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1 Introduction

La statistique peut étre définie comme la science du dépouillement de données issues de ’observation de
phénomenes naturels. Par exemple, si un fabricant de médicaments désire créer un nouveau médicament
destiné a traiter la migraine, il va effectuer un sondage dans la population pour estimer la proportion
0 < p < 1 des personnes de la population qui souffrent de ce trouble afin d’obtenir une idée sur le
nombre de potentiels acheteurs. Pour ce faire, un institut de sondage va choisir au hasard un nombre n
de personnes dans la population totale, et calculer la proportion p = m/n de ces personnes qui souffrent
de migraine. Cette proportion p fournit une estimation de la vraie proportion (inconue) p. Pourquoi
prendre un échantillon ? Tout simplement parce qu’il est impossible pratiquement de poser la question
a tous les membres d’une population. Quelle est la qualité de cette estimation? On verra dans ce cours
comment il est possible de quantifier la marge d’erreur commise par une telle estimation. Sans trop entrer
dans les détails, nous verrons que si I’échantillon aléatoire est assez grand, nous pouvons affirmer avec 95
% de confiance que
p=p+1.96 p(L—p)
n

Par exemple, si la taille de 1’échantillon vaut n = 1000, et si m = 210 personnes de cet échantillon
souffrent de migraine, on trouve que

0.21(1 — 0.21)

—021+1.
p=0 %6 1000

= 0.21 £0.025.

On peut estimer avec une confiance au niveau de 95% que la proportion de personnes souffrant de
migraines dans la population est comprise entre 0.185 et 0.235. L’intervalle ainsi obtenu [0.185, 0.235] est
un intervalle de confiance pour la proportion inconnue p de niveau de confiance 95 %.

Dans de nombreuses situations pratiques, le traitement statistique des données est précédé d’une phase
exploratoire lors de laquelle le scientifique examinera les donnée afin d’en extraire le plus d’information
possible, et de déduire de ceci diverses conjectures.

Nous allons utiliser trés souvent la notion de variable aléatoire, qui associe une valeur numérique
au résultat d’'une expérience, qui permet ainsi de créer une fonction des valeurs expérimentales. Cette
fonction est déterminée par le résultat de 'expérience et est génériquement notée X.

Si 'on revient a l’exemple du sondage, on peut poser par exemple que X = 1 si la personne souffre
de migraines et poser X = 0 sinon. La question étant posée a toutes les personnes de 1’échantillon,
on doit considérer une suite de variables aléatoires X;, i« = 1,---,n correspondant aux réponses de
tous les membres de I’échantillon. Cette formalisation mathématique du sondage permet de décrire
mathématiquement diverses quantités naturelles, comme la proportion estimée p qui devient

ﬁ_@_ Z?:lXi
n n

ot on utilise le fait que m =7 | X;.

Dans I’exemple précédent, le résultat de 'exprience est binaire ; dans de nombreuses situations, le réstultat
d’une expérience X est un nombre réel, i.e. X € R. Un exemple simple consiste mesurer la taille d’une
personne en cm.

Dans le premier cas, on parle de donnée discréte, et dans le deuxieéme cas, de donnée continue.
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2 Analyse exploratoire

Les données sont des informations quantitatives ou qualitatives.

Ex:{1,0,0,1,1,1,1,0,1,0} sont des données de jets d’une piece de monnaie.

Modélisées comme réalisations d’une v.a., les données peuvent étre :

— Discretes : catégorielles (ex : H/F, P/F) ou ordinales (ex : dé)

Continues (ex : poids)
— Univariées quand on ne mesure qu'un phénomene a la fois.

— Multivariées quand on mesure plusieurs phénomenes conjointement.

Red Green Blue Orange Yellow Brown Weight
1 15 9 3 NA 9 19 49.79
2 9 17 190 3 3 8 48.98

Pour étre utiles, les données doivent étre :
— vérifiées : données manquantes, aberrantes ?

— analysées :
— résumées avec des chiffres
— visualisées graphiquement
— disséquées pour en comprendre la structure et proposer des modeéles.

— modélisées : trouver un modele probabiliste le plus simple possible qui est le plus en adéquation avec
la réalité et proche des données.

2.1 Données univariées discretes

Un casino embauche un statisticien pour trouver de potentiels fraudeurs.
Un jeu consiste a lancer une piece de monnaie 2 fois et a parier sur le nombre 7' de Piles.

Des données sont collectées avec :

— Une piece du casino. Un employé est embauché et récolte N3 = 1000 données (2h de travail) : ¢; =
0,to =1,t3=2,t4, =0, ...

— Une piece aamenée par un joueur. Observé plus rarement on a No = 392 données lors d’une semaine
de jeu en 2006 : t; = 0,t2 =2, ...

On compte les nombres de fois ng,n1,ne ou T =0,1,2.

Comment feriez-vous pour savoir si la piece du joueur ressemble a celui du casino ou s'il est truqué ?

La table des fréquences des données est :
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CASINO

T| 0 1 2
n; | 231 517 252
pi=ni/N1 | 0231 0517 0.252

JOUEUR

T| 0 1 2
n; | 209 155 28
pi=ni/N2 | 0.533  0.395 0.071

La piéce du casino est-elle équilibrés ?

Modélisation probabiliste : soit les variables aléatoires :

— X1 € {Pile,Face} et Xy € {Pile, Face} pour les résultats au premier lancé et au deuxieme lancé.
— T = nombre de Pile dans {X1, X2}

On dénote par p la probabilité de Pile :

— Quelles sont les valeurs possibles de {X1, X2} 7

— Quelles sont les valeurs possibles de T'7

— Quelles sont les probabilités de réalisation de ces valeurs 7

— Quelles sont les probabilités de réalisation de ces valeurs si la piece est équilibrée ?
Le méme joueur et le méme dé sont observés lors d’'un tournoi en 2007, ce qui ameéne le statisticien a mesurer

N3 = 114 lancés.

JOUEUR 2006
T| o© 1 2

209 155 28

0.533  0.395 0.071

ez
Probabilités estimées p;

JOUEUR 2007
T| 0 1 2

46 56 12

0.404 0.491 0.105

n;
Probablités estimées p;

DE EQUILIBRE
T| 0 1
Espérance E(n;) | N3 N3 N:
Probabilités p; si p = % 0.25 0.50 0.25
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Le role des probabilités et des statistiques est de :

— Faire une analyse exploratoire des données pour proposer un modele probabiliste

— Estimer ce modele a partir de données

Vérifier que le modele colle bien aux données; sinon, proposer un autre modele

— Faire de l'inférence, par exemple tester si, pour la piece du joueur, la probabilité d’un Pile est bien
p=0.5.

Couleur de M&M'’s

Le nombre X de M&M'’s Rouge est mesuré dans n = 30 paquets :

159141510126 1449981296
431458892012841051511

Pour les Verts on mesure :

917873771129118976
65559782696124116

Voyez-vous une différence entre Rouge et Vert ?

L’ensemble fondamental est Q@ = {0,1,2,...}.

Table des fréquences pour les Rouge :

X 10,12 3 4 5 6 7 8 9
n; 0 1 3 2 2 0 4 5
0
7

pi| O 003 010 007 0.07 013 0.17
B | 0 003 013 020 027 027 040 057
X

10 11 12 13 14 15 16,17,18,19 20
n; 2 1 3 0 3 3 0 1
pi | 0.07 003 0.10 0 010 0.10 0 0.03

S,<ibj | 0.63 067 077 077 087 097 0.97 1.00

ou :

— n; sont les comptages/fréquences

— pi = n;/n sont les fréquences relatives/probabilités estimées
~ > j<ibj sont les fréquences relatives cumulées.

> summary(as.factor (Red))
3 4 5 6 8 910 11 12 14 15 20
1 3 2 2 4 5 2 1 3 3 3 1

> round(summary(as.factor(Red))/30,2)
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Summary for Rouge

Anderson-Darling Normality Test

A-Squared 0.40

. Pyzhe 0335

Mean 9.6000

. StDev 41156

Variznce 16,5375

Skewness  0.412000

Kurtosis 0146033

N 3

Minimum 3.0000

IstQuamie  6.0000

Median 5.0000

3d Quanile 12,5000

o E e EE = Maimum 20,0000
95% Confidence Interval for Mezn

— )T ‘ 80532 111368
55% Confidence Interval for Median

80000 17713

95% Confidence Interval for StDev
3.2777 5.5326

FI1GURE 1 — Les nombres de M&M’s trouvés dans les 30 paquets sont résumés graphiquement

3 4 5 6 8 9 10 11 12 14 15 20
0.03 0.10 0.07 0.07 0.13 0.17 0.07 0.03 0.10 0.10 0.10 0.03

> round (cumsum (summary (as.factor (Red))/30),2)
3 4 5 6 8 9 10 11 12 14 15 20
0.03 0.13 0.20 0.27 0.40 0.57 0.63 0.67 0.77 0.87 0.97 1.00

Les logiciels statistiques permettent de résumer les données en utilisant divers types de méthodes de statistique
exploratoire. La figure 77 nous donne un résumé du nombre de M&M'’s rouges trouvés dans 30 paquets.

Le mode est 9 : valeur la plus fréquente.

2.2 Données univariées continues

Certaines mesures ne sont par discretes ou dénombrables.

Exemple 2.1 Le poids de chaque paquet de MEM’s est une variable aléatoire continue. Données arrondies au
centieme :

49.79 48.98 50.40 49.16 47.61 49.80 50.28 51.68 48.45 46.22 50.43 49.80 46.94 47.98 48.49 48.33 48.72 49.69
48.95 51.71 51.58 50.97 50.01 48.28 48.74 46.72 47.67 47.70 49.40 52.06

2.2.1 L’histogramme
L’histogramme est I’équivalent du diagramme & batons pour les variables/données continues :
— Diagramme a batons = estimateur des probabilités d’une variable aléatoire discrete

— Histogramme = estimateur d’une fonction de densité d’une variable aléatoire continue.
Basé sur une partition subjective de I’ensemble fondamental

Q=(0,00) = U(bi,bi+1]7

7

I’histogramme est le graphique des densités dans chaque intervalle de la partition
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Poids des M&M's pour les 30 paquets
Histogramme

Frequency

T T T T T T T T
46.4 47.2 48.0 48.8 49.6 50.4 51.2 52.0
c1

F1GURE 2 — Histogramme des poids des paquets de MM’s

(b1,b2)  (b2,bs) (b3, ba) (ba,b5) (bs,bs)  (bs,br)
(0,46) [4648) [48,50) [50,52) [52,54) [54 ,00)

ng 0 7 14 8 1 0
fi 0 0.12 0.23 0.13 0.02 0
ol fz = —"2i ___ est la densité estimée.

n(bi41—b;)

2.2.2 Statistiques de centralité

Définition : une statistique est une fonction des données 1, ..., xy.

La moyenne : (données discretes ordinales et continues)

Dy Ti

n

j:ﬂ:

Le mode : (données discrétes) réalisation/donnée la plus fréquente (pas forcément unique).

Le mode : (données continues) valeur ol la densité a un maximum local (pas forcément unique).

Définition : les statistiques d’ordre (1), T(2), ..., Z(n) sont les données ordonnées, c’est-a-dire
1) S22 < ST

La médiane : (données discretes ordinales et continues) Valeur telle que 50% des données sont plus petites (et
donc que 50% des données sont plus grandes).

Tnt1) si n est impaire,
Trs5 = 2
(

%(ac n/2) T T(14ny2)) i n est paire.

Propriété de la médiane : elle est robuste. La robustesse est la propriété d’une statistique a ne pas étre influencée
de fagon trop forte par une ‘mauvaise’ donnée. C’est a la fois un avantage et un inconvénient.
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Mode  Moyenne Médiane
Red 9 9.6 9
Green | {6,7,9} 7.4 7
Blue 7 7.2 6.5
Orange 6 6.6 6
Yellow 7 13.8 13.5
Brown 8 12.5 12.5

2.2.3 Statistiques de dispersion

Etendue : x(n) — (1), la différence entre valeurs maximum et minimum.

Définition 2.2 Les deuz quartiles inférieur G(25%) = x.25 et supérieur G(75%) = x.75 sont les statistiques telles
qu’environ 25% des données sont plus petites que G(25%) et 25% des données sont plus grandes que §(75%).

Soit m = [(n 4 1)/2] (partie entiére inférieure). On trouve les deux quartiles en comptant (m + 1)/2 valeurs des
deux extrémes des statistiques d’ordre :

G(25%) = T(mgr) et q(75%) = T(ppromel)-

Note : si m + 1 est impaire, alors prendre la moyenne des deux quantiles gauche et droite. Ex. : n = 15, alors
m = 8 donc x.25 = (z(1) + 2(5)) /2.

Etendue interquartile : EIQ = x.75 —x .25, différence entre quartiles supérieurs et inférieurs. L’intervalle interquartile
[.25, .75] contient 50% des données.

. g . oo . .. 2 1 n L =\2
Définition 2.3 (Variance empirique) La variance empirique est s = —5 > " (z;: — Z)°.

Ecart-type empirique : s = \/ﬁ S (xe —3)2.

Ecart absolu médian : mad = median(|z — z 5|).
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Frequency

Echantillons gaussiens centrés de taille 100

401

30

20

10 4

Varizble
Ocz
(=]

Data

FIGURE 3 — Histogrammes associés a deux échantillons de taille 100 d’erreurs normales de précisions

c=1et oc=2.

Summary for C5
Anderson-Darling Normality Test
— A-Squared 015
|| PVake 0.956
] Mezn 0.01634
StDev 2.01209
Variance 404851
Skewness  0.0323237
Kurtosis 0.0534632
N 1000
Minimum 7.10779
st Quarile  -1.38469
Median 003524
Id Quanile 137819
= = = C 2 & E Maximum 6.50544
95% Confidence Interval for Mean
£ kR £ 0.14130 0.10852
959 Confidence Interval for Median
0.13182 0.10503
§5% Confidence Interval for StDev
95% Confidence Intervals 1.92761 210438
Himan - i
timgan ' * ]
015 -0.10 008 000 s 010
FIGURE 4 — Résumé statistique d’un échantillon gaussien centré e1, - - -, 1900 de taille n = 1000 et d’écart

type o = 2. Dans ce résumé, 1'écart type empirique s (=StDev) vaut 2.01209 est proche de la vraie valeur

o=2.
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2.2.4 La loi normale

On peut décrire statistiquement la mesure X d’une valeur p, comme par exemple la longueur d’une barre ou le
poids d’un individu, en posant

X=p+e,
ol € modélise l’erreur de mesure. On dispose d’un échantillon X1, -, X,, de n mesures, ou

On suppose qu’il n’y a pas d’erreur systématique, ce qui fait que en moyenne l'erreur est nulle. La précision

d’une mesure est décrite par le parametre
1

5
(o

ou o est I’écart type. La précision est grande si o est petit.

La fréquence des erreurs ¢; tombant dans un intervalle [a, b] est approximativement celle de 1’aire

/a ' fade, f@) = U;ﬂe—%

qui est la densité normale de moyenne nulle et de variance 0. Comme X = u + ¢, on verra dans le cours de
probabilité que X est alors normale de moyenne p et de variance o2, de densité

1 _(@—w?
e 202

Ix(z) =

oV 2T

X est une variable aléatoire normale N(u, o?); le lecteur peut voir plusieurs de ces densités dans la figure ??. La
fréquence des données étant plus petites que le nombre a est donn’ee par la fonction de répartition

Fx(a) = /_; fx(z)da.

On peut voir que sous certaines hypothéses la variance empirique s® est une bonne approximation de ¢, i.e.,

n

2 _ 1 N2 2
s _nfliz:;(mi_m) ~o”.

De méme, on a ’approximation

T~ U
Nous verrons dans la suite du cours que s? et Z sont effectivement de bons estimateurs de o2 et (voir par
exemple la figure 77).

2.2.5 Le boxplot

Construction du boxplot :

— la hauteur du rectangle est 'EIQ, le bord bas est & x.25 et le bord haut & x.75.
— le trait épais au centre du rectangle est la médiane.
— la ”moustache” supérieure est la valeur de I'observation la plus proche en dega de BS = z.75 + 1.5 x EIQ.

— la ”moustache” inférieure est la valeur de I'observation la plus proche au dela de BI = x.25 — 1.5 x EIQ.
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2

k= 0,05=02
09 p=00=10 — 1
u= 0,02=5.()—
08 n=-2,6"=05 — A

FIGURE 5 — Graphes de la densité normale pour différentes valeurs de p et o

34.1% | 34.1%

FIGURE 6 — Probabilités associées & certains secteurs caractéristiques de la densité normale N(u, 0?) de
moyenne et d’écart type o.

Poids des paquets de M&M's
Boxplot

52

51

50

c1

49

481

471

46 1

FIGURE 7 — Un boxplot associé aux poids des paquets de MM’s
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Boxplot &chantillon normal N(0,1) de taille n=1000

#
: *

FIGURE 8 — Boxplot associé & un échantillon normal N(0,1) de taille 1000. En moyenne, on a 7 données
excentriques.

— les points au dela de ces moustaches sont considérés comme des observations extrémes, peut-étre aberrantes, a
regarder de plus pres.

Pour qu’une valeur soit excentrique, il faut la comparer avec un standard, qui est la loi normale; Pour la loi
normale,
Ts5 =M, 25 = — 0.67450, x.75 = p+ 0.67450.

11 s’ensuit que 1’étendue interquartile et les moustaches sont données par
EIQ = 1.3490, BI = p — 2.6980, BS = i + 2.6980.
Si Fx désigne la fonction de répartition associée & la loi normale N(u, o?), on a
Fx(BI) =0.0035 = 1 — Fx(BS).

Ainsi, sur 1000 observations normales, il y en a en moyenne 7 qui sont excentriques (c.f. figure ?77). La statis-
tique accepte un pourcentage (faible) d’erreurs dans le but de pouvoir controler correctement et fréquemment la
normalité.

2.3 Données multivariées

Nous illustrons ici un exemple bivarié : Le biologiste T. Carlson a étudié une population de levures (saccharomyce).
Les mesures décrivent 1'évolution de la population lorsque le temps ¢ est mesuré en heure [h] et N(¢) donne un
nombre proportionnel au nombre de levures vivant en t. Les données obtenures sont de la forme (¢;, N(&;)),
i=0,---,n,oun=19:

(0,9.6), (1,18.3), (2,29), (3,47.2), (4,71.1), (5,119.1), (6,174.6), (7,257.33), (8,350.7), (9,441), (10,513.3),

(11,559.7), (12,594.8), (13,629.4), (14,640.8), (15,651.1), (16,655.9), (17,659.6), (18,661.8).

La premiere chose & faire consiste & représenter les données graphiquement (scatter plot), comme dans la figure
(??) Le scatter plot présente une allure sigmoidale typique dans ce contexte expérimental. Le modele standard en
croissance de population est la courbe logistique

K

N = T g

ol K, C et [ sont des paramétres positifs que 'on peut ajuster (ou estimer) a partir des données. Cette courbe
est un grand classique, et est solution de I’équation différentielle de Verhulst
dN
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Scatterplot of N(t) vs t
700
R
*
600 .
L]
500 .
*
400
= *
z 300
L]
200
L ]
100 =
. L]
o] »+*°
T T
0 5 10 15 20
t

FIGURE 9 — Scatter plot de N(¢;) versus t;. On voit émerger 'allure sigmoidale typique en croissance de
population.

Scatterplotof Y vs t

5.0

2.5

0.0

-2.54

-5.04

-7.54

FIGURE 10 — Le graphe de Y; = Y (¢;) versus t;. La droite est obtenue en appliquant la méthode des
moindres carrés (régression linéaire)

Une telle courbe commence par augmenter exponentiellement vite comme fonction de ¢ puis entre dans une phase
de saturation pour ¢ assez grand, la valeur du niveau de saturation étant K. Le probleme statistique consiste a
estimer les parametres K, C' et | de maniére a ce que la courbe explique le mieux possible les données.

Une méthode courante en analyse exploratoire consiste a appliquer des transformations sur les données, typique-
ment en prenant le log ou... Cette approche est fructueurse dans notre situation : Posons

K—-N

Y =In(C) - Ut,

qui est une fonction affine de ¢! La transformation utilise le parameétre inconnu K que I’on doit estimer a partir
des données. Une méthode simple consiste a faire varier K ; Pour chaque valeur de K, on cherche les parametres
l et C' qui meénent au meilleur ajustement. On pose pour illustrer la méthode K = 662. Le figure (?7) donne la
représentation des données transformées (¢;, Y (¢;)) ; on voit apparaitre le graphe d’une fonction affine, ce qui nous
indique que le modele de croissance logistique est bien adapté aux données. Dans le cadre du modele statistique
donné ci-dessus Y = In(C') — It, qui possede la forme classique en mathématique

On remarque alors que

Y =at+b,
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FIGURE 11 — Comparaison des graphes (t;, N(¢;)) et (¢;, f(¢;)) ou la premiére courbe est basée sur les
données expérimentales et la seconde est obtenue par la méthode des moindres carrés

ol la pente de la droite vaut a = —I et Pordonnée & origine est b = In(C').

On cherche ensuite la droite qui passe le mieux au travers du nuage de point (¢;, Y (¢;)), en utilisant la méthode
des moindres carrés, qui a été inventée par Gauss. Posons

Rl

I ’

n

18

18
_ 18y,
goZimo¥i oy Y (L),

Stt = Z(tz - 7?)2, Syy = Z(Yz - ?)27

et

=0

18

i=0

Sty = Z(tz -HY;-Y).

On verra dans la suite du cours que les parametres optimaux sont donnés par

o = 9
Stt,
b = Y —aX.

Ceci nous indique que le point constitué des moyennes arithmétiques (£, Y) appartient & la droite de régression. La
droite est représentée dans la figure (?7). On revient ensuite aux parametres [ et C' & 'aide des relations a = —I
et b = In(C). La figure (?7?) compare les données expérimentales & la courbe obtenue & l'aide de la méthode
des moindres carrés; On voit sans peine que le modele logistique est particulierement bien adapté aux données

expérimentales.

2.4 Conclusions

L’analyse exploratoire prend du temps. Quand on présente ses résultats.

— Les graphiques doivent rester simples et clairs.

— Tout graphique présenté doit étre décrit avec précision : quels sont les axes et les unités, quel est le but du

graphique, etc.
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— Tout tableau de statistiques doit étre décrit avec précision : quels sont les unités, arrondir les statistiques a la
décimale reflétant la précision de la statistique.

Tirer des conclusions de chaque graphique et tableau de statistiques présentés.

Quand le but est de comparer plusieurs graphiques, garder la méme échelle pour tous.

3 Probabilités

Nous considérons ici des épreuves dites aléatoires, c’est-a-dire des épreuves dont les issues dépendent du hasard.
En voici quelques exemples :

(1) Jet d’une piece de monnaie; issues : pile, face.

(2) Jet d’un dé & 6 faces; issues : il y en a 6.

(3) n jets consécutifs d’une piece de monnaie; issues : il y en a 2™, chacune étant formée d’une suite de longueur
n constituée de pile ou face.

(4) Choix aléatoire d’un individu dans une population ; issues : chaque individu de la population.

(5) Choix aléatoire d’'un nombre dans l'intervalle [0, 1] ; issues : chaque nombre compris entre 0 et 1.

Dans un premier temps, nous n’envisageons que des épreuves finies, c’est-a-dire des épreuves comportant un
nombre fini d’issues.

3.1 Modele d’une épreuve finie

Considérons une épreuve aléatoire comportant N issues. Il est d'usage de désigner celles-ci par wi,ws2,...,wn et
de former I’ensemble Q := {w1,w2,...,wn}. Nous convenons qu’'un sous-ensemble
A = {wiy, Wiy, .. wip} C Q1 <4 <4z < ... < i <N, représente I'événement (associé a 1'épreuve) qui se

réalise si et seulement si w;; ou w;, ... ou wi, se réalise.

Exemple :
On jette un dé a 6 faces
w1 correspond & : la face n° 1 est réalisée

we correspond & : la face n° 6 est réalisée.

A = {w2,ws,ws} représente donc I'événement : une face portant un nombre pair est réalisée.

L’ensemble Q correspond ainsi & I'événement certain (celui qui est toujours réalisé) tandis que le sous-ensemble
vide, noté (), représente I’événement impossible.

Remarques :

— Les issues d’une épreuve sont aussi appelées événements élémentaires par opposition & un événement com-
posé dont la réalisation est impliquée par plusieurs issues (ex. A = {w2, w4, we} ci-dessus est un événement
composé).

— Dans ces notations, les issues seront notées {w;} afin de les comprendre comme sous-ensemble de Q.

Si Q = {wi,ws,...,wn} est Pévénement certain d’une épreuve aléatoire comportant N issues, alors la famille
de tous les événements associés & cette épreuve est donnée par la famille de tous les sous-ensembles de 2. Cette
famille sera notée P(2).
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FIGURE 12 —

3.2 Plusieurs jets consécutifs d’une piece de monnaie

On considére I'épreuve consistant a jeter n fois une piece de monnaie. Cette épreuve joue un role fondamental
dans cette théorie. Il s’agit de n répétitions de 1’épreuve aléatoire la plus simple puisqu’elle admet 2 issues, a
savoir pile ou face, lors de chaque jet. (Une épreuve avec une seule issue perd bien siir tout caractére aléatoire!)

Afin de simplifier les notations, pile sera noté 1 et face 0. Ainsi une issue de I'épreuve consistant a jeter n fois
-iéme

une piece de monnaie est représentée par une suite de longueur n formée de 0 et de 1 en convenant que le @
élément donne le résultat du ¢*°™° jet.

Exemple : n=>5
(0,1,1,0,1) est l'issue correspondant & face au premier jet, pile au second, pile au troisieme, face au quatrieme et
pile au cinquieme.

Exercice : Vérifier que le nombre d’issues de I’épreuve ci-dessus est 2™.

Ainsi Q = {w1,wa,...,wsn} = ensemble de toutes les suites de longueur n formées de 0 et de 1. (Cet ensemble est
souvent noté {0, 1}".) Par conséquent le nombre de sous-ensembles de € est 2(2") et donc le nombre d’événements
associé & cette épreuve est 22",

Exemple : Sin = 6, alors 22°) = 264,

En résumé, une épreuve finie est représentée par (Q, P(Q)) ou (2 est ’événement certain dont les points corres-

pondent aux issues de ’épreuve et P(Q) est la famille de tous les événements.

3.3 Opérations sur les événements

Soit (Q,P(Q)) une épreuve aléatoire finie et A, B, deux événements associées i.e. A,B € P(Q) (<= A,B
sous-ensembles de ).
— AU B est I’événement réalisé lorsque A ou B est réalisé

— AN B est ’événement réalisé lorsque A et B sont réalisés

— A = A° est I'événement contraire de A, & savoir celui qui est réalisé lorsque A ne l'est pas. Ainsi Q = 0.
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ANB

FIGURE 13 —

Définition 3.1 Deuz événements A et B associés a une épreuve sont dits incompatibles si ANB = 0, c’est-a-dire
st leur réalisation simultanée est impossible.

Exemple :
Epreuve : jet d’'un dé a 6 faces, Q = {w1, w2, ws, wa, ws, we }.

A = {w1,ws,ws} = une face impaire est réalisée.
B = {w2,ws,ws} = une face paire est réalisée.

Alors AN B = 0.

3.4 La notion de probabilité

Nous nous appuyons ici sur U'interprétation de la probabilité comme limite d’une fréquence. Soit A un événement
lié & une épreuve. Supposons que celle-ci est répétée n fois en prenant garde que ces répétitions n’interferent pas
. . s syers nA .
entre elles. On note n4 le nombre de realisations de A dans ces n répétitions. Le nombre —— est compris entre 0
n

et 1 et est appelé fréquence relative de réalisation de A dans ces n répétitions.

Credo : lorsque n — 0o, —2 se rapproche d’un nombre noté P(A) et appelé probabilité de A :
n

! Il ne s’agit pas de la convergence usuelle d’'une suite de nombres réels. En effet, si 'on jette une infinité de
fois une piéce symétrique, des événements élémentaires tels que pile n’est jamais réalisé (idem pour face) sont

possibles. Si A est 'événement “pile est réalisé lors d’un jet” alors, pour tout n, na =0 (na =n) et 2 e tend
n

pas vers 5 comme on pourrait ’espérer pour une piéce symétrique.

3.5 Propriétés d’une probabilité (épreuve finie)

La probabilité d’un événement associé a une épreuve est un nombre compris entre 0 et 1 qui mesure sa chance de
réalisation lors de 1’épreuve. Si cette derniere est représentée par (Q(P(Q)), alors une probabilité P associe un

nombre compris entre 0 et 1 & tout sous-ensemble A de €2 :

AC Qs P(A) € [0,1].
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Autre notation équivalente :
A e P(Q2) — P(A) € ]0,1].

Puisque €2 représente 1’événement certain il est logique de poser P(€2) = 1. De plus, soient A et B deux événements
incompatibles (AN B = () liés a ’épreuve. Supposons que lors de n répétitions de I’épreuve, A a été realisé na
fois et B, np fois. Puisque A et B sont incompatibles, on a naup = na + np et donc

NAuB _ Na+MnB _ Na  NB

n n n n
En faisant tendre n — oo, notre credo suggere que

P(AU B) = P(A) + P(B).

Nous réunissons les propriétés précédentes dans la définition suivante :

Définition 3.2 Si (Q,P(Q)) représente une épreuve finie (U est fini) alors une probabilité P associée a cette
derniére vérifie :

1) Ae P(Q)— P(A) €10,1]

2) P(Q) =1

3) SiA,BeP(Q), ANB =0, alors P(AUB) = P(A) + P(B).

Remarque : La propriété 3) porte le nom d’additivité.

Par induction finie on en déduit que, pour n événements A1, Aa,..., A, € P(Q) incompatibles deux & deux,
cest-d-dire A, NA; =0sii#j,1<4i,7<nm,ona

P (0 A¢> = iP(AZ‘)

ot U A=A UAsU...UA,.

1=1

Conséquences :
Les propriétés ci-dessous découlent toutes de 1), 2) et 3) :

P(A)=1-P(A)

- P@)=0

- Si A C B, alors P(A) < P(B) et P(B~\ A)=P(B)— P(A)
P(AUB)=P(A)+ P(B) - P(ANB)

Remarque : Une probabilité P associée & une épreuve finie est complétement déterminée par les probabilités
des événements élémentaires. En effet, si Q@ = {wi,wa,...,wn} et A C Q, alors A = {wi;,wiy,...,w;,} avec
1<ii<ia<...<tg <N, et

P(A)

¢
P (U {wlk}> ( les {w;, } sont incompatibles 2 & 2)
k=1

I
MN

P({wir })-

£
I

1

N
On déduit donc la valeur de P(A) de celles des P({w;}). Il est clair que 0 < P({w:}) < let > P({w:}) = P(Q) = 1.
=1

Pour modéliser une épreuve infinie, on doit en général renoncer & P(f2) et remplacer cette famille par une “o—
algebre”.
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Un cas particulier important :
La probabilité uniforme dans une épreuve finie associe la méme valeur a tous les événements élémentaires. Plus

précisément, si Q = {wi,ws,...,wn} alors P({w;}) = % pour tout 1 <i < N.Si A= {w;,...,w;,}, alors
‘ ¢
1 L #(A) nombre de cas favorables
P(A) = P({wi, }) = NN = i )
(4) ; (fwir}) ;_1 N N N nombre de cas possibles

3.5.1 Le probleme des anniversaires

Nous supposons que les années comptent 365 jours et nous réunissons n (n < 365) personnes choisies au hasard
dans une population. Nous nous intéressons a I’événement

A, = 2 personnes au moins parmi les n ont un anniversaire commun
(jours identiques mais années éventuellement différentes)

Pour calculer P(A4,), il est judicieux de passer par 1’événement contraire
P(A,) =1-P(4,)
ou

A, = aucun anniversaire commun parmi les n personnes.

En admettant que les jours de naissance sont répartis uniformément dans I’année nous avons :

# cas favorables  365-364--- (365 — (n—1))

P(An) = 4 cas possibles 365 - 365 - - - 365
_365-364--- (365 — (n — 1))
B 365 '

P(Ay) dépasse la valeur 3 deés que n > 23.

3.6 Notion de probabilité conditionnelle

Soient A et B deux événements liés & une épreuve avec P(A) > 0 et P(B) > 0. Nous nous intéressons & P(A | B) =
probabilité pour que A se réalise sachant que B est réalisé.

Exemple : On jette un dé symétrique & 6 faces (i.e. les faces sont équiprobables).

A = une face portant un nombre pair est réalisée
B = une face portant un nombre plus grand ou égal a 4 est réalisée.

P(A|B) =7

Revenons a la situation générale et & notre credo. Supposons que 1’épreuve a été répétée n fois et que B et AN B

ont été réalisés respectivement np et nanp fois. Nous ne tenons pas compte des situations dans lesquelles B n’est

NANB N . .
et sa “limite” lorsque n — oo doit fournir

pas réalisé. Ainsi la fréquence relative qui nous intéresse ici est

np
P(A)B). Or
NANB
NANB P(AHB)
= L s = P(A | B).
= ) =PALB)

Ainsi, on peut définir
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Définition 3.3

P(ANB)

P(A|B) = ~F5

ou de fagon équivalente P(AN B) = P(A | B)P(B).

Dans notre exemple Q = {1,2,3,4,5,6} et P({i}) = ¢, 1< <6.

A={2,4,6}, B={4,56}, ANB={4,6}

P(A| B) = 713(;‘(;;3) _

2
5

alw|oin

3.6.1 Le jeu des trois boites

Avant le début du jeu, le présentateur introduit une boule dans une des trois boites dont il dispose. Le joueur
doit deviner la boite qui contient la boule. Il désigne donc une boite et le présentateur ouvre alors une des deux
autres et lui montre qu’elle est vide. Il laisse au joueur la possibilité de modifier son choix initial. Que doit faire
ce dernier ?

La notion de probabilité conditionnelle sera utilisée pour construire un modele probabiliste de ce jeu. Numérotons

les boites de 1 & 3 et posons :

X = numéro de la boite contenant la boule
Y = numéro de la boite désignée par le joueur
Z = numéro de la boite vide ouverte par le présentateur.

Nous recensons d’abord les événements élémentaires :

XY Z

= =
W N = =

[SIUCRCIN

O NN N X
w NN~
—ow R~ w N
W W W
[SURVUN SR
o~ =0 N

Afin d’alléger ’écriture nous introduisons la notation suivante
{(X=iY=jZ=k} ={X=00{Y =j}n{Z =k}
ou ¢, j, k prennent les valeurs précises dans le tableau précédent. Il est clair que

{X=Y}= le joueur gagne en maintenant son choix initial
{(X#£Y} = le joueur gagne en modifiant son choix initial
et P{X#Y}= 1-P{X=Y}

Nous devons discuter deux types d’événements élémentaires, & savoir ceux qui contiennent deux fois un méme
numéro et les autres. Ainsi, en utilisant la probabilité conditionnelle :

P(Z=2Y=1,X=1)=P(Z=2|Y=1,X=1P(Y=1X=1)
(P(AmB) = P(A| B)P(B) avec A= {Z =2} etB:{Yzl,le}).

Si X =1, et Y =1, alors le présentateur peut choisir d’ouvrir les boites 2 ou 3. Nous poserons donc

P(Z:2|Y:1,X:1):%.

De méme nous aurons
PY=1,X=1)=PY=1|X=1)P(X=1).
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Le joueur ne sachant pas ou se trouve la boule, il est logique de poser P(Y =1 | X =1) = P(Y =1) =
Finalement nous admetterons que P(X =1) = % Par conséquent :

P(Z=2Y=1X=1)=_ - - -

A Taide du méme raisonnement nous obtenons :

1

g = PZ=3Y=1X=1)=PZ=1Y=2X=2

= P(Z=3Y=2X=2)=P(Z=1,Y=3,X=3)
= P(Z=2Y =3,X=3).
Par ailleurs,
P(Z=3Y=2X=1)=P(Z=3|Y=2X=1)PY =2|X=1)P(X =1).

A T’évidence nous poserons :
P(Z=3|Y=2,X=1)=1

myzmxznzpwzm:%
1
P(X=1)=-.
(X=1)=3
Par conséquent nous aurons :
% — P(Z=3Y=2X=1)=P(Z=2Y =3,X =1)

= P(Z=3Y=1,X=2=P(Z=1,Y=3,X=2)
P(Z=2Y=1,X=3=P(Z=1,Y =2,X =3).

11 suffit maintenant de sommer les probabilités des événements élémentaires constituant les événements qui nous
intéressent :

1 1 6 1
i e TR TR TR TR TR A T il
et donc 9
P(X#Y)=1-P(X=Y)=¢.

Conclusion : le joueur a intérét a modifier son choix initial.

3.7 Théoreme des probabilités totales et formule de Bayes

Soit € I’événement certain associé a une épreuve et A, Bi, B, ..., B, des événements liés a celle-ci mais tels que :

- B;NBj=0sii#j,1<4,j<n (les B; sont incompatibles 2 & 2)

- UBi=9Q.
i=1
Alors on a :

(a) Théoreme des probabilités totales :

P(A) =Y _P(A| B)P(B).

=1

(b) Formule de Bayes :
P(A| B;)P(B;)

Pour1<j<n, P(B;j|A)= .
2, P(A] Bi)P(Bi)
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FIGURE 14 — La décomposition de A a 'aide d’une partition By, ---, B,

Démonstration :

i=1 i=1
Les événements B; étant incompatibles 2 & 2, il en va de méme des A N B;. L’additivité de la probabilité
fournit :

P(A) = zn:P(AﬂBi)
"\ P(AN B;

= ZP(A | B.))P(B;).

(b)
P 1a) = PO
_  P(AnB;) _ P(A|B;)P(B))
- P P(A)

(a) P(A] Bj)P(B))
- X PAIB)P(BY)

Applications : On tire consécutivement (sans remise) deux billets d’un lot de n billets parmi lesquels m sont
gagnants.

G1 = obtenir un billet gagnant lors du premier tirage,

G2 = obtenir un billet gagnant lors du second tirage.

Il est clair que P(G1) = . Pour calculer P(G2) nous pouvons utiliser le théoréme des probabilités totales en
posant : . . o
AIGQ, n =2, BlzGl, By =G (GlﬂG’l:@etGluGlzﬂ).

Ainsi :
P(G2) = P(G2 |G) (G1) + P(G2 | G1)P(Gh)
e

- (% 17)
(1

) ”_1:m:P(G1).
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11 est possible de démontrer que cette probabilité reste la méme pour tous les tirages successifs. (Probleme des
billets de loterie discuté dans le cours.)

3.7.1 Applications de la formule de Bayes

On considere 10 pieces de monnaie dont 1'une est truquée car ses deux cotés sont des piles. On choisit une piéce au
hasard et on la jette. Sachant que le résultat du jet est pile, calculer la probabilité pour que la piece en question
soit la piece truquée.

Numérotons les pieces de 1 & 10 en convenant que la premiere est la piece truquée.

B; = on tire la piece n® i, 1 < < 10
A = pile est réalisé en jetant la piece choisie

P(A| B1)P(Bh)

P(B: | A

(Bi [ 4) P(A| B1)P(B1) + P(A| B2)P(Bz2) + -+ P(A | B1o)P(Bo)
_ lgg 1 1 _ 2
1 110+9%'%_1+g—%_11

3.7.2 Détection d’une maladie

Nous considérons un test pour la détection d’une maladie dans une population donnée. Nous introduisons les
notations :

M = un individu, choisi au hasard dans la population, est malade,
A = le test, appliqué a un individu, est positif.

Sachant que o
P(M)=0,001, P(A|M)=0,95 et P(A|M)=0,95,

peut-on conclure que le test est de bonne qualité ?
La grandeur qui nous intéresse est en fait P(M | A) et la formule de Bayes nous fournit :

P(A| M)P(M)
P(A| M)P(M)+ P(A| M)P(M)

P(M | A) =

Remarquons que P(A | M) =1— P(A | M). En effet, si A et B sont deux événements, alors

P(AN B) P(B\(A”B)) P(B) — P(AN B)

PA|B) = = =
(41 B) P(B) P(B) P(B)
_, _PANB) _
Par conséquent : 0.95 . 0.001
P(M | A) = A 20,0187 .

"~ 0,95-0,001 + 0,05 - 0,999

Seulement 1,8 % des malades sont détectés par le test !
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3.8 Evénements indépendants :

Considérons deux événements A; et Ay liés & une épreuve et tels que P(A1) > 0 et P(A2) > 0. Comment
pouvons-nous traduire I'idée “A; est indépendant de As” 7 Une fagon de procéder consiste a exiger :

P(A; | As) = P(A)

pour signifier que la réalisation de A2 n’influence pas celle de A;. Dans ce cas nous avons les équivalences suivantes :

P(A1 N AQ)

P(A; | A2) = P(A1) <— TPy = P(A1) <= P(A1 N Az) = P(A1)P(A2)
< % = P(A;) <= P(Az | A)) = P(As).

Ainsi “A; est indépendant de As” équivaut & “As est indépendant de A;” entrainant la symétrie de cette notion.
Afin d’inclure les cas ot P(A1) et P(A2) peuvent étre nuls, nous travaillerons avec la définition suivante :

Définition 3.4 Deuz événements A1 et Az liés 6 une épreuve sont dits indépendants si P(A1NAz) = P(A1)P(As2).

Exemple : On tire consécutivement deux billets d’un lot de n billets parmi lesquels m sont gagnants. Désignons
par G1 et G2 les événements qui consistent respectivement a tirer un billet gagnant en premiere et seconde position.
Nous avons déja vu que P(G1) = P(Gz) = 7 . Ces deux événements sont-ils indépendants ?

P(G2NGh) = P(Ge | G)P(Gh) = ——F = # - = = P(G2) P(Gh).
En conclusion G et G2 ne sont pas indépendants. Si par contre les tirages s’effectuent avec remise, alors G et
G2 sont indépendants car P(Gz | G1) = P(G2) = ™ et donc

n

P(G2NGy) = P(G2 | G1)P(G1) = %% = P(G2)P(Gh).

Comment définir I'indépendance de 3 événements ou plus ? Considérons d’abord A, Az et Ag liés & une épreuve.
Une fagon raisonnable (sous forme conditionnelle) de définir I'indépendance de ces 3 événements est d’exiger :

P(A, | A1 As) = P(A, | Az) = P(A | As) = P(A))
P(As | AN As) = P(As | Ay) = P(As | As) = P(As)
P(Ag ‘ A mAz) = P(Ag ‘ Al) = P(A3 ‘ AQ) = P(Ag)

Un calcul direct montre que cet ensemble de propriétés équivaut a (forme “produit”)
P(Al ﬂAQ) IP(Al)P(A2)7 P(AlﬂAg) IP(Al)P(Ag), P(AzﬂAg) :P(Az).P(Ag)7
P(Al NAsN Ag) = P(Al)P(AQ)P(Ag)

Les trois premieres propriétés refletent 'indépendance 2 &4 2 de A1, A2 et As tandis que la derniére est I'indépendance
3 a 3. Malheureusement ces deux notions ne s’impliquent pas mutuellement. Voici un exemple de 3 événements
indépendants 2 a 2 mais pas 3 a 3.

1

Q={1,234}, P({i})=, 1<i<4

A1 ={1,2}, A,=1{1,3}, As={1,4}, P(A))=P(A;)=P(43) =

>
>
N =
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P(A1N A2) = P({1}) = § = 3+ 5 = P(A1)P(42)
1 1 1

P(AinAs) = P({1}) = 7 = 5~ 5 = P(A41)P(4s)
1 1 1

et ainsi A1, A2 et Az sont indépendants 2 & 2. Par contre

Nos événements ne sont pas indépendants 3 a 3.

La notion d’indépendance utilisée en théorie des probabilités est :

Définition 3.5 Les événements A1, Az, ..., A, sont dits indépendants si
P(All n Aig n...N Alm) = P(Azl)P(AQ) Ce P(A»Lm)

pour tout sous-ensemble {i1,i2,...,im} C {1,2,...,n}. Ainsi n événements sont indépendants s’ils le sont 2 a 2,
a8 ....,nan.

4 La notion de variable aléatoire

Dans le modele d’une épreuve aléatoire, les éléments de I’événement certain €2 représentent les issues (= événements
élémentaires) de ’épreuve. Une fonction X: Q) — R associe donc a chaque issue w €  un nombre X (w) qui dépend
du hasard puisque tel est est le cas de 'argument w. Une telle fonction porte le nom de variable aléatoire (v.a.).
Dans le cas d’une épreuve infinie (non dénombrable) une condition technique supplémentaire est exigée.

Exemples :
1) Dans la population humaine du Canton de Fribourg, on choisit au hasard un individu et on mesure son
poids. Si Y désigne ce dernier, alors Y est une variable aléatoire & valeurs dans R4 (réels positifs).
2) On jette n fois une piece de monnaie et on désigne par X le nombre de réalisations de pile dans les n jets.
X est une variable aléatoire & valeurs dans {0,1,...,n}.

3) On considére un événement A lié & une épreuve aléatoire. On désigne par T le nombre de répétitions de
I’épreuve pour obtenir la premieére apparition de A. T est une variable aléatoire a valeurs dans N* =
{1,2,...}.

4) Pierre et Paul jouent & un jeu de hasard. Ils disposent chacun d’une méme fortune initiale et & chaque coup
le gagnant recgoit 1 franc du perdant. Le jeu s’arréte lorsque la fortune d’un joueur atteint 0. La durée du
jeu est une variable aléatoire; la fortune de Pierre, tant que le jeu dure, est une variable aléatoire.

Nous considérons deux familles importantes de variables aléatoires.

4.1 Les variables aléatoires a valeurs entiéres

Soit X une variable aléatoire & valeurs dans N = {0,1,...}. L’information stochastique d’une telle variable
aléatoire est contenue dans la fonction
ke N+— P(X =k).

A Taide de celle-ci il est en effet possible de calculer P(n1 < N < ng2), pour ni < ns quelconques :
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P G{X:k}

k=ny

=
2
A
=
A
3
&
I

na
Z P(X =k) par additivité de P.

k=n1

Soit fr = P(X =k). On a0 < fi <1 et on peut également montrer que > fr = 1.
k=0

4.1.1 Les variables de Bernoulli

On jette une piece de monnaie. A la réalisation de pile on associe la valeur 1 et 0 s’il s’agit de face. Si p désigne
la probabilité de réalisation de pile et si X désigne le résultat du jet, on aura :

Y= 1 avec probabilité p
“ | 0 avec probabilité g=1—1p

Une telle variable aléatoire est appelée variable aléatoire de Bernoulli de parametre p et nous noterons X = Ber(p).

4.1.2 Variable binoémiale

On jette n fois une piece de monnaie. On suppose les jets indépendants et on désigne par p la probabilité de
réalisation de pile lors d’un jet. Soit

1 avec probabilité p
X = , 1<i<n,
0 avec probabilité ¢ =1 —p

le résultat du ™€ jet avec la convention : 1 pour pile et 0 pour face. L’hypothése d’indépendance des jets est
traduite par I'indépendance des variables aléatoires
X1,Xo,...,X,. Elles sont de plus identiquement distribuées, X; = Ber(p), 1 <1i < n.

Nous nous intéressons au nombre de réalisations de pile dans les n jets. Cette variable aléatoire, que nous noterons
Sh, est donnée par :
n
Sn = E X .
=1

Sy prend ses valeurs dans {0, 1,...,n} et nous calculons maintenant P(S, = k) .
L’événement {S,, = k} correspond a la réalisation de k fois pile dans n jets. Calculons d’abord la probabilité pour
que, lors de n jets, les k premiers fournissent pile et les n — k derniers face, i.e. :

PX1=1,Xo=1,...,Xs =1, X341 =0,..., X, =0)

AR px, = 1)P(X2 =1)... P(Xp = 1)P(Xg41 =0) ... P(X, = 0)

k _n—k

Chaque facon de réaliser exactement k fois pile dans n jets a la probabilité p®¢" =% d’étre réalisée. L’additivité
de la probabilité nous assure alors que P(S, = k) est donné par le nombre de fagons de réaliser k fois pile dans
n jets que on multipliera par p*¢"*. Le nombre cherché est identique au nombre de sous-ensembles de taille k
que possede un ensemble de taille n. On peut démontrer que le nombre cherché est donné par

" n! u n! .
gl = Bn — k) on nl=n(n—-1)...2-1 (exercices)
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Binomial distribution n=10
p=0.4 p=0.5
Fo3
Loz
Fo1
o
2 a0
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FIGURE 15 — Représentation graphique des valeurs prises par la loi bindémiale lorsque n = 10, pour
p=04,p=05et p=0.8.

Ainsi
n e
P(Sy =k) = <k>pkq .

La figure 7?7 donne trois représentations graphiques des valeurs P(S, = k), k = 0,---,n, lorsque n = 10, pour
p =04, p = 0.5 et p = 0.8 Une telle variable aléatoire est dite binémiale de parametre n et p. On notera

Sn = Bin(n,p). Nous avons ainsi montré que la somme de n variables aléatoires Ber(p) indépendantes est une

variable Bin(n, p). Les coefficients (}) sont ceux du binéme de Newton :

(a+b)" = Z (Z) a" "

k=0

et on peut ainsi en déduire que :

= = n n— n n
Y P(Sn=k) <k>l’kq F=—(p+g =1"=1
k=0 0

4.1.3 Variable géométrique

Considérons un événement A lié & une épreuve aléatoire dont la probabilité de réalisation est p. Nous effectuons
des répétitions indépendantes de cette épreuve et nous désignons par T’ le nombre nécessaire a faire apparaitre A.
Pour k£ > 1, nous avons
P(T =k) =¢"'p on ¢g=1-p.

Une telle variable aléatoire est appelée géométrique de parametre p et nous noterons 7' = G(p). En utilisant
Pégalité (série géométrie)

- 1

k_
Yot = el <1,

k=0
on obtient
I W
k=1 k=1 k=1
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4.1.4 Variable de Poisson

Considérons une suite de variables aléatoires Y;, = Bin(n,p,) telle que lim np, = A > 0. Rappelons que
n—o0

P(Y, =k)= (”)pﬁu —p)" ", 0<k<n.

. ny g n—k __ 7/\&
J:n;o@pn(lpn) = TH

ou A = lim np,. Il est clair que

n—oo
B Y _ A - . .
E ey = € E e (série de la fonction exponentielle)
k=0 k=0

Une variable aléatoire X vérifiant P(X = k) = e~ A® k€ N est dite variable aléatoire de Poisson de parametre

el
A et nous noterons X = Poi()\). La condition lim np, = A suggeére que pour n grand et p petit, une variable

i

— 00
aléatoire Bin(n,p) peut étre approchée par une variable aléatoire Poi(A) ou A = np. La régle n > 10 et p < 0.05
garantit une approximation convenable (voir les exercices).

4.1.5 La loi des séries

En 2005, 5 avions civils se sont crashés sur une période de 22 jours (Toronto, Palerme, Athénes, Venezuela,
Amazonie). Comment peut-on expliquer cette série noire ? Est-ce dii au hasard ou alors traduisent-ils une baisse
du niveau de sécurité dans les transports aériens ?

On peut faire quelques calculs afin de voir si le hasard peut expliquer cette série noire. La fréquence moyenne des
crashs sur la période 1995-2004 était de 1/500 000. On en déduit que le probabilité que ces 5 avions se crashent
vaut

1 5
—30
500000> 3210,

qui est donc tres petite. On revient a notre question et on essaie de calculer la probabilité qu’au moins 5 avions
se crashent sur une période donnée de 22 jours, soit

P(ces 5 avions se crashent) = (

P(au moins 5 avions se crashent sur une période donnée de 22 jours).

On va utiliser le fait que le nombre moyen quotidien de décollages vaut environ 20 000; les accidents étant
indépendants les uns des autres, on suppose par ailleurs que le nombre de crashs sur les 22 jours suit une loi
binémiale avec n = 22 20000 et p = 1/500000. La probabilité d’avoir k crashs sur 22 jours vaut donc

(Z)pk(l -p)" "

A = np = 440000

Les parametres étant grands, on observe que

500000 ~ 088

ce qui nous permet d’utiliser ’approximation de la loi binémiale par la loi de Poisson. On trouve que

P(au moins 5 avions se crashent sur une période donnée de 22 jours)

~1-P{0}) - P({1}) - P({2}) - P({3}) = P({4}),
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P({k}) = %Te—N

Cette approximation nous donne que P({0}) = 0.415, P({1}) = 0.365, P({2}) = 0.161, P({3}) = 0.047, P({4}) =
0.01, et donc,

P(au moins 5 avions se crashent sur une période donnée de 22 jours) ~ 1 — 0.998 = 0.002,
soit une chance sur 500.

Une année comprenant 16 périodes consécutives de 22 jours, on en déduit que la probabilité qu’il n’y ait aucune
série noire sur chacune de ces 16 périodes vaut (998/1000)'¢, soit environ 97 chances sur 100.

Quelle est la probabilité qu’au moins 5 avions se crashent en 22 jours sur une année entiére 7 On ne peut plus
calculer simplement une telle probabilité, ceci a cause des chevauchements des périodes de 22 jours sur une année
(les variables aléatoires ne sont plus indépendantes). Un calcul montre que

P( au moins 5 avions se crashent en 22 jours sur une année) ~ 0.11,

soit plus d’une chance sur 10!!

4.2 Les variables aléatoires réelles avec densité

On dit qu’une variable aléatoire X a valeurs dans R possede une densité f si pour a < b quelconques on a

ngxgm:/nmm

T

“+oo
La densité f est une fonction non-négative ( F@) > O) qui doit vérifier la condition [ f(¢)d¢t = 1. Remarquons

—0o0

que P(a < X < b) est donnée par laire de la surface indiquée ci-dessus. On constate ainsi que pour des At tres
petits, f(t)At fournit une approximation de la probabilité pour que X prenne ses valeurs entre ¢ et ¢ + At.

f(t)ht f

/

t+At

4.2.1 Variable normale ou gaussienne

La famille la plus célebre est celle des variables aléatoires dites normales ou gaussiennes et dont les densités sont

de la forme
1 _e-w?

e 202
V2o

teR— f(t) =
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2
pu=0,0,=02
09 p=00=10 — 1
n= 0,62=5.0 —
08 p=-2,6"=05 — 1

FIGURE 16 — Graphes de la densité normale pour différentes valeurs de u et o

FIGURE 17 — Probabilités associées a certains secteurs caractéristiques

avec u € R et o > 0. Une variable aléatoire X dont la densité est f sera dite normale (ou gaussienne) de
parametres u et o et nous noterons X = N(u, o). Un cas particulier important est donné par =0 et o = 1. Une
variable aléatoire U = N(0,1) est dite normale standard (ou standardisée) ou encore centrée réduite.

L’allure de la densité ci-cessus est une courbe en forme de cloche :

~ f(t)

4

[ = PR
N

Les variables aléatoires normales sont sorties des travaux de Gauss consacrés a la théorie des erreurs. Elles jouent
un réle fondamental notamment & cause des propriétés asymptotiques décrites dans le théoréeme limite central
(voir apres). Il est intéressant de remarquer que 'intégrale

t
2
/esds
a

ne se laisse pas exprimer de fagon simple & l'aide des fonctions dites élémentaires (théoréme difficile). Par
conséquent, certains calculs faisant intervenir les densités de variables aléatoires normales devront étre effectués
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numériquement ou a 'aide d’une table. Nous verrons en fait qu’il suffira de disposer d’une table pour la fonction
de répartition d’une variable aléatoire N (0, 1), c’est-a-dire :

S
te R>—>FN(O,1)(7§) = \/727/ e 2 ds.
— 00

Nous utiliserons dorénavant la notation

4.2.2 Variable exponentielle

Une famile importante de variables aléatoires sont celles dont la densité est :

0 sit<0
f@) = ou A > 0.
Ae™ ™M sit>0
“+oo
On vérifie facilement que [ Ae* dt = 1. Une variable aléatoire X admettant cette densité est appelée ex-
—o0

ponentielle de parametre A. Nous noterons alors X = FE()). Ce type de variables aléatoires intervient dans la
modélisation du temps de vie d’un systeme.

4.3 Fonction de répartition d’une variable aléatoire :

A chaque variable aléatoire X on peut associer sa fonction de répartition définie par :
t e R+ Fx(t) = P(X <t).

Une telle fonction est croissante et passe du niveau 0 au niveau 1.

/"_———/ t

1

Définition 4.1 On dit que deuz variables aléatoires X1 et X2 sont identiquement distribuées (ou ont méme
répartition) si elles ont la méme fonction de répartition (Fx, = Fx,).

On dit que deuz variables aléatoires X1 et Xo sont indépendantes si pour t1 et t2 quelconques on a

P(X1 <t1,Xs <t2) = P(X1 <t1)P(X2 < t2).

Cette propriété signifie que les événements associés a X et ceux associés a Xz sont indépendants. La généralisation
de la définition & une famille quelconque de variables aléatoires se fait de facon identique a celle des événements
indépendants. Le hasard peut donc étre responsable de la série de crashs.

4.4 Les notions d’espérance et de variance d’une variable aléatoire :

Considérons les trois jeux dont les gains respectifs X1, X2 et X3 sont donnés par :
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FIGURE 18 — Graphes de fonctions de répartition normales pour plusieurs valeurs de u et o

gagne 10 francs avec probabilité %
Jeul: X 1=

gagne 0 franc avec probabilité %

gagne 20 francs avec probabilité %
Jeu2: Xo =

perd 1 franc avec probabilité %

gagne 20 francs avec probabilité é
Jeu3d: X3 =

gagne 0 franc avec probabilité %

Quel est le jeu le plus avantageux ? Un critere pour les comparer est le gain espéré définit comme suit :

E(X;) = 104 + 0-3 =5
B(X2) = 203 + (-Df = 4§
E(X3) = 20-3 + 0-3 = 4

Selon ce critere le premier jeu est le plus avantageux des trois. La notion d’espérance d’une variable aléatoire est

une généralisation de 'idée qui précede.

Définition 4.2 Si X est une variable aléatoire d valeurs dans N, son espérance notée E(X) est définie par

E(X)=) kP(X=k).
k=0
Si X est une variable aléatoire réelle avec densité f, son espérance notée E(X) est définie par

B(X) = /+Ootf(t)dt.

—o0

L’espérance d’une variable aléatoire est donc sa moyenne (théorique) ou encore la position de son “centre de
gravité” si I'on interprete les probabilités comme des masses pesantes. En ce sens I'espérance est un parametre de

position de la répartition de masse = probabilité.
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4.4.1 Propriétés de ’espérance :
On peut démontrer que I'espérance possede les propriétés suivantes :

E (constante) = constante

- a€R, X va. : E(aX)=aEX)

- X, Yva :EX+Y)=EX)+EY)
- X>0va.: E(X)>0

~ X,Y va, X <Y :EX)<EY)

— si g est une fonction alors : E(g(X)) = i g(k)P(X = k) ou E(g(X)) = [ g(t)f(t)dt suivant que X
k=0

prend ses valeurs dans N ou dans R avec densité f.

Exemples :
— X = Ber(p) : E(X)=1-p+0-q=p

- X = Bin(n,p) : nous avons vu que X est alors une somme X = X; + X2 + ... + X,, de n variables

aléatoires (indépendantes) Ber(p). On conclut que

E(X) = EX1)+EX2)+...+E(X,)
= ptp...+p
= np.
- X =0G(p): le calcul montre que E(X) = 3 kq¢" " 'p= % )
k=1
— X =Poi(N) : le calcul montre que E(X) = kzoke”\kk—’: =A
ot e-w?
- X =N(u,0): le calcul montre que E(X) = ——— [ te 2 dt=p
+oo
- X=E\): le calcul montre que E(X) = [ tie Mdt=1.

0

L’espérance est un parametre de position qui ne nous indique pas si la probabilité est peu ou beaucoup dispersée

autour de son centre de gravité. Pour mesurer cette dispersion on peut faire appel a la variance définie par :

Var(X) = E((X - E(X))z).

Il s’agit de ’écart quadratique moyen autour de ’espérance. Il est clair que

Var(X) = E(X2+(E(X))

Il
=
+
—~
=
o
~—
[

o
—~
=
X
~~—

Pour le calcul de E(X?) nous avons, suivant le type de variables aléatoires :

+oo
E(X*)=>"kP(X=k) ou E(X? :/ 2 f(t)dt.

k=0 -
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Exemples :

X =Ber(p) E(X*)=1*p+0°-q=p, EX)=p

Var(X) = B(X?) — (B(0)) = p— 7 =p(1 - p) = pu.

Par calcul direct on obtient les résultats suivants :

X = Bin(n, p) Var(X) = npq
X = Poi(\) Var(X) = A
X = N(u,0) Var(X) = o2.

4.4.2 Propriétés de la variance :

— X v.a. Var(X) > 0 et Var(X) =0 <= X = constante
- X va. a €R, Var(X + o) = Var(X)
- X v.a. a € R, Var(aX) = o*Var(X).

Variance d’une somme de variables aléatoires :

Si X1 et X5 sont deux variables aléatoires, que peut-on dire de Var(X: + X2)? En général rien sans hypothese

supplémentaire sur X; et Xo.

Définition 4.3 On dit que deuz variables aléatoires X1 et Xo sont non-corrélées si E(X1X52) = E(X1)E(X2).

Si X et X2 sont non-corrélées, alors Var(X; + X2) = Var(X;) + Var(X2) (exercice). On peut démontrer que si
X1 et X2 sont indépendantes, alors elles sont non-corrélées l'inverse étant faux. Ainsi la variance d’une somme de
variables aléatoires indépendantes est égale & la somme des variances. On en déduit facilement que si X = Bin(n, p),
alors Var(X) = npq puisque X est alors somme de n variables aléatoires indépendantes Ber(p) dont la variance

vaut pq.

Tl est d’usage de noter o2 la variance d’une variable aléatoire. L’unité de Var(X) est le carré de celle de X. Pour

cette raison on préférera certaines fois travailler avec o = /Var(X).

Définition 4.4 On appelle écart-type d’une variable aléatoire X le nombre

o =/ Var(X).

4.4.3 Utilisation d’une table de loi normale :

Si X = N(p,0), alors X =i gt une variable aléatoire d’espérance 0 et d’écart-type 1. On peut de plus vérifier que

o

— - , . X — sz 2 . 7
% est encore une variable aléatoire normale donc £ = N(0,1). Cette propriété a d’'importantes conséquences

o

pratiques. Supposons en effet que 1'on désire calculer
Pla< X <b)

ou X = N(u,o).

Pla<X<b) = Pla-p<X-—p<b—p)

_ P(a—ng—ugb—u)

g g o
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puisque 2=# = N(0, 1). Il suffit ainsi de disposer d’une table donnant la fonction de répartition ®(t) d’une variable
aléatoire N(0,1). On appelle standardisée une variable aléatoire dont I’espérance est 0 et ’écart-type 1.

Exemple : Calculer P(29 < X < 32) o X = N(30,2).

29 — X - 2 —
PRO< X <32) = P<9230§ 230§3 230)
1 X-30
= P|l—=< <1
(22757 =)
1, table

= @(1) — B(—) "2 0.8413 — 0.3085 = 0.5328.

4.5 Modele des observations d’une variable aléatoire :

Nous nous intéressons & la répartition du poids des personnes dans la population d’une région donnée (ville,
canton, pays, ...). Désignons par X le poids d’une personne choisie au hasard dans cette population. X est donc
une variable aléatoire et nous pouvons par exemple nous intéresser a sa moyenne, c’est-a-dire son espérance
u = E(X). Si la population ne peut pas étre observée dans son intégralité (ce qui est le cas dans la pratique),
alors p est une grandeur qui ne sera jamais connue exactement. On peut cependant essayer de ’estimer sur la
base d’observations de X.

Considérons n observations successives de X, c’est-a-dire n personnes choisies successivemen\t au hasard dont on
mesure le poids. Désignons par X1, Xa, ..., X, les résultats obtenus i.e. X; = poids de la i*™€ personne. Dans
un modele des observations, X1, X»,..., X, sont des variables aléatoires; certains auteurs désignent les valeurs
effectivement obtenues par des lettres minuscules z1, x2, ..., Ty.

Quelles sont les propriétés de Xi, Xo,..., X, ? Si 'on s’arrange pour éviter des influences mutuelles entre les
observations (tirage avec remise ou taille de la population trés grande), alors on peut supposer 'indépendance des
variables aléatoires X1, Xa,..., X,. De plus, chacune d’elle représentant une observation de X, elles ont méme
loi que X. Ainsi

X1, Xa,..., X, sontiid. comme X

ou i.i.d. = indépendantes et identiquement distribuées. Une telle famille est appelée n—échantillon issu de X. Il
est important de noter que les X; ayant méme loi que X, elles ont la méme espérance p.

Comment estimer p avec X1, Xas,...,X,? La réponse usuelle & cette question est : & l'aide de la moyenne
arithmétique
Xi+Xo+ ...+ X5
- .
11 est 1égitime de se demander pourquoi et 'une des réponses possibles est fournie par le théoreme appelé “loi des
grands nombres” et qui s’énonce ainsi :
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5 Théoremes limites

5.1 Théoréme (Loi des grands nombres)

Si X1, X2,...,Xn,... est une suite infinie de variables aléatoires i.i.d. comme la variable aléatoire X, alors
P lim lix,- =BE(X) ] =1.
n—oo N =1

Dans notre contexte nous interprétons les variables aléatoires comme des observations indépendantes de X . Ainsi

_ 1 <
X::E;Xi

est la moyenne des n premieres observations qu’on ’appellera aussi moyenne empirique. La loi des grands nombres
nous assure alors que la suite des moyennes empiriques converge vers ’espérance p = E(X) (moyenne théorique)
n

avec probabilité égale & 1 lorsque n — oo. Il est donc pertinent d’estimer p = F(X) avec X = % > X;. La
i=1

question de Pestimation de o2 (ou o) se pose de la méme fagon. Par analogie, en remplagant F( ) par moyenne
arithmétique dans Var(X) = E((X - E(X))2>7 on obtient :

(o x)

Pour des raisons théoriques (point peu important si n est grand), les statisticiens préférent 1’expression

n

st= iy 2 (%)

car £ (Sz) = o2, alors que la premiére expression ne posséde pas cette propriété.

On appelle variance empirique la grandeur S? et

.

T =1

I'écart-type empirique du n—échantillon X1,..., X, issu de X. A P'aide de la loi des grands nombres, on peut
démontrer que S? (resp. S) converge avec probabilité 1 vers o2 (resp. o) lorsque n — co.

Nous avons dégagé trois fonctions des observations, & savoir X, S et S qui sont utilisées pour estimer respective-
ment p, 02 et o. De telles fonctions sont appelées des estimateurs pour les grandeurs inconnues correspondantes.

Voici le second grand théoreme asymptotique de la théorie des probabilités.

5.2 Théoréme limite-central

Soient X1, Xs,...,X,,... une suite de variables aléatoires i.i.d. comme la variable aléatoire X, u = E(X),

o =Var(X) et S, = > X;.
i=1
Alors, pour tout nombre réel ¢, on a

o

— 52
lim P(Mgt) :L e 2 ds.
n—oo o\/n
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Remarque : en transformant S, en SZ\_/%" , la nouvelle variable aléatoire a une espérance nulle et un écart-type

égal & 1. En effet :

E(S,) = E (i)Q) = iE(X’) =np car E(X;)=EX)=u,

1 < no?
= o V) = =1

Sp—=np
ov/n

car les variables aléatoires sont indépendantes et Var(X;) = Var(X) = 0. Ainsi écart-type de est égal

V1 = 1. Le théoréme limite central peut étre formulé en terme de fonctions de répartition. Rappelons que si Y
est une variable aléatoire alors sa fonction de répartition est :

Fy(t) = P(Y <¥%).
Ainsi le théoréme limite central affirme que, sous les hypotheses précédentes,

Fsp—nu () ¥ Fro,1)(t) = ®(2)
v

pour tout nombre réel t. Ce résultat suggeére que pour n suffisamment grand, F's, —n, (t) peut étre approché par

o(t). o

5.3 Approximation d’une loi binémiale par une loi normale

Nous avons que si S, = Bin(n,p), alors S,, est somme de n variables aléatoires X1, Xo,..., X, indépendantes

Ber(p) i.e. Sp, = > X;. Le théoréme limite central affirme alors que
i=1

Sp —np >
Pl——<t])] — ®(t
( Jnpq n— oo ()

car E(X;) = p et Var(X;) = pq. Il est possible de montrer que si npg > 9, alors P (S”T/%;p < t) peut étre

correctement approché par ®(¢).

Application : On considere 1000 jets indépendants d’une picce de monnaie dont la probabilité de pile est

p = i. Soit Si000 le nombre de réalisations de pile dans les 1000 jets. Calculer P(230 < Sigoo < 270) a laide

d’une approximation normale (npg = 1000 - i . % =187.5 > 9).

P 230 — 1000 - 1 51000—10005<270—10005
(/1000- 22 7 /100012 1000 4 -2

P(—1.460 < N(0,1) < 1.460)
$(1.460) — B(—1.460) = 0.855

P(230 < Sio00 £270) =

IR

car ®(1.460) = 0.9279 et ®(—1.460) = 1 — D(1.460).
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5.4 Somme de variables aléatoires normales indépendantes

Le calcul montre que la somme de variables aléatoires normales indépendantes est encore une variable aléatoire
normale. Si X1 = N(u1,01) et Xo = N(p2,02) sont indépendantes alors X1 + X2 = N(u,0). Que valent et o ?

poo= BE(Xi+Xs)=E(X1)+ E(X2) =1+ p2
o = Var(Xi+ Xo) = Var(X1) + VarXs) = o7 + 03

donc o = Joi+os et X1+ Xo=N(u+ p2,\/oi+o03).

Considérons un n—échantillon X1, Xs,..., X, issu de X = N(u,0). Alors S, = > X; = N(nu, o4/n) en vertu du

i=1
Sn — nu

ovn

calcul précédent et donc = N(0,1).

5.5 Intervalle de confiance pour I’espérance

, . s . R A R
Nous estimons ’espérance p d’une variable aléatoire X = N (u, o) & aide de la moyenne empirique X = — = — E X,
n n
=1

d’un n—échantillon Xi, X2,..., X, issu de X. Que peut-on dire de I’erreur commise ? Supposons d’abord que o
Sn —ny

ovn
Sn —np _ STW K
Puisque ®(—1.96) = 2.5 %, nous avons

est connu. Le résultat ci-dessus nous affirme que = N(0,1). En divisant numérateur et dénominateur

par n, on obtient :

>
=

_ _ 1.960 Y _ 1.960
= T S X —p < =UE
—p(x 1.\3%USMSY+1.\3%U)

Par conséquent, la probabilité pour que la valeur cherchée u soit dans I'intervalle aléatoire

— 1. — 1.
<_ 960 X+ 960

vn vn
centré en X vaut 95 %. Ceci signifie qu’en répétant cette construction, la grandeur inconnue p appartiendra & un
tel intervalle environ 95 fois sur 100 mais nous ne savons bien sir pas lesquels.

L’intervalle aléatoire ci-dessus est appelé intervalle de confiance de u au coefficient de risque 5 %. Un aspect

L. constante . . .
important réside dans le fait que la longueur de 'intervalle décroit comme ————— avec la taille n de I’échantillon.

Jn

Par contre, si o est inconnu, on 'estimera a ’aide de ’écart-type empirique

1 " - Sn —np
S = X; — X)2. L’expression ———— est donc remplacée par
n—1 ;( S lew ov/n placee p
s _
n - X - N . , . N
5 LA — = g 5 H Le calcul montre que cette derniére variable aléatoire est de type Student a n — 1
Sv/n = v

degrés de liberté. Il suffit alors d’utiliser une table de Student a n — 1 degrés de liberté a la place d’une table de

loi normale. De toute fagon, pour n > 30, X S_ LN N(0,1).

NG

Dans le cas ou les observations ne sont pas issues d’une variable aléatoire normale, le théoreme limite central nous
assure que l’on peut asymptotiquement s’y ramener lorsque la taille de I’échantillon est tres grande.
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5.6 Droite de régression, coefficient de corrélation

Un probleme important est la discussion d’une éventuelle relation entre deux variables aléatoires X et Y. Une
premiere approche de la question est la recherche d’une relation affine entre X et Y, c’est-a-dire une relation de
la forme Y = aX + b. Supposons que 1’on ait observé n fois le couple (X,Y") et que les valeurs obtenues soient

Les couples précédents, représentés dans le plan (X,Y), ne seront en général pas alignés sur une droite. Nous
allons donc écrire la relation en corrigeant avec une erreur stochastique ¢; :

Yi=aX;+b+e;, 1<i<n.

Nous proposons de chercher a et b, c’est-a-dire une droite de pente a et d’ordonnée a 'origine b, qui “approche au
mieux” le nuage de points définis par les couples observés. Il faut évidemment préciser dans quel sens I’approxi-
mation est mesurée. L’usage veut que l'on travaille avec l’erreur quadratique totale définie par :

n

E*(a,b) = ief = Z(aX,- +b-Y;).
i=1

i=1
Pour trouver les valeurs de a et b qui minimisent E? (a,b) nous imposons

9 o ]
G =0, =

2 —_—
%a (a,b) = 0.

La seconde condition fournit

NSE

2(aXi+b—Yi):0

i=1

<
Il

Yi aZXz—&-nb

1 =1

NgE
Il

.
Il

STX +b

1=1

Yi=a

_|_

3=

3=
]
It

aX +b.

=l
I

Nous constatons donc que la droite optimale passe par le point (X,Y) ot X = — E XietY = — E Y. Cette
n n
i=1 i=1

condition implique bopt =Y — aX et en remplacant dans E? (a,b), on trouve

Ez(a,bopt(a)) = i(aXi*ay‘i’?in)Q
= an(a(xi—i)—m—?))

i=1

2
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En dérivant par rapport a a nous obtenons
Q(a(Xi X)) - (Vi — ?))(X,- ~X) =0,
=1

7

et par conséquent

(Xi—-X)(Yi-Y)

M=

=1

<
Il

Qopt = n —
> (X —X)?
i=1

1l est judicieux de diviser numérateur et dénominateur par n — 1 pour faire apparaitre la variance empirique S2
de Xl,XQ,...,Xn :

S2
1 — —
ol Cpy = 1 Z(XZ —X)(Y; —Y). Cette dernieére expression, est appelée covariance empirique de I’échantillon
n—
i=1
(X1,Y1),(X2,Y2),...,(Xn,Ys) et estime la grandeur théorique

CmmXJq::E((Xx-E@XD(Yx-E@¥g>
appelée covariance du couple (X,Y’). Un calcul direct montre que

Coy = ni : <§X¢Yi — nXY) et Cov(X,Y)=E(XY) - EX)E(Y).

Ces égalités permettent de faciliter les calculs et la derniére montre que Cov(X,Y) = 0 si et seulement si X et Y
sont non-corrélées.

L’équation de la droite optimale (i.e. celle qui minimise l'erreur quadratique) est donc
Cry
Sz
Nous pouvons maintenant calculer I’erreur minimale commise si I’'on “remplace” le nuage de points observés par
la droite optimale :

y—Y = (x — X).

n CI o . 2
Efnin = EQ(aoptvbopt) = Z ( Sgy (Xi—X)—(Yi— Y))
i=1 z
= @ynﬂ?if+iw?ﬂ%ﬂ@ynxfmwfﬂ
- S4 g g S2 7 i .
T =1 i=1 T =1

1 -
En posant Ss =—7 E (Y; — Y)2 (variance empirique de Y1,Y3,...,Y,) on obtient :
v =
i=1

C2y 2 C2
z 12
sisze T~ 25 )

S (1 (scsi)j '

Er2nin = (n - 1)312/ (
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. Coy \° C .
Sachant que Emin > 0, nous en déduisons que 1 — (ﬁ) > 0 et donc —1 < —% < 1. Cette derniere grandeur
TPy T~y

nous renseigne sur la valeur de ’erreur minimale lorsque ’on essaie d’expliquer les points observés par une droite.
La droite optimale obtenue précédemment est appelée droite de régression.

Définition 5.1 Le nombre ryy = 5 Qg est appelé coeflicient de corrélation empirique de I’échantillon (X1,Y1),...,(Xn,Yy).
xRy
Le nombre rz, permet d’estimer le coefficient de corrélation entre X etY défini par :
_ Cov(X,Y)
T 0.0y

ou 0y et oy sont respectivement les écarts-type de X et Y.

Nous constatons que E2;, = 0 équivaut & rﬁy =1 et donc a r;y = £1. Dans ces deux cas, tous les points observés
sont alignés sur la droite de régression et +1 ou —1 nous indiquent le signe de sa pente. De fagon générale, plus
|7zy| est proche 1, plus EZ;, est petite et inversement, plus ry, est proche de 0, plus EZ;, est grande. E2;,
est maximale pour 75, = 0 et la seule conclusion que 'on peut en tirer est qu’'une droite ne représente pas les
observations de maniére satisfaisante. Il ne faut toutefois pas en conclure que X et Y ne sont liées par aucune
relation. On peut facilement donner des exemples de variables aléatoires X et Y qui sont non-corrélées et telles
que X2 +Y? = R? (voir exercices). Inversement, 75, proche de 1 ne signifie pas un lien causal entre X et Y.
Voici 'exemple célebre tiré de “Ornithologischen Monatsberichten 44, Nr 2 (1936) et 48, Nr 1 (1940)” qui traite
I’évolution de la population humaine et du nombre de couples de cigognes de ville d’Oldenburg entre 1930 et
1936 :

1930 1931 1932 1933 1934 1935 1936

# couples de cigognes 132 142 166 188 240 250 252

Habitants 55’400 | 55’400 | 65’000 | 67’700 | 69°800 | 72’300 | 76’000

Exercice : Faire une représentation graphique des points et déterminer la droite de régression pour X = #
couples de cigognes et Y = # habitants. Le coefficient de corrélation ryy, = 0,945 est tres proche de 1 mais il
serait dangereux de conclure que I’accroissement de la population humaine provient de la présence des cigognes !

Voici quelques exemples de nuages de points avec les coefficients de corrélation (approximatifs) correspondants :
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1.y 206

6 Introduction aux tests statistiques

Beaucoup de situations pratiques conduisent & opposer des hypotheses invérifiables de fagon directe. Par exemple,
un nouveau médicament est-il meilleur que ’ancien 7 Une nouvelle méthode d’enseignement est-elle supérieure a
I’ancienne ?

Il faut comparer des observations menées sur des malades dans le premier cas et sur des étudiants dans le second.
Cependant, les résultats dépendront aussi de fluctuations d’échantillonage car aussi bien un médicament qu’une
méthode d’enseignement agissent de fagons différentes sur des sujets différents. En effet, certains patients sont
plus ou moins réceptifs que d’autres & un médicament et il en va de méme avec les étudiants et une méthode
d’enseignement.
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La littérature scientifique propose un grand nombre de tests pour traiter des situations différentes. Notre but vise
ici la compréhension d’un test typique car le mécanisme de base sera le méme pour tous.

Un test est constitué de plusieurs éléments a savoir :
— une hypothese et une alternative
— une fonction des observations
— un niveau
— un domaine de rejet.

Il est plus facile de refuter une hypothéese que de la démontrer. Il est d’usage dans notre contexte de formuler ’hy-
pothese qui nous intéresse comme contre-hypothése susceptible d’étre rejetée. Dans les situations précédentes, ’hy-
potheése sera le nouveau médicament (respectivement la nouvelle méthode) et 'ancien (resp. 'ancienne méthode)
sont équivalents (resp. équivalentes). Il est d’usage de la qualifier d’hypothese nulle notée Hy qui sera opposée a
une alternative Hy qui sera ici le nouveau médicament (nouvelle méthode) est supérieur(e) a l’ancien(ne).

Afin de simplifier I’exposé, nous discutons d’abord le probléme de la “chute d’une tartine”. Une affirmation
fréquente prétend qu’une tartine a tendance a tomber du mauvais coté, c’est-a-dire du c6té confiture. Désignons
par p la probabilité pour que, lors d’une chute, une tartine donnée tombe du c6té confiture. Pour hypothese nulle
nous choisissons :

Hy: p=10.50.

Dans un but didactique nous supposons que p peut admettre seulement les valeurs 0.50 et 0.55. L’alternative sera
donc

Hy: p=0.55.
En fait Hy peut étre p # % oup > %
Supposons que n chutes de tartines aient été observées et que m fois celle-ci soit tombée du c6té confiture.
Pouvons-nous trancher entre Hg et H; sur la base de ces observations ?

Les deux décisions possibles dans un tel test sont “rejeter Hyp ou ne pas rejeter Hy”. Dans chaque cas une erreur
peut étre commise et nous résumons la situation dans le tableau suivant :

Statut de Ho inconnu ! H, fausse Hy vraie
Décision (H1 vraie) (H; fausse)
rejette Ho ok erreur de type I
ne rejette pas Ho erreur de type II ok

1l est d’usage de désigner par « (respectivement ) la probabilité de commettre une erreur de type I (respectivement

de type II). L’idéal consisterait & pouvoir réduire simultanément les valeurs de a et 3 pour qu’elles soient proches
de 0. Malheureusement, la réduction de « entraine en général une augmentation de 3 et réciproquement. Il faut
donc se résoudre a ne contréler qu'un des deux nombres et 1'usage veut que cela soit a. Ce cernier est alors appelé
le niveau du test et les praticiens utilisent des valeurs telles que a = 5%, o = 2 %, a = 1% etc. ... Ainsi la bonne
configuration dans un test est celle qui ameéne le rejet de Hy car, dans ce cas, le risque est sous controle puisqu’il
est de type I. On dit alors que le test est significatif et que Hy est rejetée au niveau . Dans le cas de non rejet de
Hy, nous dirons que Hp n’est pas rejetée au niveau « et que le test est donc non significatif. La situation est plus
délicate car nous ne controlons pas l'erreur de type II. La valeur de 8 peut en fait étre trés voisine de 1. Certains
auteurs comme Neyman et Pearson proposent alors d’agir comme si Hy était vraie. D’autres statisticiens tels que
Fisher proposent au contraire de suspendre tout jugement en attendant de nouvelles données ou informations.

Pour illustrer le fonctionnement d’un test nous revenons au probleme de la tartine. Supposons que n chutes aient
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été observées et introduisons les variables aléatoires suivantes :

1 sila tartine tombe du c6té confiture
X — lors de la i—eme chute probabilité p

0 sinon probabilité ¢ =1—p

1<i<mn.Ainsi S, = Z X, nous fournit le nombre de fois que la tartine est tombée du coté confiture lors des n
=1
chutes. En admettant que les chutes (donc les X;) soient indépendantes, nous savons que S, = Bin(n, p). De plus

Sn —np
V1pPq
p, la loi des grands nombres suggeére que les valeurs de S,, auront tendance & se concentrer autour de E(S,) = np.

Pour n = 500, nous aurons E(S500) = 500 - 0.50 = 250 tandis que

Hp vraic

si npg > 9, alors peut étre approchée par une variable aléatoire N(0,1). Pour une valeur quelconque de

E(S500) = 500 - 0.55 = 275. 1l est donc pertinent de rejeter Hy si la valeur de S,, est “trop” grande par

H vraie
rapport a la valeur espérée qui vaut ici 250. Nous cherchons donc un nombre n, qui aura la fonction suivante :

si Sy, > ne alors on rejette Ho
si Sp < ng alors on ne rejette pas Ho

En choisissant un niveau « nous déterminons n(«a) avec la condition

P(Sn > n(a)) =a%.

Hg vraie

Puisque n > n(a) correspond au rejet de Ho, si celle-ci est vraie, nous commettons une erreur de type I avec un
risque de a %.

Supposons que n = 500 et o = 5%. Hyp étant supposée vraie, nous avons p = 0.50 et npg = 500 - % . % = 125> 9.
Nous pouvons donc approcher

Ss00 — 500 - 3
500 - &
par une variable aléatoire N (0, 1) et donc
Ss00 — 500 - n0.05 — 500 -
P(Ss500 > 10.05) 200 2.9 =5%.
\/ 500 - \/500
Voici une petite table de loi normale :
a% 5%
o / '
U —'a Up- 4
o 5% 2.5% 1% 0.1%

Ul — o 1.645 1.960 2.326 3.090

Up—g 1.960 2.241 2.576 3.291
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no.05 — 500 - %

= ug.95 = 1.645 nous fournit

no.05 = 500 - % + 1.6454/500 - % . % = 268.391 = 268.

En conclusion, si Hy est vraie (i.e. p = 0.50), alors celle-ci est rejetée lorsque Sso0 > 268 et cet événement, qui
correspond & erreur de type I, survient avec une probabilité de 5%. Inversement, si Ho est fausse (i.e. Hi est
vraie et donc p = 0.55), l'erreur de type II correspond & Ssoo < 268 et la probabilité de cet événement peut étre
calculée de la fagon suivante :

L’équation

5 = P(S500 < 268)

Hy vraie

( Ss00 — 500 - 0.55 268 — 500 - 0.55 )
= P <
V500-0.55-0.45 /500 - 0.55 - 0.45

( 268 — 500 - 0.55 )

V500 - 0.55 - 0.45
= ®(—0.629) = 0.264.

Par conséquent 8 = 26.4 % dans cette situation.

Que se passe-t-il si I'on abaisse le niveau o & 1%? En remplagant wuo.95 par uog9 = 2.326, nous obtenons
no.o1 = 500 - 2 4 2.326,/500 - & - £ = 276.005 et
B = P(Ss00 < 276) >~ $(0.089) = 0.535.
H{ vraie

Ainsi en abaissant « de 5% & 1 %, 3 passe de 26.4 % & 53.5 %. Nous avons donc ici une illustration de I'impossibilité
du contréle simultané de « et .

. . . Sn — I X
Nous pouvons illustrer graphiquement les deux cas précédents en remarquant que 2n 7 oy (0,1) équivaut a
npq
Sp = N(np, \/npq) :

1 1 1
Hy vraie (p = 0.50): Ss00 = (500- 7 500 - 5 2) = N(250,11.18)

Hy vraie (p = 0.55):  Sso0 = (500 -0.55,/500 - 0.55 - 0.45) = N(275,11.12).

AANRANLY AN f RZ L
250 / 28 275 \
5=26,4% a=5%

Remarques : 1l est clair que si un test rejette Hy au niveau a, il rejettera Ho & tout niveau o/ > «. Dans
la mesure ou cela est possible, on peut chercher le niveau le plus petit auquel le test rejette Hy. Ce nombre est
appelée “p—value” (terminologie anglaise) du test. Il donne une meilleure information sur la situation de Hp qu’un
niveau imposé a priori.

En général I'alternative H; sera plus compliquée que p = 0.55. Hy pourra étre opposée par exemple & Hi:p > 0.50
et dans de tels cas il est plus difficile de calculer 5. Il faut donc rester prudent lorsqu’un test ne rejette pas Ho
car 3 peut étre trés proche de 1.
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Lorsque ’on teste une probabilité Ho: p = 0.50 versus une alternative Hi, cette derniére peut étre p > % oup < %
oup# % Dans les deux premiers cas on parlera d’un test unilatéral et dans le troisieme d’un test bilatéral.

1712 chutes d’une tartine ont été observées et 1506 fois celle-ci est tombée du coté confiture. Que pouvons-nous
conclure ? Nous testons Ho: p = 0.50 contre Hi:p > 0.50 avec le test décrit précédemment et nous nous proposons
de calculer sa p—value, c’est-a-dire amin tel que Hy est rejetée.

Sn —np Si712 — 1712 - %
ks 1712- 1.1
1506 — 1712 - 3

= —————2 =3141.
171234

!

Par conséquent
Qmin = 1 — ®(31.41) = 5.57 - 107

et Paffirmation “Hy est fausse” peut étre considérée ici comme une quasi-certitude.

6.1 Test portant sur une probabilité

Parité des nombres dans un lotto.

Il est 1égitime de se demander si les parités des nombres choisis au hasard dans un lotto sont équiprobables. On
a observé n = 306 nombres parmi lesquels 147 étaient impairs et 159 pairs. Les derniers sont-ils plus probables ?
Désignons par p la probabilité pour qu’'un tel nombre soit pair. Nous avons Ho:p = 0.50 et Hq:p # 0.50. Il s’agit
d’un test bilatéral et nous rejetons Hy si la quantité de nombres pairs observés est soit trop petite, soit trop grande

Sn —np

relativement a n - % Si S, désigne le nombre d’entiers pairs, alors est proche d’une variable aléatoire

normale N(0,1) (306 - % - 2+ = 76.5 > 9). Nous rejetons Ho au niveau o si

Sobs —np
| >u_a
vV 1pPq 2
ot ®(u1—g) =1— 5. Pour a =5%, u1—g = 1.960 et
S9bs —306- L
SRS 2 = 0.686.

\/306- %%

Puisque —1.960 < —0.686 < 1.960, nous ne rejetons pas Ho.

Probabilité du sexe a la naissance.

Nous nous proposons de tester ’équiprobabilité des sexes a la naissance dans la population humaine. Parmi
n = 91’342 naissances en Suisse en 1972, 47'179 étaient des garcons. Si p désigne la probabilité d’avoir un gargon
lors d’une naissance, nous posons Hp:p = % et Hi:p # % Soit S, le nombre de garcons dans m naissances
observées. Nous rejetons Hyp au niveau « si

598 —np

V1pPq

> Uy g .

Dans notre cas :

S9PS _pp 47’179 — 917342 - 3

=9.979.
vIpq 91/342 - 1

T

1
)

11 est clair que Ho est rejetée & 5% (uo.975 = 1.960) et aussi & 1% (uo.005s = 2.576). En fait la p—value du test est
de Tordre de 1072* donc p # % est une quasi-certitude.
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6.2 Le test d’ajustement de >

Nous considérons une variable aléatoire X et un n—échantillon X1, Xo, ..., X, issu de X constituant n observations
indépendantes de X. Nous divisons la droite réelle en r intervalles disjoints

R = (—oo,tl] U (tl,tz} U...uU (tl,fzﬂf,,fl] U (tl,fh +OO)
LUILLbU...UI,

et nous notons pr = P(X € I), 1 <k <w.

Introduisons les variables aléatoires

U = 1<i<n, 1<k<wv.

1
0 sinon

Alors P(U,L-(k) =1)=PX,ely)=P(Xe€ly)=pretng= ), Ui(k) donne le nombre de points du n—échantillon
i=1
qui appartiennent a ’intervalle Ix. Le nombre espéré de points dans [ est donné par

E (2_: Ué’“) = ;E(Uf’”) = §_j L p

= Npk.

E(ng)

Pearson a démontré que la variable aléatoire

~ (g, — npi)*
k=1 Pk

(le caractere aléatoire provenant de ni) converge, lorsque n — oo (au sens des fonctions de répartition comme
dans le théoréme limite central), vers une variable aléatoire dite de x? & v — 1 degrés de liberté notée x2_; dont
les fonctions de répartition sont données dans les tables. Nous notons

v 2
N — N
E 7( k Pr) — X:Q/—lv
1 npg n—oo

2": (nk. — npi)?
k=1 NPk
si npr, > 5 pour 1 < k < v, alors 'approximation précédente est justifiée. Remarquons que ny est une fréquence
2
. . o P o (nek—n
observée tandis que npy est une fréquence espérée donc théorique et que la somme M
k=1 NPk
de mesurer 1’écart entre fréquences oberservées et fréquences théoriques. Cette grandeur est a la base du test
d’ajustement du x2. En effet, si écart précédent est trop grand, il convient d’admettre que les observations ne

proviennnent pas d’une variable aléatoire ayant méme distribution que X.

A nouveau, on tentera d’approcher par x2_; pour n suffisamment grand. On peut montrer que

permet

Exemple : Dans une de ses expériences, Mendel a observé 556 petits pois parmi lesquels 315 étaient ronds et

jaunes, 108 ronds et verts, 101 ridés et jaunes et 32 ridés et verts. Ces observations sont-elles compatibles avec la
3 3

1
16’ 16’ 16 et 6 pour ces événements ?

théorie de Mendel qui prévoit les probabilités respectives

fréquences observées 315 108 101 32
fréquences théoriques  312.75 104.25 104.25 34.75
En effet : 556 - 1% = 312.75, 556 - % = 104.25 et 556 - 1173 = 34.75. Nous constatons que npr > 5, 1 < k < 4 et donc

2 (315 — 312.75)% (108 — 104.25)* (101 — 104.25)% (32 — 34.75)?
= =04
Xeobs 312.75 + 104.25 + 104.25 s 0-470
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est (approximativement) une observation d’une loi de x* &4 4 — 1 = 3 degrés de liberté.
Posons :

Hp : les observations sont compatibles avec la théorie de Mendel
Hi: négation de Hy

On peut montrer que la densité de x2 a la forme suivante :

Xl a(u) ;\.l-a(V

Nous introduisons X%—a(”) dont le sens est donné par les graphiques ci-dessus. Ainsi nous rejetons Ho au niveau
a si X2 > Xi_o(v). Dans notre cas v = 4 — 1 = 3 et une table nous fournit x§¢5(3) = 7.81. Par conséquent,

puisque x2,. = 0.470 < 7.81, nous ne rejetons pas Ho au niveau 5%. Il en va évidemment de méme & tout niveau
a<5%.

6.3 Test d’indépendance d’événements

Les yeux bleus et les cheveux blonds sont-ils des événements indépendants dans la population humaine? 50
personnes choisies au hasard ont été observées et les résultats sont présentés dans le tableau suivant :

A : avoir les yeux bleus g : ne pas avoir les yeux bleus
B : avoir les cheveux blonds B : ne pas avoir les cheveux blonds
A A Total en ligne
B 12 6 18
B 12 20 32
Total en colonne 24 26 50

Un tel tableau est appelé tableau de contingence. Nous allons tester

Hy : indépendance de A et B
contre

H; : négation de Hp .

1l faut remarquer que I'indépendance de A et B, c’est-a-dire P(AN B) = P(A)P(B), entraine celles de A et B,
celle de A et B et celle de A et B (exercice).
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Nous estimons d’abord les probabilités de A, A, B et B, & I’aide des observations, par les proportions :

PA)= 2 =
P(B) = =

12 — 13
9 — 16

Sous Ho nous avons P(AN B) = P(A)P(B), P(AN B) = P(A)P(B), P(AN B)

P(A)P(B) et donc

PANB) =2 o
P(AmE):;—g-;—g
PANB) =2 o
P(Zm?):é—ié—g

Fréquence théorique

nans = nP(A)P(B) =50 -

12

%

12

13

13

25
16
25

8.64

15.36

9.36

16.64 .

Nous constatons que chaque fréquence théorique est > 5. On compare les fréquences observées aux fréquences

théoriques (sous Hp) :

(12 — 8.64)?

(6 —9.36)> (12 —15.36)?

(20 — 16.64)2

2 —
Xobs -

8.64

= 3.93.

On peut montrer que x2,, provient (approximation) d’une loi de x* & v = 1 degré de liberté.

9.36 * 15.36

16.64

Si o = 5% alors x3.95(1) = 3.84. Puisque x%,.. = 3.93 > 3.84, le teste rejette Hy au niveau de 5 %. Par contre,
X(Q)_gg(l) = 6.63 et 3.93 < 6.63 montre que Hy n’est pas rejetée au niveau 1%. Certains auteurs disent alors que
le test est significatif sans étre hautement significatif. Les tables montrent que la p—value dans ce cas vaut 0.047.

Remarque : Pour un tableau de contingence

A A
B a b
B c d

un calcul direct montre que la valeur associée de x2,. est

Xo
bs
(

ou n est le nombre d’observations. Cette formule permet de simplifier les calculs.

n(ad — be)?

a+b)(a+c)(b+d)(c+d)
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