléatoires sont indépendantes et Var(Xi) = Var(X) = σ2. Ainsi l’écart-type de Sn−nµ
σ
√
n

est égal
√

1 = 1. Le théorème limite central peut être formulé en terme de fonctions de répartition. Rappelons que si Y
est une variable aléatoire alors sa fonction de répartition est :

FY (t) = P (Y ≤ t).

Ainsi le théorème limite central affirme que, sous les hypothèses précédentes,

FSn−nµ
σ
√
n

(t) 7−→ Fn(0,1)(t) = Φ(t)

pour tout nombre réel t. Ce résultat suggère que pour n suffisamment grand, FSn−nµ
σ
√
n

(t) peut être approché par

Φ(t).

5.3 Approximation d’une loi binômiale par une loi normale

Nous avons que si Sn = Bin(n, p), alors Sn est somme de n variables aléatoires X1, X2, . . . , Xn indépendantes

Ber(p) i.e. Sn =
n∑
i=1

Xi. Le théorème limite central affirme alors que

P

(
Sn − np√

npq
≤ t
)
−→
n→∞

Φ(t)

car E(Xi) = p et Var(Xi) = pq. Il est possible de montrer que si npq > 9, alors P
(
Sn−np√
npq

≤ t
)

peut être

correctement approché par Φ(t).

Application : On considère 1000 jets indépendants d’une pièce de monnaie dont la probabilité de pile est
p = 1

4
. Soit S1000 le nombre de réalisations de pile dans les 1000 jets. Calculer P (230 ≤ S1000 ≤ 270) à l’aide

d’une approximation normale (npq = 1000 · 1
4
· 3

4
= 187.5 > 9).

P (230 ≤ S1000 ≤ 270) = P

230− 1000 · 1
4√

1000 · 1
4
· 3

4

≤
S1000 − 1000 · 1

4√
1000 · 1

4
· 3

4

≤
270− 1000 · 1

4√
1000 · 1

4
· 3

4


∼= P (−1.460 ≤ N(0, 1) ≤ 1.460)

= Φ(1.460)− Φ(−1.460) = 0.855

car Φ(1.460) = 0.9279 et Φ(−1.460) = 1− Φ(1.460).
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5.4 Somme de variables aléatoires normales indépendantes

Le calcul montre que la somme de variables aléatoires normales indépendantes est encore une variable aléatoire
normale. Si X1 = N(µ1, σ1) et X2 = N(µ2, σ2) sont indépendantes alors X1 +X2 = N(µ, σ). Que valent µ et σ ?

µ = E(X1 +X2) = E(X1) + E(X2) = µ1 + µ2

σ2 = Var(X1 +X2) = Var(X1) + VarX2) = σ2
1 + σ2

2

donc σ =
√
σ2

1 + σ2
2 et X1 +X2 = N(µ1 + µ2,

√
σ2

1 + σ2
2).

Considérons un n–échantillon X1, X2, . . . , Xn issu de X = N(µ, σ). Alors Sn =
n∑
i=1

Xi = N(nµ, σ
√
n) en vertu du

calcul précédent et donc
Sn − nµ
σ
√
n

= N(0, 1).

5.5 Intervalle de confiance pour l’espérance

Nous estimons l’espérance µ d’une variable aléatoireX = N(µ, σ) à l’aide de la moyenne empiriqueX =
Sn
n

=
1

n

n∑
i=1

Xi

d’un n–échantillon X1, X2, . . . , Xn issu de X. Que peut-on dire de l’erreur commise ? Supposons d’abord que σ

est connu. Le résultat ci-dessus nous affirme que
Sn − nµ
σ
√
n

= N(0, 1). En divisant numérateur et dénominateur

par n, on obtient :

Sn − nµ
σ
√
n

=
Sn
n
− µ
σ√
n

=
X − µ

σ√
n

= N(0, 1).

Puisque Φ(−1.96) = 2.5 %, nous avons

P

(
−1.96 ≤ X−µ

σ√
n
≤ 1.96

)
= 95 %

= P
(
− 1.96σ√

n
≤ X − µ ≤ 1.96σ√

n

)
= P

(
X − 1.96σ√

n
≤ µ ≤ X + 1.96σ√

n

)
.

Par conséquent, la probabilité pour que la valeur cherchée µ soit dans l’intervalle aléatoire[
X − 1.96σ√

n
, X +

1.96σ√
n

]
centré en X vaut 95 %. Ceci signifie qu’en répétant cette construction, la grandeur inconnue µ appartiendra à un
tel intervalle environ 95 fois sur 100 mais nous ne savons bien sûr pas lesquels.

L’intervalle aléatoire ci-dessus est appelé intervalle de confiance de µ au coefficient de risque 5 %. Un aspect

important réside dans le fait que la longueur de l’intervalle décrôıt comme
constante√

n
avec la taille n de l’échantillon.

Par contre, si σ est inconnu, on l’estimera à l’aide de l’écart-type empirique

S =

√√√√ 1

n− 1

n∑
i=1

(Xi −X)2. L’expression
Sn − nµ
σ
√
n

est donc remplacée par

Sn − nµ
S
√
n

=
Sn
n
− µ
S√
n

=
X − µ

S√
n

. Le calcul montre que cette dernière variable aléatoire est de type Student à n− 1

degrés de liberté. Il suffit alors d’utiliser une table de Student à n− 1 degrés de liberté à la place d’une table de

loi normale. De toute façon, pour n ≥ 30,
X − µ

S√
n

∼= N(0, 1).

Dans le cas où les observations ne sont pas issues d’une variable aléatoire normale, le théorème limite central nous
assure que l’on peut asymptotiquement s’y ramener lorsque la taille de l’échantillon est très grande.
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5.6 Droite de régression, coefficient de corrélation

Un problème important est la discussion d’une éventuelle relation entre deux variables aléatoires X et Y . Une
première approche de la question est la recherche d’une relation affine entre X et Y , c’est-à-dire une relation de
la forme Y = aX + b. Supposons que l’on ait observé n fois le couple (X,Y ) et que les valeurs obtenues soient

Les couples précédents, représentés dans le plan (X,Y ), ne seront en général pas alignés sur une droite. Nous
allons donc écrire la relation en corrigeant avec une erreur stochastique εi :

Yi = aXi + b+ εi , 1 ≤ i ≤ n.

Nous proposons de chercher a et b, c’est-à-dire une droite de pente a et d’ordonnée à l’origine b, qui “approche au
mieux” le nuage de points définis par les couples observés. Il faut évidemment préciser dans quel sens l’approxi-
mation est mesurée. L’usage veut que l’on travaille avec l’erreur quadratique totale définie par :

E2(a, b) =

n∑
i=1

ε2
i =

n∑
i=1

(aXi + b− Yi)2.

Pour trouver les valeurs de a et b qui minimisent E2(a, b) nous imposons

∂

∂a
E2(a, b) = 0,

∂

∂b
E2(a, b) = 0.

La seconde condition fournit
n∑
i=1

2(aXi + b− Yi) = 0

n∑
i=1

Yi = a
n∑
i=1

Xi + nb

1
n

n∑
i=1

Yi = a 1
n

n∑
i=1

Xi + b

Y = aX + b.

Nous constatons donc que la droite optimale passe par le point (X,Y ) où X =
1

n

n∑
i=1

Xi et Y =
1

n

n∑
i=1

Yi. Cette

condition implique bopt = Y − aX et en remplaçant dans E2(a, b), on trouve

E2
(
a, bopt(a)

)
=

n∑
i=1

(aXi − aX + Y − Yi)2

=

n∑
i=1

(
a(Xi −X)− (Yi − Y )

)2

.
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En dérivant par rapport à a nous obtenons

n∑
i=1

2
(
a(Xi −X)− (Yi − Y )

)
(Xi −X) = 0,

et par conséquent

aopt =

n∑
i=1

(Xi −X)(Yi − Y )

n∑
i=1

(Xi −X)2

.

Il est judicieux de diviser numérateur et dénominateur par n − 1 pour faire apparâıtre la variance empirique S2
x

de X1, X2, . . . , Xn :

aopt =

1
n−1

n∑
i=1

(Xi −X)(Yi − Y )

1
n−1

n∑
i=1

(Xi −X)2

=
Cxy
S2
x

où Cxy =
1

n− 1

n∑
i=1

(Xi−X)(Yi−Y ). Cette dernière expression, est appelée covariance empirique de l’échantillon

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) et estime la grandeur théorique

Cov(X,Y ) = E

((
X − E(X)

)(
Y − E(X)

))
appelée covariance du couple (X,Y ). Un calcul direct montre que

Cxy =
1

n− 1

(
n∑
i=1

XiYi − nXY

)
et Cov(X,Y ) = E(XY )− E(X)E(Y ).

Ces égalités permettent de faciliter les calculs et la dernière montre que Cov(X,Y ) = 0 si et seulement si X et Y
sont non-corrélées.

L’équation de la droite optimale (i.e. celle qui minimise l’erreur quadratique) est donc

y − Y =
Cxy
S2
x

(x−X).

Nous pouvons maintenant calculer l’erreur minimale commise si l’on “remplace” le nuage de points observés par
la droite optimale :

E2

min = E2(aopt, bopt) =

n∑
i=1

(
Cxy
S2
x

(Xi −X)− (Yi − Y )

)2

=
C2
xy

S4
x

n∑
i=1

(Xi −X)2 +

n∑
i=1

(Yi − Y )2 − 2
Cxy
S2
x

n∑
i=1

(Xi −X)(Yi − Y ).

En posant S2
y =

1

n− 1

n∑
i=1

(Yi − Y )2 (variance empirique de Y1, Y2, . . . , Yn) on obtient :

E2
min = (n− 1)S2

Y

(
C2
xy

S4
xS2

y

S2
x + 1− 2

C2
xy

S2
xS2

y

)

= (n− 1)S2
y

(
1−

(
Cxy
SxSy

)2
)
.
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Sachant que Emin ≥ 0, nous en déduisons que 1−
(
Cxy
SxSy

)2

≥ 0 et donc −1 ≤ Cxy
SxSy

≤ 1. Cette dernière grandeur

nous renseigne sur la valeur de l’erreur minimale lorsque l’on essaie d’expliquer les points observés par une droite.
La droite optimale obtenue précédemment est appelée droite de régression.

Définition 5.1 Le nombre rxy =
Cxy
SxSy

est appelé coefficient de corrélation empirique de l’échantillon (X1, Y1), . . . , (Xn, Yn).

Le nombre rxy permet d’estimer le coefficient de corrélation entre X et Y défini par :

ρ =
Cov(X,Y )

σxσy

où σx et σy sont respectivement les écarts-type de X et Y .

Nous constatons que E2
min = 0 équivaut à r2

xy = 1 et donc à rxy = ±1. Dans ces deux cas, tous les points observés
sont alignés sur la droite de régression et +1 ou −1 nous indiquent le signe de sa pente. De façon générale, plus
|rxy| est proche 1, plus E2

min est petite et inversement, plus rxy est proche de 0, plus E2
min est grande. E2

min

est maximale pour rxy = 0 et la seule conclusion que l’on peut en tirer est qu’une droite ne représente pas les
observations de manière satisfaisante. Il ne faut toutefois pas en conclure que X et Y ne sont liées par aucune
relation. On peut facilement donner des exemples de variables aléatoires X et Y qui sont non-corrélées et telles
que X2 + Y 2 = R2 (voir exercices). Inversement, rxy proche de 1 ne signifie pas un lien causal entre X et Y .
Voici l’exemple célèbre tiré de “Ornithologischen Monatsberichten 44, Nr 2 (1936) et 48, Nr 1 (1940)” qui traite
l’évolution de la population humaine et du nombre de couples de cigognes de ville d’Oldenburg entre 1930 et
1936 :

1930 1931 1932 1933 1934 1935 1936

# couples de cigognes 132 142 166 188 240 250 252

Habitants 55’400 55’400 65’000 67’700 69’800 72’300 76’000

Exercice : Faire une représentation graphique des points et déterminer la droite de régression pour X = #
couples de cigognes et Y = # habitants. Le coefficient de corrélation rxy = 0, 945 est très proche de 1 mais il
serait dangereux de conclure que l’accroissement de la population humaine provient de la présence des cigognes !

Voici quelques exemples de nuages de points avec les coefficients de corrélation (approximatifs) correspondants :
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6 Introduction aux tests statistiques

Beaucoup de situations pratiques conduisent à opposer des hypothèses invérifiables de façon directe. Par exemple,
un nouveau médicament est-il meilleur que l’ancien ? Une nouvelle méthode d’enseignement est-elle supérieure à
l’ancienne ?

Il faut comparer des observations menées sur des malades dans le premier cas et sur des étudiants dans le second.
Cependant, les résultats dépendront aussi de fluctuations d’échantillonage car aussi bien un médicament qu’une
méthode d’enseignement agissent de façons différentes sur des sujets différents. En effet, certains patients sont
plus ou moins réceptifs que d’autres à un médicament et il en va de même avec les étudiants et une méthode
d’enseignement.
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La littérature scientifique propose un grand nombre de tests pour traiter des situations différentes. Notre but vise
ici la compréhension d’un test typique car le mécanisme de base sera le même pour tous.

Un test est constitué de plusieurs éléments à savoir :

– une hypothèse et une alternative

– une fonction des observations

– un niveau

– un domaine de rejet.

Il est plus facile de refuter une hypothèse que de la démontrer. Il est d’usage dans notre contexte de formuler l’hy-
pothèse qui nous intéresse comme contre-hypothèse susceptible d’être rejetée. Dans les situations précédentes, l’hy-
pothèse sera le nouveau médicament (respectivement la nouvelle méthode) et l’ancien (resp. l’ancienne méthode)
sont équivalents (resp. équivalentes). Il est d’usage de la qualifier d’hypothèse nulle notée H0 qui sera opposée à
une alternative H1 qui sera ici le nouveau médicament (nouvelle méthode) est supérieur(e) à l’ancien(ne).

Afin de simplifier l’exposé, nous discutons d’abord le problème de la “chute d’une tartine”. Une affirmation
fréquente prétend qu’une tartine a tendance à tomber du mauvais côté, c’est-à-dire du côté confiture. Désignons
par p la probabilité pour que, lors d’une chute, une tartine donnée tombe du côté confiture. Pour hypothèse nulle
nous choisissons :

H0: p = 0.50 .

Dans un but didactique nous supposons que p peut admettre seulement les valeurs 0.50 et 0.55 . L’alternative sera
donc

H1: p = 0.55 .

En fait H1 peut être p 6= 1
2

ou p > 1
2
.

Supposons que n chutes de tartines aient été observées et que m fois celle-ci soit tombée du côté confiture.
Pouvons-nous trancher entre H0 et H1 sur la base de ces observations ?

Les deux décisions possibles dans un tel test sont “rejeter H0 ou ne pas rejeter H0”. Dans chaque cas une erreur
peut être commise et nous résumons la situation dans le tableau suivant :

Statut de H0 inconnu ! H0 fausse H0 vraie

Décision (H1 vraie) (H1 fausse)

rejette H0 ok erreur de type I

ne rejette pas H0 erreur de type II ok

Il est d’usage de désigner par α (respectivement β) la probabilité de commettre une erreur de type I (respectivement

de type II). L’idéal consisterait à pouvoir réduire simultanément les valeurs de α et β pour qu’elles soient proches
de 0. Malheureusement, la réduction de α entrâıne en général une augmentation de β et réciproquement. Il faut
donc se résoudre à ne contrôler qu’un des deux nombres et l’usage veut que cela soit α. Ce cernier est alors appelé
le niveau du test et les praticiens utilisent des valeurs telles que α = 5 %, α = 2 %, α = 1 % etc. . . . Ainsi la bonne
configuration dans un test est celle qui amène le rejet de H0 car, dans ce cas, le risque est sous contrôle puisqu’il
est de type I. On dit alors que le test est significatif et que H0 est rejetée au niveau α. Dans le cas de non rejet de
H0, nous dirons que H0 n’est pas rejetée au niveau α et que le test est donc non significatif. La situation est plus
délicate car nous ne contrôlons pas l’erreur de type II. La valeur de β peut en fait être très voisine de 1. Certains
auteurs comme Neyman et Pearson proposent alors d’agir comme si H0 était vraie. D’autres statisticiens tels que
Fisher proposent au contraire de suspendre tout jugement en attendant de nouvelles données ou informations.

Pour illustrer le fonctionnement d’un test nous revenons au problème de la tartine. Supposons que n chutes aient
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été observées et introduisons les variables aléatoires suivantes :

Xi =


1 si la tartine tombe du côté confiture

lors de la i–ème chute probabilité p

0 sinon probabilité q = 1− p

1 ≤ i ≤ n. Ainsi Sn =
n∑
i=1

Xi nous fournit le nombre de fois que la tartine est tombée du côté confiture lors des n

chutes. En admettant que les chutes (donc les Xi) soient indépendantes, nous savons que Sn = Bin(n, p). De plus

si npq > 9, alors
Sn − np√

npq
peut être approchée par une variable aléatoire N(0, 1). Pour une valeur quelconque de

p, la loi des grands nombres suggère que les valeurs de Sn auront tendance à se concentrer autour de E(Sn) = np.

Pour n = 500, nous aurons E(S500)
∣∣∣

H0 vraie

= 500 · 0.50 = 250 tandis que

E(S500)
∣∣∣

H1 vraie

= 500 · 0.55 = 275. Il est donc pertinent de rejeter H0 si la valeur de Sn est “trop” grande par

rapport à la valeur espérée qui vaut ici 250. Nous cherchons donc un nombre nα qui aura la fonction suivante :

si Sn > nα alors on rejette H0

si Sn ≤ nα alors on ne rejette pas H0

En choisissant un niveau α nous déterminons n(α) avec la condition

P
(
Sn > n(α)

) ∣∣∣
H0 vraie

= α%.

Puisque n > n(α) correspond au rejet de H0, si celle-ci est vraie, nous commettons une erreur de type I avec un
risque de α%.

Supposons que n = 500 et α = 5 %. H0 étant supposée vraie, nous avons p = 0.50 et npq = 500 · 1
2
· 1

2
= 125 > 9.

Nous pouvons donc approcher
S500 − 500 · 1

2√
500 · 1

2
· 1

2

par une variable aléatoire N(0, 1) et donc

P (S500 > n0.05) = P

S500 − 500 · 1
2√

500 · 1
2
· 1

2

>
n0.05 − 500 · 1

2√
500 · 1

2
· 1

2

 = 5 %.

Voici une petite table de loi normale :

α 5 % 2.5 % 1 % 0.1 %

u1−α 1.645 1.960 2.326 3.090

u1−α
2

1.960 2.241 2.576 3.291
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L’équation
n0.05 − 500 · 1

2√
500 · 1

2
· 1

2

= u0.95 = 1.645 nous fournit

n0.05 = 500 · 1

2
+ 1.645

√
500 · 1

2
· 1

2
= 268.391 ∼= 268.

En conclusion, si H0 est vraie (i.e. p = 0.50), alors celle-ci est rejetée lorsque S500 > 268 et cet événement, qui
correspond à l’erreur de type I, survient avec une probabilité de 5 %. Inversement, si H0 est fausse (i.e. H1 est
vraie et donc p = 0.55), l’erreur de type II correspond à S500 ≤ 268 et la probabilité de cet événement peut être
calculée de la façon suivante :

β = P (S500 < 268)
∣∣∣

H1 vraie

= P

(
S500 − 500 · 0.55√

500 · 0.55 · 0.45
<

268− 500 · 0.55√
500 · 0.55 · 0.45

)
∼= Φ

(
268− 500 · 0.55√
500 · 0.55 · 0.45

)
= Φ(−0.629) = 0.264 .

Par conséquent β = 26.4 % dans cette situation.

Que se passe-t-il si l’on abaisse le niveau α à 1 % ? En remplaçant u0.95 par u0.99 = 2.326, nous obtenons

n0.01 = 500 · 1
2

+ 2.326
√

500 · 1
2
· 1

2
= 276.005 et

β = P (S500 < 276)
∣∣∣

H1 vraie

∼= Φ(0.089) = 0.535 .

Ainsi en abaissant α de 5 % à 1 %, β passe de 26.4 % à 53.5 %. Nous avons donc ici une illustration de l’impossibilité
du contrôle simultané de α et β.

Nous pouvons illustrer graphiquement les deux cas précédents en remarquant que
Sn − np√

npq
∼= N(0, 1) équivaut à

Sn ∼= N(np,
√
npq) :

H0 vraie (p = 0.50): S500
∼=

(
500 · 1

2
,

√
500 · 1

2
· 1

2

)
= N(250, 11.18)

H1 vraie (p = 0.55): S500
∼=
(

500 · 0.55,
√

500 · 0.55 · 0.45
)

= N(275, 11.12).

Remarques : Il est clair que si un test rejette H0 au niveau α, il rejettera H0 à tout niveau α′ > α. Dans
la mesure où cela est possible, on peut chercher le niveau le plus petit auquel le test rejette H0. Ce nombre est
appelée “p–value” (terminologie anglaise) du test. Il donne une meilleure information sur la situation de H0 qu’un
niveau imposé à priori.

En général l’alternative H1 sera plus compliquée que p = 0.55. H0 pourra être opposée par exemple à H1: p > 0.50
et dans de tels cas il est plus difficile de calculer β. Il faut donc rester prudent lorsqu’un test ne rejette pas H0

car β peut être très proche de 1.
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Lorsque l’on teste une probabilité H0: p = 0.50 versus une alternative H1, cette dernière peut être p > 1
2

ou p < 1
2

ou p 6= 1
2
. Dans les deux premiers cas on parlera d’un test unilatéral et dans le troisième d’un test bilatéral.

1712 chutes d’une tartine ont été observées et 1506 fois celle-ci est tombée du côté confiture. Que pouvons-nous
conclure ? Nous testons H0: p = 0.50 contre H1: p > 0.50 avec le test décrit précédemment et nous nous proposons
de calculer sa p–value, c’est-à-dire αmin tel que H0 est rejetée.

Sn − np√
npq

=
S1712 − 1712 · 1

2√
1712 · 1

2
· 1

2

=
1506− 1712 · 1

2√
1712 · 1

2
· 1

2

= 31.41 .

Par conséquent
αmin = 1− Φ(31.41) = 5.57 · 10−217

et l’affirmation “H0 est fausse” peut être considérée ici comme une quasi-certitude.

6.1 Test portant sur une probabilité

Parité des nombres dans un lotto.

Il est légitime de se demander si les parités des nombres choisis au hasard dans un lotto sont équiprobables. On
a observé n = 306 nombres parmi lesquels 147 étaient impairs et 159 pairs. Les derniers sont-ils plus probables ?
Désignons par p la probabilité pour qu’un tel nombre soit pair. Nous avons H0: p = 0.50 et H1: p 6= 0.50. Il s’agit
d’un test bilatéral et nous rejetons H0 si la quantité de nombres pairs observés est soit trop petite, soit trop grande

relativement à n · 1
2
. Si Sn désigne le nombre d’entiers pairs, alors

Sn − np√
npq

est proche d’une variable aléatoire

normale N(0, 1) (306 · 1
2
· 1

2
= 76.5 > 9). Nous rejetons H0 au niveau α si∣∣∣∣∣Sobsn − np

√
npq

∣∣∣∣∣ > u1−α
2

où Φ(u1−α
2

) = 1− α
2

. Pour α = 5 %, u1−α
2

= 1.960 et

Sobs306 − 306 · 1
2√

306 · 1
2
· 1

2

= −0.686 .

Puisque −1.960 < −0.686 < 1.960, nous ne rejetons pas H0.

Probabilité du sexe à la naissance.

Nous nous proposons de tester l’équiprobabilité des sexes à la naissance dans la population humaine. Parmi
n = 91′342 naissances en Suisse en 1972, 47′179 étaient des garçons. Si p désigne la probabilité d’avoir un garçon
lors d’une naissance, nous posons H0: p = 1

2
et H1: p 6= 1

2
. Soit Sn le nombre de garçons dans n naissances

observées. Nous rejetons H0 au niveau α si ∣∣∣∣∣Sobsn − np
√
npq

∣∣∣∣∣ > u1−α
2
.

Dans notre cas :
Sobsn − np
√
npq

=
47′179− 91′342 · 1

2√
91′342 · 1

2
· 1

2

= 9.979 .

Il est clair que H0 est rejetée à 5 % (u0.975 = 1.960) et aussi à 1 % (u0.995 = 2.576). En fait la p–value du test est
de l’ordre de 10−24 donc p 6= 1

2
est une quasi-certitude.
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6.2 Le test d’ajustement de χ2

Nous considérons une variable aléatoire X et un n–échantillon X1, X2, . . . , Xn issu de X constituant n observations
indépendantes de X. Nous divisons la droite réelle en r intervalles disjoints

lR = (−∞, t1] ∪ (t1, t2] ∪ . . . ∪ (tν−2, tν−1] ∪ (tν−1,+∞)

= I1 ∪ I2 ∪ . . . ∪ Iν

et nous notons pk = P (X ∈ Ik), 1 ≤ k ≤ ν.

Introduisons les variables aléatoires

U
(k)
i =


1 si Xi ∈ Ik ,

1 ≤ i ≤ n, 1 ≤ k ≤ ν .
0 sinon

Alors P (U
(k)
i = 1) = P (Xi ∈ Ik) = P (X ∈ Ik) = pk et nk =

n∑
i=1

U
(k)
i donne le nombre de points du n–échantillon

qui appartiennent à l’intervalle Ik. Le nombre espéré de points dans Ik est donné par

E(nk) = E

(
n∑
i=1

U
(k)
i

)
=

n∑
i=1

E(U
(k)
i ) =

n∑
i=1

1 · pk

= npk .

Pearson a démontré que la variable aléatoire

ν∑
k=1

(nk − npk)2

npk

(le caractère aléatoire provenant de nk) converge, lorsque n → ∞ (au sens des fonctions de répartition comme
dans le théorème limite central), vers une variable aléatoire dite de χ2 à ν − 1 degrés de liberté notée χ2

ν−1 dont
les fonctions de répartition sont données dans les tables. Nous notons

ν∑
k=1

(nk − npk)2

npk
−→
n→∞

χ2
ν−1.

A nouveau, on tentera d’approcher
ν∑
k=1

(nk − npk)2

npk
par χ2

ν−1 pour n suffisamment grand. On peut montrer que

si npk ≥ 5 pour 1 ≤ k ≤ ν, alors l’approximation précédente est justifiée. Remarquons que nk est une fréquence

observée tandis que npk est une fréquence espérée donc théorique et que la somme
ν∑
k=1

(nk − npk)2

npk
permet

de mesurer l’écart entre fréquences oberservées et fréquences théoriques. Cette grandeur est à la base du test
d’ajustement du χ2. En effet, si l’écart précédent est trop grand, il convient d’admettre que les observations ne
proviennnent pas d’une variable aléatoire ayant même distribution que X.

Exemple : Dans une de ses expériences, Mendel a observé 556 petits pois parmi lesquels 315 étaient ronds et
jaunes, 108 ronds et verts, 101 ridés et jaunes et 32 ridés et verts. Ces observations sont-elles compatibles avec la

théorie de Mendel qui prévoit les probabilités respectives
9

16
,

3

16
,

3

16
et

1

16
pour ces événements ?

fréquences observées 315 108 101 32

fréquences théoriques 312.75 104.25 104.25 34.75

En effet : 556 · 9
16

= 312.75, 556 · 3
16

= 104.25 et 556 · 1
16

= 34.75. Nous constatons que npk ≥ 5, 1 ≤ k ≤ 4 et donc

χ2
obs =

(315− 312.75)2

312.75
+

(108− 104.25)2

104.25
+

(101− 104.25)2

104.25
+

(32− 34.75)2

34.75
= 0.470
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est (approximativement) une observation d’une loi de χ2 à 4− 1 = 3 degrés de liberté.

Posons :

H0 : les observations sont compatibles avec la théorie de Mendel
H1 : négation de H0

On peut montrer que la densité de χ2
ν a la forme suivante :

Nous introduisons χ2
1−α(ν) dont le sens est donné par les graphiques ci-dessus. Ainsi nous rejetons H0 au niveau

α si χ2
obs ≥ χ2

1−α(ν). Dans notre cas ν = 4 − 1 = 3 et une table nous fournit χ2
0,95(3) = 7.81. Par conséquent,

puisque χ2
obs = 0.470 < 7.81, nous ne rejetons pas H0 au niveau 5 %. Il en va évidemment de même à tout niveau

α < 5 %.

6.3 Test d’indépendance d’événements

Les yeux bleus et les cheveux blonds sont-ils des événements indépendants dans la population humaine ? 50
personnes choisies au hasard ont été observées et les résultats sont présentés dans le tableau suivant :

A : avoir les yeux bleus A : ne pas avoir les yeux bleus

B : avoir les cheveux blonds B : ne pas avoir les cheveux blonds

A A Total en ligne

B 12 6 18

B 12 20 32

Total en colonne 24 26 50

Un tel tableau est appelé tableau de contingence. Nous allons tester

H0 : indépendance de A et B
contre

H1 : négation de H0 .

Il faut remarquer que l’indépendance de A et B, c’est-à-dire P (A ∩ B) = P (A)P (B), entrâıne celles de A et B,
celle de A et B et celle de A et B (exercice).
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Nous estimons d’abord les probabilités de A, A, B et B, à l’aide des observations, par les proportions :

P (A) =
24

50
=

12

25
, P (A) = 1− P (A) =

13

25

P (B) =
18

5
=

9

25
, P (B) = 1− P (B) =

16

25
.

Sous H0 nous avons P (A ∩ B) = P (A)P (B), P (A ∩ B) = P (A)P (B), P (A ∩ B) = P (A)P (B) et P (A ∩ B) =
P (A)P (B) et donc

Fréquence théorique

P (A ∩B) =
12

25
· 9

25
nA∩B = nP (A)P (B) = 50 · 12

25
· 9

25
= 8.64

P (A ∩B) =
12

25
· 16

25
nA∩B = nP (A)P (B) = 50 · 12

25
· 16

25
= 15.36

P (A ∩B) =
13

25
· 9

25
nA∩B = nP (A)P (B) = 50 · 13

25
· 9

25
= 9.36

P (A ∩B) =
13

25
· 16

25
nA∩B = nP (A)P (B) = 50 · 13

25
· 16

25
= 16.64 .

Nous constatons que chaque fréquence théorique est ≥ 5. On compare les fréquences observées aux fréquences
théoriques (sous H0) :

χ2
obs =

(12− 8.64)2

8.64
+

(6− 9.36)2

9.36
+

(12− 15.36)2

15.36
+

(20− 16.64)2

16.64

= 3.93 .

On peut montrer que χ2
obs provient (approximation) d’une loi de χ2 à ν = 1 degré de liberté.

Si α = 5 % alors χ2
0.95(1) = 3.84. Puisque χ2

obs = 3.93 > 3.84, le teste rejette H0 au niveau de 5 %. Par contre,
χ2

0.99(1) = 6.63 et 3.93 < 6.63 montre que H0 n’est pas rejetée au niveau 1 %. Certains auteurs disent alors que
le test est significatif sans être hautement significatif. Les tables montrent que la p–value dans ce cas vaut 0.047.

Remarque : Pour un tableau de contingence

A A

B a b

B c d

un calcul direct montre que la valeur associée de χ2
obs est

χ2
obs =

n(ad− bc)2

(a+ b)(a+ c)(b+ d)(c+ d)

où n est le nombre d’observations. Cette formule permet de simplifier les calculs.



7 BIBLIOGRAPHIE Math. propédeutiques, Statistique 51

7 Bibliographie

R. Ineichen, Hj. Stocker : Stochastik, Raeber Verlag.

R. Ineichen : Elementare Beispiele zum Testen statistischer Hypothesen, Orell Fssli.

A. Engel : Les certitudes du hasard, Aleas Editeur.

M.R. Spiegel : Theory and problems of statistics, Schaum Publishing Co.

Y. Dodge : Premiers pas en statistique, Springer.

G. Smith : Statistical reasoning, Allyn and Bacon.

hasard : Zufall
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