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Préface

Ce cours a surtout deux buts : on va revoir et compléter I’enseignement mathé-
matique recu au gymnase et vous fournir ainsi un certain arsenal de techniques
mathématiques utiles pour vos études et vos futures activités dans la vie profes-
sionnelle. Et vous allez vous familiariser avec des raisonnements mathématiques,
afin de comprendre des écrits scientifiques qui font appel a des connaissances
mathématiques. La connaissance du langage et de la pensée mathématiques vous
permettra aussi de parler avec un mathématicien si, plus tard, vous avez besoin
d’outils mathématiques plus développés que ceux que vous verrez dans ce cours.
Afin d’atteindre ces buts, un certain effort de votre part est indispensable.

Travail individuel. La durée du cours étant tres limitée, il n’est guere possible
d’en assimiler la matiere sans la revoir a la maison. Pour ce travail individuel,
la devise doit étre : Comprendre avant d’apprendre! Plus précisément : il ne
sert & rien d’apprendre par cceur des définitions ou des formules sans en avoir
vraiment compris le sens. Ainsi il est recommandé de compléter la liste des
exemples présentés dans le cours, car en en construisant soi-méme, on comprend
mieux la signification d’'une définition ou d’un théoreme. Il est aussi vivement
recommandé de voir comment d’autres auteurs expliquent la méme matiere, car
un autre point de vue peut aider a la compréhension.

Exercices. La pratique d’un sport ou d’un instrument de musique ne s’apprend
pas en regardant les sportifs d’élite a la télévision ou en écoutant des enregis-
trements d’une virtuose : il faut 'essayer soi-méme et il faut ’exercer. Le méme
principe est valable pour les mathématiques, ou les exercices vous donnent 1’oc-
casion d’entrainer vos talents. Afin de développer la faculté de communiquer ses
raisonnements a d’autres gens, il est vivement recommandé de travailler & deux.
Cette fagon de travailler en (petits!) groupes vous donne aussi un controle de
votre travail, car c’est en I'expliquant & une autre personne que ’on voit si on
a vraiment compris quelque-chose.

Dass dieses Skript zu einer auf Deutsch gehaltenen Vorlesung auf Franzosisch
geschrieben ist, ist eine Art Selbsthilfe: Die franzosischsprachige Literatur auf
diesem Gebiet entspricht weniger gut unseren Vorlesungen als die deutschspra-
chige, so dass eher der Bedarf nach einem franzoésischen Skript besteht. Ich hoffe
aber, dass auch deutschsprachige Horer von diesem Skript profitieren.

Fribourg, septembre 2004

Hansklaus Rummler

Diese Vorlesungsnotizen sind aus einem Manuskript entstanden, das Hansklaus
Rummler fiir das akademische Jahr 2004-2005 angefertigt hat. Ich danke Gau-
tier Berck, Matthieu Gendulphe, Genevieve Perren und Florence Yerly fiir ihre
Hilfe bei der Korrektur fritherer Versionen des franzoésischen Textes. Jean-Paul
Berrut hat die Vorlesung im Jahr 2013-2014 gehalten und zahlreiche Korrektu-
ren und Verbesserungen beigetragen.

Fribourg, August 2014
Patrick Ghanaat
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Chapitre 1

Fonctions

Ensembles

Nous utilisons le langage des ensembles. Pour un ensemble A et une propriété
P qui concerne les éléments de A,

{reA|Plx)={z|zcAet Pl))={z|xzec A, Plx)}

est un sous-ensemble de A : c’est ’ensemble de tous les x qui sont éléments de
A et satisfont a la propriété P. Par exemple, a partir des nombres naturels N
on peut expliciter ’ensemble des nombres naturels pairs par

{neN|geN} — {2n|neN} =1{0,2,4,6,...}.
Vous connaissez vraisemblablement les notations suivantes :

N=1{0,1,2,3,...} 'ensemble des entiers naturels

Z={0,1,—-1,2,-2,3,-3,...} I'ensemble des entiers relatifs
Q= {p ‘p, qE€EZ,q# 0} I’ensemble des nombres rationnels
q

R = I’ensemble des nombres réels

a, b)
a,b|={x € R| a <z < b} intervalle ouvert

{r € R| a <z <b} intervalle fermé

A\B ={a€ A|a¢ B} V'ensemble A privé de B, A sans B

Ax B={(a,b) |a€ A, be B} produit cartésien de deux ensembles
= Pensemble des couples (ordonnés) (a,b) avec a € Aet b € B

Ax BxC={(a,b,c)|lac A, be B, ceC}

R*=R xR ={(z,y) | z,y € R}



Fonctions

Souvent on entend par fonction une «formule> ou une <expression> mathéma-
tique, mais cette notion de fonction est trop restrictive, et suivant I'usage général
d’aujourd’hui, nous appelons fonction ou application

f:X—>Y

entre des ensembles X et Y une <prescription> ou <regle> qui associe a chaque
argument © € X une valeur f(z) € Y. Dans ce cas, X s’appelle I’ensemble de
départ (ou le domaine de définition) de f et Y son ensemble d’arrivée. L image
de f est 'ensemble {f(z) | x € X}, c’est-d-dire ensemble des f(z) pour x
parcourant X. C’est donc un sous-ensemble de Y.

Nous considérons surtout le cas f : I — R ou le domaine de définition X est
un intervalle I C R, et Y = R. Dans beaucoup de cas, f(x) sera effectivement
exprimée par une formule contenant x, mais ce n’est pas toujours le cas. Pour
toute fonction f: I — R, son graphe' Gy C R? est défini par

Gy = {(z. /(@) | v € I}
= {(m,y) eR? |z el y=f(z)}

Remarquons que pour une application f : X — Y entre deux ensembles
arbitraires X et Y on appelle graphe de f le sous-ensemble du produit
cartésien Gy C X x Y défini par Gy = {(z, f(z)) | z € X}. Dans le cas
général c’est un objet sans représentation «graphique> dans le plan.

Voici quelques exemples de fonctions avec leurs graphes :
1. I =[-10000,2000], N(t) = nombre d’habitants de la terre au temps ¢;

2. I = [-20,100], R(T) = résistance électrique d’un fil de cuivre d’une
longueur de 1 m et d’une section de 1 mm? & une température de T °C;

3. I =R, f(z) =sinx.

T

%__M

g
2 -1 2

T Iin 2w

1La notation A := B signifie que A est défini comme étant égal & B.



Ces exemples montrent quelques types de fonctions que I'on rencontre dans les
sciences. Dans le premier exemple, la variable indépendante est le temps ¢. Bien
des lois naturelles décrivent 1’évolution d’une grandeur dans le temps. Dans
lexemple 2, la fonction R(T') décrit la dépendance d’une grandeur physique (la
résistance électrique) d’une autre grandeur (la température). Cette résistance
dépend encore d’autres parametres, par exemple du matériau du conducteur,
de sa longueur, etc.; mais en définissant la fonction R(T'), nous avons précisé
que ces autres grandeurs restent constantes. Plus tard nous étudierons aussi
des fonctions de plusieurs variables. La fonction de ’exemple 3 est une fonc-
tion trigonométrique que 'on rencontre dans divers contextes; c’est pourquoi
nous appelons la variable indépendante simplement x, sans en indiquer une
interprétation.

Il peut étre pratique de modifier une fonction f : [a,b] — R en changeant
Porigine ou I’échelle des arguments ou des valeurs ; on obtient ainsi les fonctions
fr o I, = R suivantes :

filx) =flx—¢c) L =[a+ec b+

fo(x) == f(x)+¢c I =]a,b

fa(x) = f(c-x) Iy =[%,%] sic>0 (resp. [2,2] sic<0)
fa(@) i=c- f(x)  Li=]a]

Fonctions réciproques

Etant donné une fonction f : X — Y entre deux ensembles X et Y, on s’intéresse
souvent aux équations de la forme

f(x) = o,

avec un yo € Y donné; c’est-a-dire qu’on cherche, pour un yy € Y donné, les
éléments = € X tel que f(z) = yo. Dans ce contexte, on utilise la terminologie
suivante : la fonction f: X — Y est dite

injective <= f(x1) # f(x2) pour tous x1 # xo

surjective <= pour tout y € Y il existe z € X tel que f(x) =y

bijective <= elle est injective et surjective.
La fonction f : X — Y est donc surjective si I'image de f est tout Y. Elle
est bijective si pour tout y € Y il existe exactement un élément z € X avec
f(x) = y. Une fonction bijective f : X — Y admet une fonction réciprogque
g:Y — X qui est caractérisée par les propriétés suivantes :

g(f(z)) =z pour tout z € X
f(9(y)) =y pour tout y € Y.

La réciproque g de f est souvent notée f~', & ne pas confondre avec la fonction
1/f qui est bien définie lorsque f ne s’annule pas. On a donc

fl@)=y <= z=f"().

Pour une fonction bijective f : I — J entre des intervalles I, J C R, les graphes
de f et de f~! sont symétriques par rapport & la diagonale y = = dans R2, si I'on
représente pour chacune des deux fonctions les arguments sur l’axe horizontal



et les valeurs sur 'axe vertical ; mais en principe, le graphe de f s’interprete
aussi comme graphe de f~1, si 'on admet 1’axe vertical pour la représentation
des arguments de f~! et I’axe horizontal pour ses valeurs.

On écrit souvent x — f(x) pour exprimer le fait que f(z) est la valeur
associée & x par la fonction f. En utilisant cette notation, il n’est pas tou-
jours nécessaire d’introduire un nom comme f, g etc. quand on considere
une fonction. Par exemple, on peut parler de la fonction (sans nom) R — R
définie par & — x> — 3. C’est donc la fonction avec I’ensemble de départ R
et I'ensemble d’arrivée R qui & tout élément = € R associe la valeur 22 — 3.

Exemple. La fonction R — R, x ~ 22 — 3 n’est pas injective car (—x)? — 3 =
22 — 3. Elle n’est pas surjective parce que son image [—3,c0[ ne coincide pas
avec son ensemble d’arrivée R. Mais la fonction [0, 00[— [—3,00] donnée par
la méme régle x — 22 — 3 est bijective, et sa fonction inverse est la fonction
[—3, 00[— [0,00[,  — vz + 3.

Polynomes

Un polynome est une fonction P : R — R qui peut étre écrit sous la forme

n
P(z) = apa" + ap_ 12" '+ .. Farx +ag = Zakﬂck
k=0

avec des constantes ag,...,a, € R. On appelle les ay les coefficients du po-
lynome. Si a,, # 0, alors n s’appelle le degré de P, noté deg(P). Plus précisement,
si le polynome est non nul (c’est-a-dire si ses coeflicients ne sont pas tous nuls),
son degré est défini comme le plus grand exposant de x devant lequel le coefficient
n’est pas nul. Par convention, le degré du polynéme nul vaut —oo. Considérons
les polynomes de bas degrés :

degré —oo : la fonction constante nulle.

degré 0 : les fonctions constantes non nulles, f(z) = ¢ pour tout
x € I, avec ¢ # 0. On écrit aussi f = ¢ ou simplement f = c.

degré 1 : les fonctions affines f(x) = ax + b avec a,b € R, a # 0. Le
graphe d’une telle fonction est une (ligne) droite, ce qui explique I’ap-
pellation <linéaire>. La fonction f est déterminée de fagon unique
par ses valeurs f(z1), f(x2) en deux points distincts z1, ©s.

degré 2 : les fonctions quadratiques de la forme f(z) = az? +bx + ¢
avec a, b, c € Ret a # 0. Le graphe de f est une parabole. La fonction
f peut étre reconstruite a partir de ses valeurs f(x1), f(z2) et f(z3)
en trois points distincts x1, x2, 3.

Exemple. La fonction P(z) = (1 + )® est un polynéme de degré 5. Afin de
ramener P a la forme standard, utilisons la formule du bindéme de Newton

(a+b)" = zn: <Z> akpn—k

k=0



avec les coefficients binomiauz

<Z>_n(n—1)...(n—k+l) nl

! Kl (n — k)l

lus <k parmi n> et parfois aussi notés C*. On obtient ces coefficients facilement
a l'aide du triangle de Pascal :

n=>0 1
n=1 1 1
n=2 1 2 1
n=3 1 3 3 1
n=4 1 4 6 4 1
n=>5 1 5 10 10 5 1
n==6 1 6 15 20 15 6 1
La ligne n = 5 contient les coefficients (2) pour k =0,...,5. Par conséquent,

5
I+a)P’ =Y (2) %2 % = 2% 4 5ot +102° + 1022 + 52+ 1.
k=0

Racines d’un polynome

Un zéro (en allemand Nullstelle) d’une fonction f : I — R est un point a €
ou f s’annule, c’est-a-dire une solution a de ’équation

f(a) =0.

Les zéros sont les points d’intersection du graphe de f avec l'axe des x. Les
zéros d’'un polynome s’appellent aussi ses racines. Par exemple, les racines du
polynéme P(z) = ax? + bz + ¢ avec a # 0 sont

—b+ Vb? — 4dac
2a '

Proposition.? Si a est un zéro du polynéme P de degré n > 1, alors P s’écrit
de maniére unique sous la forme P(x) = (x — a) Q(z) avec Q un polynéme de
degré n — 1.

En pratique, on obtient Q(x) par la division de polynémes P(z) + (z — a).
On peut formaliser et analyser cette méthode afin d’obtenir une preuve de la
proposition.

Remarquons cependant que cette proposition est une conséquence immé-
diate du théoreme de Taylor que nous verrons au chapitre 4. La dérivée
d’ordre n + 1 d’un polynéme de degré n est le polynéme (identiquement)
nul. Donc la formule de Taylor s’écrit

P”(a)
2!

p™ (a)

P(z) = P(a) + P'(a)(z — a) + nl

(x—a)*+... +

(CE - a)n’

2Dans les textes mathématiques, une proposition est un résultat relativement simple mais
d’un intérét indépendant, c’est-a-dire un théoréme simple. Un lemme est un résultat servant
d’intermédiaire pour démontrer un théoréme ou une proposition. Un corollaire est un résultat
qui découle directement d’un théoréeme ou d’une proposition qui le précede.



et, comme P(a) = 0, on arrive &

e , ™) (g -
Pla) = (o= a) (P + T - a4t T [ aap )

Ainsi P(z) = (z — a) Q(x) avec @ un polynéme de degré n — 1.

Corollaire. Un polynome P de degré n > 0 admet au plus n zéros distincts.

Preuve. Soient x4, ..., x,, des zéros distincts de P. Il faut montrer que m < n. La
proposition donne P(z) = (x — 1) Q1(x) pour tout x avec un certain polynéme
Q1 de degré n — 1. En particulier, pour z = x5 nous avons

0= P(iEQ) = ($2 - xl) Ql(xQ)

et par conséquent @Qq(x2) = 0, car 2 — x1 # 0. Appliquons maintenant la
proposition au polynéme @ et a son zéro x5 pour obtenir Q1 () = (z—x2) Q2(x)
avec un polynoéme @ de degré n — 2. Comme auparavant, Q2(xz3) = 0. En
continuant de cette facon, on obtient successivement

P(z) = (z — 1) Qi(x)
= (z — z1)(z — 22) Q2(z)

= (z—z1)(x—22)... (T — Tp) Qm(x)
avec des polynomes Q. de degré n — k. En comparant les degrés on obtient
n = deg(P) = m + deg(Qu) > m. 0

Corollaire. Si un polynome P de degré < n admet plus de n zéros distincts,
alors P = 0.

Interpolation polynomiale

Théoréme. Pour n + 1 arguments distincts xg,x1,...,T, et n + 1 valeurs
Yo, Y1, - - -, Yn données, il existe un polynome unique P de degré < n qui vérifie
P(xzy) =y pour k=0,...,n.

Le polynéome P s’appelle le polyndme d’interpolation (de Lagrange) pour les

données xq, ..., T, €t Yo, ..., Yn.

Preuve. 1l y a deux affirmations a confirmer : ’existence d’un tel polynéme P et
son unicité. Montrons d’abord que le polynéme P est unique : si Q) a les mémes
propriétés, alors la différence D = P — @ est un polynome de degré < n qui
admet les n+1 zéros distincts xg, . .., z,. Du corollaire précédent on tire D = 0.
Donc Q = P, c’est-a-dire que P est unique.

Pour démontrer [’existence de P, nous présentons une méthode pour trouver le
polynome d’interpolation : la formule d’interpolation de Newton. Etant donnés
X0y -y Tn €6 Yo, ..., Yn, on fait 'ansatz (c’est-a-~dire on cherche P sous la forme)

P(x) = ¢
+c1(x — x0)
+ea(x — x0)(x — 21)
+...

+en(z —zo)(x —21) .o (@ — Tpp1)



avec des constantes cg, ¢1, ¢, ..., c,. Cest certainement un polyndéme de degré

< n. Ensuite on utilise les n + 1 conditions P(zy) = yx pour k =0,1,2,...,n
afin de déterminer successivement les n + 1 constantes cg, ¢1, ¢, ..., ¢, comme
suit :

Posant = ¢ dans ansatz, la condition P(xg) = yo donne ¢y = yo. Ensuite,
avec x = x1 dans ansatz et avec P(x1) = y1, il vient ¢o + ¢1(z1 — z0) = 1,

c’est-a-dire
Y1 — Co
g =Z—.
xr1 — To
Les constantes ¢, ¢; déja connues, on pose alors x = x5 et utilise que P(x3) = yo
pour obtenir

co + c1(xe — xo) + c2(x2 — x0) (T2 — 1) = Y2

et donc
Y2 — co — c1(w2 — 7o)
Co =
(w2 — @) (w2 — 1)
En continuant dans cette facon, on trouve cs, ..., c,. U

Remarques. 1. On peut reformuler la méthode de Newton de maniere
algorithmique, utile pour la programmation :

o Py :=1yo
e Pour k=1,2,...,n,
Pi(z) := Po—1(x) + cu(z —x0)(z —21) ... (T — 2R—1),
ol la constante ¢ est telle que Py (zx) = yk.

o P:=P,.

2. Une formule explicite pour le polynéme d’interpolation est la formule
de Lagrange :

P(z) =y li(x)

avec les polynémes de Lagrange

n
r — T
— J
@) = I o—4-
o Tk — Ty
j=0
j#k
. X — To T — Tk—1 T — Tk+1 T — In
T — o Tk — Tk—1 Tk — Tk+1 Tk — Tn

On voit que, pour tout k, £; est un polyndéme de degré n qui satisfait

1 sij=k
le(z5) = 6jk 1:{0 si;';ék.

(Le symbole ;1 s’appelle le symbole de Kronecker.) Par conséquent, P est
un polynéme de degré < n avec

n n

Pla;) = yrle(z;) =D ko = -

k=0 k=0



Fonctions trigonométriques

D’habitude, on mesure les angles en degrés ou en radians : la grandeur d’un
angle en radians est la longeur de I’arc correspondant sur le cercle de rayon 1.
Comme 360° correspond a 2w, la circonférence du cercle, on a

o 2m

T 360

Pour les calculs impliquant des fonctions trigonométriques, on préfere en général
la mesure en radians.

Rappelons la définition géométrique des y
fonctions trigonométriques sinus, cosi-
nus et tangente : soit ¢ € R, et soit P o
P = (z,y) le point sur le cercle unité £
qui correspond a ’angle ¢. Alors o\~
=
© (1]
cosp =z )
) 14 Ol coso X
sinp =y
tan p = J .
T

Puisque les angles ¢ et ¢ + 27 correspondent au méme point P, les fonctions
sinus et cosinus sont périodiques de période 2w, c’est-a-dire que

sin(z + 27) = sinzx

cos(x + 27) = coszx

pour tout x € R. La fonction tangente est périodique de période 7. De plus, on
a les relations :

sin(—z) = —sinzx
cos(—x) = cosz
tan(—z) = —tanx
sin x
tanx =
cos

sin(z + y) = sinx cosy + cosx siny
cos(z +y) = cosz cosy —sinx siny
sin?z + cos?z =1

Dans la derniére formule, nous avons utilisé la convention d’écrire sin’z et cos? =

au lieu de (sinx)? et (cosz)?. Pour les zéros des fonctions trigonométriques on
trouve

sint =0 <= x =km pour un k € Z,

2k +1
cosz =0 x:kﬂ—l—g:%pourunkez,

tanx =0 <= =z = kw pour un k € Z.



Voici les graphes des fonctions sin, cos et tan

sin x

N
SR

tan x
1 -
X
pbr B b 3\ Sl
Ny 2r - N v/ Iz T T 2 -
1 -
En restreignant le sinus a I'intervalle [—7, 7], le cosinus a [0, 7] et la tangente &
] =%, %[, on obtient des fonctions bijectives admettant les fonctions réciproques
T
arcsin : [—1,1| = |——=, =
1,1 = [, 7]
arccos : [—1,1] — [0, 7]
T
arctan : R — [——, —].
-5 5]



arcsin x

X

arctan x

Exemple. Par définition, la fonction arcsinz : [-1,1] — [-F,
inverse de la restriction®

7] est la fonction

sin|[_g,g] C[-==] = [-1,1].

Par conséquent, on a arcsin(sinxz) = x pour tout x € [-75, 5]. Mais en fait
la fonction f(x) = arcsin(sinz) est définie pour tout x € R. Quelles sont ses
valeurs pour les 2 en dehors de [-5, 5] 7

Réponse : la fonction f est 2m-périodique, puisque le sinus 'est :
f(z + 2m) = arcsin(sin(x + 27)) = arcsin(sinz) = f(z).
Notons aussi que

f(z + 7) = arcsin(sin(x 4+ 7)) = arcsin(—sinz) = — arcsin(sinz) = — f(x),

3Pour une fonction f : X — Y et un sous-ensemble A C X, la restriction f|4 est la fonction
A —Y qui a tout élément a € A associe I’élément f(a) € Y.

10



et donc f(x +7) = —f(x) pour tout x € R. Quand x parcourt lintervalle
[—%, 5], cette derniere identité fournit les valeurs de f sur [7, 37”] ; et pour les
x € R qui restent, on utilise la 27-périodicité.

La fonction f(x) = arcsin(sinz)

11



Chapitre 2

Limites et continuité

Limites de suites

Une suite de nombres réels (on dit aussi : une suite <dans R>») est une appli-
cation x : N — R. A la place de z(n) on écrit en général z,,, et on note la suite
sous la forme

(z0, 71, T2, .. .) = (Tn)nen

ou simplement xg,1,%s2,... sans parentheéses. ' On dit que la suite converge
vers a € R si, pour n tendant vers oo, le point x,, s’approche de a aussi pres que
I'on veut. Plus précisement :

Définition. Une suite (z,)nen converge vers a € R si pour tout réel € > 0 il
existe un ng € N tel que pour tout n > ng on a

dist(zp, a) < €.
Ici dist(zp, a) := |2, — a| est la distance entre x,, et a. Si c’est le cas, on écrit

lim z,=a ou =z, —a(n—oc0).
n—00

La suite (2, )nen diverge si elle ne converge vers aucun a € R.

Remarques. 1. On peut interpréter la situation comme suit : considérons
les membres x, de la suite comme approximations de la valeur a, et €
comme une tolérance, une marge d’erreur acceptable. Les x, & partir de
Tngy, C'est-a-dire avec indice n > no, sont des approximations suffisamment
précises de a : ils peuvent remplacer a avec une erreur ne dépassant pas
la tolérance «.

2. Il est souvent utile de considérer la convergence de suites d’objets autres
que des nombres : suites de points dans le plan ou dans ’espace, de fonc-
tions, de figures dans I’espace (vues comme sous-ensembles de R?), d’états
d’un systéme (décrit par un modele mathématique) etc. En général, une
suite d’éléments (x, )nen d’un ensemble X est une application z : N — X
et notre définition de la convergence vers un a € X garde son sens pourvu
qu’on ait une notion de distance entre les éléments de X.

1On admet aussi des suites 1,22, ... numérotées avec les entiers strictement positifs, ou
avec un autre sous-ensemble de N.
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De certaines suites divergentes dans R on dit aussi qu’elles < convergent vers
+00 ou —oo» : on dit que la suite de nombres réels (z,),en converge vers oo,
et 'on écrit

lim z,, = co
n—oo

si, pour n tendant vers co, le nombre x, devient aussi grand que l'on veut,

c’est-a-dire que pour tout C' > 0 il existe un ng € N tel que z,, > C pour tout
n > ng. La convergence vers —oo est définie de maniere analogue.

Exemples
1
1. lim — =0
n—oo N
0 si —1<gx1
2. Pourge Rona lim¢"=¢ 1 sig=1
n—o0

oo sig>1,

et la suite diverge si ¢ < —1. En fait, considérons par exemple le cas
q>1. Alors g =1+ r avec un r > 0, et a l'aide de la formule du binéme
de Newton

q"—(1+r)”>1+(7;>r—1+m'—>oo

pour n — oo. Donc ¢" — oo pour ¢ > 1. Dans le cas 0 < ¢ < 1 on a
1/q > 1 et donc, comme nous venons de voir, (1/¢)™ — co. Par suite,

1
q" = — 0.

1 n
(5)
Dans le cas ¢ < —1 la suite est composée de deux sous-suites dont 'une
tend vers 400, autre vers —oo. Par exemple, pour ¢ = —2 la suite est

20 ol 492 93 4921 95 496

3. Certains nombres sont définis comme limites d’une suite, tel par exemple
le nombre e (d’Euler) (voir chapitre 6) :

n

e:= lim (1 + 1) =2.71828....
n— oo n

On peut interpréter cette limite comme étant le capital aprés une année,

si I'on place 1 Franc & 100% d’intérét annuel avec paiement < continus :

en effet, si 'on obtient l'intérét en n tranches, le capital apres une année

s'éleve & (1 + 1/n)".

Reégles de calcul avec les limites

lim (v, £y,) = lim x, £ lim y,
n— oo n— o0 n— oo

lim (z, - y,) = lim z, - lim y,
n—oo n—oo n—oo

Plus précisément : si les deux limites de droite existent, alors celles de gauche

aussi, et on a 1’égalité indiquée. Pour la division, la situation est un peu plus

subtile : supposons que lim 1y, existe et ne soit pas égale a zéro. Alors on peut
n— o0

13



avoir y, = 0 pour quelques n, mais & partir d’un certain indice ng on a y, # 0
et ainsi la fraction x,,/y, est bien-définie. La régle dit que

lim z,
. n n—oo
lim — = ~—">—
nboo g, lim g,
n—oo

si les deux limites de droite existent et si lim ¥, # 0.
n— oo

Exemples

P
4. Si P et @ sont des polynomes avec deg(P) < deg(Q), alors lim Pn) =0

n—oo Q(n)
Par exemple,
nd—dn?2+1 -4 4L 0-0+0
i_ .3 = 12 =0
2TL —n +2 2 E—Fm 2—0"‘0
(n+2)3 —n3
5. xp 5
n

Pour n — oo cette expression prend la forme indéterminée == 1l faut

la simplifier pour comprendre son comportement. En utilisant la formule
du binéme de Newton, on obtient

(n+2)3—n 7}B+3-21n2+3~22n1+23 0—7/3 P(n)
n2 = n2 =6+ n2

avec un polynéme P de degré < 2. Par conséquent,

9)3 _ 3 P
lim W: lim (6+ (")) —64+0=6.

n—00 n2

6. z,=-n+vVnZ+n

Pour n — oo on obtient la forme indéterminée —oo + co. Nous utilisons
l'identité (a + b)(—a + b) = —a® + b comme suit :

N e (n+vVn?+n)(—n+vn?+n) —1P+ 1P+ n
n+vn?+n n+vn?+n

1 n-rg0 1 1
14+4/1+1 1+V1I+0 2

Donc

lim (—n + Vn?+n) =

n—oo

N —

. Considérons la suite définie par la relation de récurrence

1 2
anrl:i xn"’?

pour n = 0,1,2,3,..., avec terme initial £y = 2. Avec la formule de
récurrence on calcule successivement les termes x1, 2, =3 etc.
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Ln

2

1,5
1,416666666. . .
1,414215686. . .
1,414213563. ..
1,414213563. . .

U W~ O3

Il semble que la limite = := lim =z, existe. Sous 'hypothese qu’elle existe
n—oo

vraiment, nous pouvons la déterminer comme suit :

. .1 2
z = lim z,4; = lim 7<xn + —)

n— 00 n—oo 2 Tn

=5 (et o) =5 ()
DA lim =z, —o\FT L)

n— oo
2 5 N 2 I 3 :
donc 2z =z + =, d’ott 22 = 2, c’est-a-dire que = = /2.
T

Nous voyons que si la suite converge vers un z € R alors z = /2. Donc
a = /2 est le seul candidat possible pour la limite, mais il resterait &
vérifier que la condition définissant la convergence soit remplie : étant
donné & > 0 il faudrait trouver ng tel que |z, — 2| < e des que n > ng.
Il est cependant plus facile d’obtenir la convergence a ’aide d’un critere
général concernant les suites monotones :

Une suite (z,)nen est dite croissante si on a x,, < x,41 pour tout n € N. Elle
est dite bornée supérieurement s’il existe un nombre M € R tel que z,, < M
pour tout n € N.

Théoréme. Tout suite croissante bornée supérieurement est convergente : il
existe x € R tel que z, — = (n — o0).

En considérant la suite —x,, au lieu de z,,, on déduit le théoreme analogue pour
les suites décroissantes bornées inférieurement. Une suite est dite monotone si
elle est croissante ou décroissante.

Retournons a I'exemple 7. La suite est bornée inférieurement par M = 0,
parce que xg = 2 > 0, et six,, > 0, alors z,41 = %(mn—&—%) > 0. D’apres la
liste de 21, ..., x5 il semble que la suite soit décroissante. Nous omettons?
la preuve. Le théoréme (version décroissante) s’applique et garantit que la
suite converge vers un x € R.

Séries

Partant d’une suite de nombres réels (a,)nen on peut former les sommes suc-
cessives

2En utilisant I'inégalité (z —1)2 > 0 on montre d’abord que %(:v—i— %) > 1 pour tout z > 1.

Donc z, > 1 pour tout n. Ensuite, on vérifie I'inégalité %(:c + %) < z pour tout x > 1, et en
déduit que zp4+1 < Tn.

15



So = Qo,
S$1 = ao + aq,

82 = ap + a1 + az,

n
Sp, = Qg+ ...+ a, = E ag.
k=0

Si la suite de ces sommes partielles converge, on écrit pour sa limite
o0 n
E ag = lim s, = lim E ag
n—oo n—roo
k=0 k=0

et on dit que la série 220:0 ay, converge. On appelle alors cette limite la somme
ou la limite de la série. Donc la somme d’une série est la limite de la suite des
sommes partielles. Notons que, par abus de langage, on utilise la méme notation
Y peo ak pour la série de terme général a, — c'est la suite (s, )nen des sommes
partielles — et pour la somme, si elle existe.

Attention : ne pas confondre la suite de termes aj de la série ZZO:O aj avec sa
suite des sommes partielles s,,.

Exemples
(oo}
8. La série géométrique qu converge pour |g| < 1 : on a pour tout ¢ € R
k=0

Sp=14+q+¢@+...+q"
q+q2_’_.“+qn_~_qn+1

q-Sn =
1 _ qn+1
= (1-q) sn = l_anrl ou Snzli
—q
N . 1 .
Cette derniere expression converge vers T pour n — oo, si |q| < 1.
Donc
o0
L 1
Zq = — pour |g| < 1.
I—q
k=0
(oo} n 1
9. La série harmonique diverge : Z = nlin;o 7 =0
k=1 k=
En effet,
1+1+1+1+1+ sttt =+
2 3 4 5 8 ' 16
>i=3 >5=3 >16=3%
>1+ -+ ! + L +
- +-+= =00
2 2 2

10. La série harmonique alternée (Newton 1667) :

2 (—1)k+1 1 1 1 1 1
S e ———+4+—...=1n2
kZ:l - st gttE g T n
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1 1 1 us
11. La série de Leibniz (1682) : 1 — -+ - — -4+ —... = —
a série de Leibniz ( ) 3 + ET % + 1

12.

hE

Tl
|

c:‘i‘w

k=1

Trouver la somme de cette série était un probleme célebre, le < probleme

de Bale>, résolu par Euler en 1735.

13. Plus généralement, on peut montrer (facilement) que la série Z s o0
verge si s > 1 et diverge si s < 1. k=1

La fonction ainsi définie
=1
C(s) = Z =
k=1

s’appelle la fonction zeta de Riemann. Le résultat d’Euler dit que
¢(2) = 7?/6, et il a trouvé des formules similaires exprimant ¢(n)
pour tout entier positif pair. Ce n’est qu’en 1973 qu’on a pu prouver
que ¢(3) est un nombre irrationnel.

14. Une série entiére est une série de la forme
oo
k_ 2
arx” = ag+a1x +agx” + ...
k=0

avec une variable x et des coefficients a; € R. On peut la considérer comme
un <polynéme avec un nombre infini de termes>. Voir le chapitre 4 pour
les détails.

Regles de calcul avec les séries

e Sila série Y ;7 ai converge, alors pour tout A € R la série Y- (Aax)
converge et

Z()\ak) =)\ Z ag.
k=0 k=0

e Siles séries Y 7= ak et Y po o by convergent, alors la série Y oo o (ax + by)

converge et . . o
D (aetbi) =D apt) b
= k=0 k=0

k=0

Définition. On dit que la série Y ;7 ay converge absolument si la série des
valeurs absolues >~ |ax| converge.

R . s . o)
e La convergence absolue entraine la convergence : si la série ) .~ |ax]
converge, alors la série ZZOZO ap converge, et on a

00 oo
> ar| <D la.
k=0 k=0

e Sil’on change I'ordre des termes aj dans une série absolument convergente,
alors la nouvelle série converge vers la méme somme.
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e Siles séries Y- ak et > po, by convergent absolument, alors

(£) () -2 (Z o) £ (o)

k=0 k=0 “Nitj=k —0
c’est-a-dire

(ao—|—a1—|—a2+...)(bo+b1+b2+...) = agbg +
agby + a1bg +
agbs + a1b1 + asbg + . . .,

et cette derniere série converge absolument. Elle s’appelle le produit de
Cauchy selon Augustin Louis Cauchy (1789-1857). D’apres la regle précé-
dente, on peut changer l'ordre de termes sans affecter la somme ; mais le
produit de Cauchy est une maniere systématique d’arranger la série.

Criteres de convergence

On ne change pas la propriété de convergence ou divergence d’une série en
modifiant un nombre fini de termes. En fait, si & partir d’un certain indice ng
tous les termes a,, restent inchangés, alors la modification revient a augmenter ou
a diminuer toutes les sommes partielles s,, avec n > ng d’une quantité constante,
et donc la convergence ou la divergence de la suite (s, )nen ne change pas. Par
conséquent, dans ’étude de la convergence d’une série on peut supprimer un
nombre fini de termes.

oy » . . s o0 .
Condition nécessaire. Si la série ), ai converge, alors la suite des termes

ay tend vers zéro : lim aj = 0.
k—o00

En effet, si s € R est la somme de la série, on obtient a, = S, — Sn—1 —
s —s =0 pour n — oo.

LR . - o0 o0 z .
Critere de comparaison. Soient » . ap et >, by deux séries avec
0 <ap < by

pour tout k. Si Y, by converge, alors Y ;- ax converge.

Si 0 < ag < by, on dit que la série Y by est une majorante de > ag, et que
>~ ay est une minorante de Y, bi. Donc toute série de termes positifs avec une
majorante qui converge est également convergente. Par suite, une série a termes
positifs diverge lorsqu’elle admet une minorante divergente.

Pour la preuve du critére, rappelons (voir p. 15) que toute suite crois-

sante et bornée supérieurement converge. La suite des sommes partielles

Sn = Y p_oGk est croissante car les ar sont positifs. Elle est bornée
s oo

supérieurement par la somme )2 bi. Donc elle converge.

Critére de Leibniz. Soit Zzio ag une série alternée, c’est-a-dire avec ap > 0
pour k pair et ar, <0 pour k impair (ou vice versa), et telle que

lao| > fa1] > |az| > ... =0 (k — o0).

Alors la série converge.
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Exemples

15. La série harmonique alternée (exemple 10) converge selon le critere de
Leibniz ; mais elle ne converge pas absolument, puisque la série harmonique
diverge.

16. La série > oo, % est divergente, puisque la série harmonique est une
1

minorante qui diverge : on a N > % pour tout k > 1.

17. La série Y -, m est divergente, car m > ﬁ pour tout k >

100% et la série 537, 50 = DI ﬁ diverge.

18. La série Y oo, kQ—LC converge, car ﬁ < ,3—2 pour k > 2 (preuve?) et la

série > oo, k% converge (exemple 12). Alternativement, notez que ﬁ =

L % Pour la somme partielle on obtient une <somme télescopique> :

E—1
= 1 1
S"_Z(kq_%)
k=2
1 1 1 1+1 1+ 1 1
2 2 3 3 4 7 n-1 n
=1-——=1 (n—o0)
Par conséquent, > 1
Zkz k_l

19. Le développement décimal d’'un nombre réel s est une série qui converge

vers s : pour s > 0,
o0

1 \k
$ = ag,a1a203 ... = ap | —
0, 110203 Z k(lO)
k=0
avec ag € Net avec ar € {0,1,...,9} pour k > 1. Cette série converge, car

lorsqu’on supprime le premier terme ag, elle admet la série géométrique
o0 o0
1\F 1\
> 9(3) =92 (1)
10 10
k=1 k=1

comme majorante qui converge, selon l’exemple 8.

Limites de fonctions

Soit I C R un intervalle, a € I, et soit f : I\ {a} — R une fonction non
nécessairement définie en a. On dit que f admet la limite L € R au point a, et
on note

lim f(z) =L,

r—a

si pour x # a tendant vers a, le nombre f(z) s’approche de L aussi prés que
I'on veut. Plus précisément : pour tout € > 0 il existe un 6 > 0 tel que

x # a et dist(x,a) < 0 impliquent dist(f(x),L) < e.
Rappelons que dist(a, b) := |a — | est la distance entre deux points a,b € R sur

la droite réelle. Comme pour les limites de suites, on peut interpréter ¢ comme
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une tolérance : la valeur f(x) coincide avec L & une erreur < ¢ prés quand  est
suffissamment proche de (mais pas égal a) a.

D’une maniere analogue on définit les limites unilatérales
lim f(z) et lim f(x
lim f(x) lim f(z)

pour lesquelles on considére seulement les arguments x avec x < a respec-
tivement x > a. Il y a aussi des limites limz—_o f(x) et limz— 400 f()
ainsi que des limites <impropres> comme limg_,, f(z) = oco.

Exemples 1 . 1 .
lim — =00, lim — = —o00, lim — n’existe pas
z\0 T /0 X z—0 X
. 52 5 i sinx 1
im ————— = — im =
z—o0 2x+3x2 -1 3 =0 T
Jm flz) =1 1 y=Fx)
lim f(z) =1
z—0
f0)y=2
li =3
lim f (2)
lim f(z) = +o0
lim f(z)=0 3 *

La proposition suivante montre que la notion de limite d’une fonction se laisse
réduire a celle de la convergence des suites :

Proposition. lim,_, f(z) = L si et seulement si pour toute suite x,, dans
I\ {a} qui converge vers a, la suite des images f(x,) converge vers L.

Donc lim,_, f(z) = L équivaut a dire que f transforme toute suite x,, # a
convergente vers a en une suite f(z,) convergente vers L. A 'aide de cette
proposition on peut transférer les lois de calcul avec les limites de suites en des
regles analogues pour les limites de fonctions : par exemple,

lim (f(z) £ g(x)) = lim f(z) £ lim g(@);

r—a

si les deux limites de droite existent, alors celle de gauche aussi, et on a 1’égalité
indiquée.

Continuité

Définition. Considérons une fonction f : I — R définie sur un intervalle I C R.
Soit a € I. Alors f est dite continue au point a (ou en a) si

lim f(z) = f(a).

T—ra

Il y a donc deux conditions : que la limite lim,_,, f(x) existe, et qu’elle soit égale
a f(a). La fonction est dite continue sur un ensemble A C I si elle est continue
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en tout a € A. Elle est dite continue, si elle est continue sur son domaine de
définition (qui doit étre précisé si 'on utilise cette terminologie).

Comme conséquence des régles de calcul avec les limites, on obtient :

Si f,g : I — R sont des fonctions continues en a, alors la somme f + g, la
différence f — g et le produit f-g sont continus en a; si, de plus, g(a) # 0, alors
le quotient f/g est également continu en a.

Exemples
. o 0 six<O , .
e La fonction f : R — R définie par f(z) = . n’est pas conti-
1 siz>0
nue en z = 0.
r six>0

e La fonction valeur absolue |z| := { est continue sur R.

—x siz <O

e Tout polynéme P(x) = Y_;_, arz® est continu sur R. En effet, la fonction
identité x — x est continue, tout comme les fonctions constantes. Donc
les produits z -« = 22, x - 22 = 23 etc. sont continus, de méme que les

produits ay, - ¥, et finalement leur somme P(z).

e Les fonctions sinz et cosx sont continues sur tout R ; la fonction tanx =
ST oot continue en tous les points ot cosx ne s’annule pas, c¢’est-a-dire

Ccos T

sur les intervalles (2k — 1)7/2 < x < (2k + 1)7/2 pour k € Z.

Théoréme des valeurs intermédiaires.® Soit f : [a,b] — R une fonction
continue. Alors pour tout y réel compris entre f(a) et f(b), il existe (au moins)
un ¢ €la, bl tel que f(c) =y.

f(a)

f(b)

w

La démonstration de ce théoréme est constructive dans le sens qu’elle donne une
méthode pour la construction de ¢ : la méthode de la bissection. En considérant
la fonction © — f(x) — y & la place de f, on peut se ramener au cas y = 0.
Supposons de plus que f(a) < 0 < f(b). Pour trouver un ¢ avec f(c) = 0, nous
procédons comme suit :

3en allemand : Zwischenwertsatz
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ler pas : Posons ¢ := (a+ b)/2 et calculons f(c;). Trois cas sont pos-
sibles.

1. f(e1) =0 : on arréte la procédure avec ¢ := 5.
2. f(e1) < 0 : on continue la recherche dans la moitié droite
de [a, b], posant ay := ¢y et by :=b;
3. f(e1) > 0 : on continue la recherche dans la moitié gauche
de [a,b], posant a1 := a, by := c;1.
Dans les deux derniers cas on a f(a1)f(b1) < 0, et on continue
la recherche entre a; et by, c’est-a-dire qu’on passe au

2eme pas : On répete les mémes calculs que dans le premier pas avec a; et
by & la place de a et b, c’est-a-dire qu’on pose ¢z := (a1 +b1)/2,
on calcule f(cz) etc.

En continuant ainsi, on obtient soit apreés un nombre fini de pas un ¢ avec
f(e) =0, soit deux suites monotones

ap<az<az<... .. <b3<ba <D

avec f(an)f(bn) < 0 et avec |a, —by| = (1/2)"|a — b|. Comme les suites sont
monotones et bornées, elles convergent, et la derniere égalite montre qu’elles ont
la méme limite

c:= lim a, = lim b,.
n—oo n— oo

Montrons que f(c) =0 : en prenant la limite n — oo dans 'inégalité

flan)f(bn) <0

on obtient f(c)? <0, et donc f(c) = 0. Remarquons que la continuité de f est
utilisée dans ce dernier argument : il faut que lim f(a,) = f(c) = lim f(b,).

Exemple. Calculons encore une fois v/2 en cherchant un zéro ¢ > 0 de f(z) :=
2?2 — 2. Nous commencons par a := 1 et b := 2. Alors f(a) < 0 < f(b). Avec ces
valeurs nous obtenons les approximations suivantes de v/2 :

n | cp n | cp n | cp

115 7 1 1.41406 13| 1.41418
2| 1.25 8 | 1.41797 14 | 1.41425
3| 1.375 9 | 1.41602 15 | 1.41422
4] 1.4375 10 | 1.41504 16 | 1.41420
5 | 1.40625 11 | 1.41455 17 | 1.41421
6 | 1.42188 12 | 1.41431 18 | 1.41421

On voit que la suite converge moins vite que celle que nous avons déja vue
comme approximation de v/2 dans I’exemple 7. Par contre, il est facile d’estimer
Ierreur aprés un certain nombre de pas :

Comme big—ars = (b—a)/2!6 < 0.0000153, S

et comme la limite v/2 et ¢17 sont com- N ' ' iy
pris dans Pintervalle [a16,b16], on sait que te te
V2 — c17] < 0.0000153. En réalité, on a € —3 X
méme v/2 — 1.41421 ~ 0.000004. P
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Exemple. Considérons un grand cercle C tracé sur le globe terrestre, par
exemple I’équateur. Montrons que, a chaque instant, il y a deux points anti-
podaux sur C' ou la température est la méme.

Soit en effet f : [0,27] — R la fonction
suivante : décrivons les points du cercle par
I’angle ¢ avec une direction fixe dans le plan
du cercle. Si P est le point qui correspond
a4 ¢, et si P’ est son antipode, f(p) :=
T(P) — T(P'), la différence de températures
entre P et P’. Alors f est continue, et f(0) =
—f(m), donc f change le signe dans [0, 7).
Le théoreme nous dit qu’il y a un ¢g avec
f(wo) = 0. Pour le point Py correspondant
on obtient T(Py) — T(P)) = 0.
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Chapitre 3

Calcul différentiel

La dérivée d’une fonction

Considérons une fonction f : I — R définie sur un intervalle I C R. Le prin-
cipe du calcul différentiel est la simplification de 1’étude de f dans le voisinage
d’un point xg € I en approchant f par une fonction tres simple : une fonction
affine ou linéaire inhomogéne g(x) = ax + b, ¢’est-a-dire une fonction dont le
graphe est une droite. (Par abus de langage, nous parlons aussi simplement de
la «<droite> g.) Nous demandons que, prés du point zg, la fonction g soit une
bonne approximation de f dans le sens suivant :

L. g(x0) = f(x0)

x) —g(x
2. Pour = # xq, '<erreur relative > M tend vers 0 pour x — xp.
r — X
La premieére condition équivaut & b = —axg + f(x¢), donc a

9(x) = f(xo) + a(x — xo).
Par conséquent, la deuxiéme condition signifie que

lim f(x) = f(xo) — alz — x0)
T—To Tr — X
f(@) — f(=o)

a = lim ————~.
T—x0 T — To

= 07
c’est-a-dire que

En conséquence, une telle droite g existe si et seulement si cette derniere limite
existe, et dans ce cas elle est uniquement déterminée par les deux conditions.

Definition. La fonction f est dite différentiable ou dérivable au point xg si la

limite
f(x) — f(z0) — lim f(zo+h) — f(zo)

T—x0 T — g h—0 h

existe. Cette limite s’appelle alors la dérivée de f en xy. La fonction f est dite
différentiable sur I si elle est différentiable en tout point de I.

Si f est dérivable en xg, alors en particulier f(xg + h) = f(zo) quand h tend

vers 0, c’est-a-dire que lim,_,., f(z) = f(zo). Donc toute fonction dérivable au
point x( est continue en z.
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Interprétation géométrique. Fixons un deuxieme point z; # xg. Alors le

quotient
_ (=) — J(wo)
- r1 — o

ay

est la pente de la sécante qui coupe le graphe de f aux points (xo,f(mo)) et
(xh f(xl)) Cette sécante est le graphe de la fonction

g1(x) == f(zo) + a1(z — xp).

Lorsque x1 tend vers x, la pente a; converge vers f'(xg) et les sécantes g;
convergent vers la tangente

9(z) = f(x0) + f'(z0)(z — z0)
au graphe de f en (zo, f(z0)).

A f

f(xq)

|9

f(xg)

v

Interprétation cinématique. Lorsque la variable z représente le temps, on
écrit d’habitude ¢ & la place de z, et on écrit souvent f(to) au lieu de f’(¢g) pour
la dérivée. Cette notation a été introduite par Newton. Pour t1 # tg,

f(t1) = f(to)
t — to

est la vitesse moyenne avec laquelle la grandeur f varie entre fo et £1. Il est
donc raisonnable d’appeler f(ty) la wvitesse instantanée au temps tg, lorsque
cette dérivée existe.

Vecteur vitesse. En utilisant la géométrie vectorielle, ces notions de
vitesse moyenne et instantanée s’étendent a la situation suivante : par
une courbe dans R™ nous entendons une application

g:1—R",
c’est-a~dire un n-uple @ = (¢1,...,¢n) de fonctions
pr1: I =R, ....,0n: I =R

Sinous interprétons la variable ¢ comme le temps, @(t) est donc un point se
déplacant dans R™ et ayant au temps ¢ les coordonnées ¢;(t), j = 1,...,n.
Supposons que ces fonctions soient différentiables. Le vecteur de vitesse
moyenne entre les temps to et t1 # to est alors le vecteur

@(t1) — B(to)
t1 —to ’
et le vecteur vitesse (instantanée) au temps to est

i 80 = Blt0)

(to) := G(t
T(to) == P(to Jim =

= (¢1(t0);s -+ -5 Pnlto))-

25



Si @(to) n’est pas le vecteur nul, la tangente & la courbe en tg existe : c’est
la droite

t— @(to) + t F(to)

passant par @(to) et ayant G(to) comme vecteur directeur.

IR | S,
o) Plt)-Pity)

dit,)

fit,)

Différentielles. Leibniz a introduit ’écriture bien connue

df dy

dr  dx

pour la dérivée f’, et il la regardait comme le quotient de deux quantités
<infiniment petites> ou «infinitésimales> dy et dz. Il avait donc I'identité
dy = f'(z)dz entre ces < différentielles >. Mais la notion de grandeur
infinitésimale restait floue et engendrait des erreurs. Aujourd’hui on évite
les difficultés en utilisant la notion de limite : f’(xo) n’est pas un quotient,
mais la limite du quotient de deux quantités (non-infinitésimales) Ay =
f(z)— f(zo) et Az = x —x0 quand = tend vers xo. La notation de Leibniz
garde un sens intuitif : pour Az trés petit, la dérivée est presque égale
au quotient Ay/Az, et on a Ay = f'(z)Azx. De plus, nous verrons que le
formalisme de Leibniz est utile dans le calcul intégral et pour la résolution
des équations différentielles.

Voici la définition moderne de la différentielle’ d’une fonction f au point
xo : c’est une autre fonction, la fonction linéaire df,, : R — R donnée par

h v dfso(h) == f'(x0) - h.
On peut regarder df comme fonction de deuz variables : (z, h) — dfz(h).

Liste de dérivées
(2%) = az2~1 sin’(x) = cos(z) (e*) = e”
cos’(x) = —sin(x) In'(z) =1

Voir le chapitre 6 pour la fonction exponentielle exp(z) = e® et le logarithme
naturel Inz.

Regles de calcul pour les dérivées
o lindarité : (f+¢g) =f +¢, (\f) =Af pour A e R

e regle du produit : (f - g)' = flg+ f¢

1Remarquons qu’avec cette définition de la différentielle on obtient une interprétation de
l'identité df = f’dz de Leibniz. En effet, pour la fonction identité ¢(z) ==z on a ¢/(zo) =1 et
ainsi dig, (h) =h. Des lors, la définition de la différentielle s’écrit dfz, (k) = f'(z0) - dizgy (h)
pour tout zg et h, ou brievement df = f’'d.. Si enfin on écrit = pour la fonction identité ¢, on
arrive a df = f'dx.
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/ ! /

e regle du quotient : (f> = fgi?fg (aux points x ol g(x) # 0)
g g

e dérivée d'une fonction composée, <regle de la chaine> :

(fog)(z)=f'(9(x)) - g'(x)

b1
W)= 5w

e fonction réciproque : ( f *1)

Considérons par exemple la regle du produit, et rappelons que f - g est la
fonction x — f(z)g(x). Il faut montrer que, si f et g sont dérivables en

o, alors la limite
1o F@)o(a) — Fwo)g(wo)
T—xTQ X — Xo

existe et coincide avec f'(z0)g(zo) + f(z0)g (x0). En fait,
f(x)g(x) = f(xo)g(xo) _ f(x)g(x) — fzo)g(x) + f(20)g9(x) — f(20)g(70)
f(CE') - f(mo) g(x) + f(m()) g({E) - g(aco)

X — X0 r — X0

=X f(w0)g(0) + f(w0)g' (o)

Pour simplifier la preuve de la régle de la chaine, supposons que g(z) #
g(zo) pour tout = # xo. (Le cas général demande un autre argument.)

Alors
(fog)(x) = (fog)(xo) _ flg(x)) — flg(zo))
_ [flg(=)) = f(g(x0)) g(x) — g(z0)
g(z) — g(=o) T — To
5 (g(@0)) ¢ (w0)

puisque g(z) — g(zo) quand = — zo. La formule pour la dérivée d’une
fonction réciproque résulte de la regle de la chaine : on dérive 'identité
f(f~'(y)) = y afin d’obtenir

P W) ) W) =1

Exemples
. ’ ./ . / 2 -2 1
, sin sin’ cos —sin cos’  cos® +sin
cos cos cos cos
! 1 2
2. arctan’(y) = ———— = cos”(arctany)
tan’(arctan y)
. 2 2
. . . sin 1 —cos
Afin de simplifier ce résultat, observons que tan? = = ,
cos? cos?

donc que tan? cos® = 1 — cos? et ainsi cos® = . Par conséquent,

1+ tan?
cos? (arctany) = o2 En renommant la variable, nous avons le résultat :
Y
arctan’(z) = !
1422
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Dérivées d’ordres supérieurs

Si f: I — R est dérivable dans I, la dérivée est une fonction f': I — R. Si f’
est de nouveau dérivable, la dérivée (f’)’ de f’ s’appelle la dérivée seconde de
f, et on écrit

2f

dx?

= =

Plus généralement,

poo = 47

dx™
dénote la n-itme dérivée (ou dérivée d’ordre n) de f, si elle existe. On pose
encore f(O := f. La fonction f est dite n fois continiiment différentiable si la
n-ieme dérivée f(") existe et est continue. Elle est dit indéfiniment différentiable
si les dérivées f(™) de tous ordres n € N existent.

Application : méthode de Newton

La méthode de Newton (ou de Newton-Raphson) est une procédure efficace
pour calculer des solutions de I’équation f(z) = 0 si la fonction f : [a,b] — R
est dérivable. Supposons que f(a)f(b) < 0. Comme toute fonction dérivable est
continue, le théoréme des valeurs intermédiaires dit qu’il existe (au moins) un
zéro ¢ de f dans [a, b]. La méthode de bissection nous donne une procédure fiable,
mais lente, pour le calculer. Par contre, la méthode de Newton ne fonctionne
pas toujours, mais sous des conditions favorables elle converge beaucoup plus
rapidement.

Pour calculer ¢ selon Newton, on choisit un point zy qui se trouve pres de &, c’est-
a-~dire une valeur approximative raisonnable pour £&. Dans un petit voisinage de
Zo, on peut remplacer f(x) par son approximation affine (la «<tangente )

f(@) = f(wo) + f'(0)(z — o)

et on résout ’équation

f(xo) + f/(zo)(w —20) =0

au lieu de f(x) = 0. Soit x; la solution, c’est-a-dire
_ f(@o)
f' (o)

Ce zéro x1 de la tangente sera généralement plus proche du zéro £ de la fonction
que xg. On répete 'opération avec x;1 a la place de xg, etc. On peut donc espérer
améliorer 'approximation par des itérations successives :

T )
n

I ‘= X9

(n=0,1,2,...) (méthode de Newton)

Théoreme. Soit f :]a,b]— R contindment différentiable, et soit & €la,b| un
zéro de [ avec f'(§) # 0. Alors il existe un § > 0 avec [§ — 0,€ + d] Cla, b[ tel
que, pour tout point xo € [£ — 0,€ + &), la méthode de Newton définit une suite
(Tn)nen qui converge vers .

Rappelons que f est dite (une fois) contindment différentiable si f est différen-
tiable et si sa dérivée [’ est une fonction continue. Géométriquement, on peut
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décrire la méthode comme suit : on part d’un point xy qui se trouve pres de
I'intersection & du graphe de f avec 'axe des x. Pour trouver une meilleure
approximation de &, on remplace le graphe de f par sa tangente en (acg, f (xo)),
et on prend comme x; 'intersection de cette derniére avec l'axe des z. De la
méme fagon, on passe de x1 a s, et ainsi de suite :

Le point z,,41 est l'intersection
de 'axe des z avec la tangente
au graphe de f en (a?n,f(xn))

7 !
X2 X X

Nous ne donnons pas la preuve du théoréme, mais il est facile de voir que si la
limite x, = lim,_, oo T, existe et si f/'(x.) # 0, alors x, est un zéro de f : en
prenant la limite lim,,_,,, dans la formule de récursion

T = )
n

on obtient )
lim z = lim =z, — —hmn—><>o f(zn)
e limy, 00 f/(z0)

et donc, puisque f et f’ sont des fonctions continues,
flzs)
Ty = Ty — ,
f'(xy)
ce qui implique que f(z.) = 0.

Exemple. Pour calculer ¢/c pour ¢ > 0, on applique la méthode de Newton &
la fonction

f(z) :=2? —ec
Sa dérivée est f’(x) = pzP~!, et nous obtenons la formule de récurrence
z, —c p—1 1 ¢
Intl1 =Tpn — ————F = — Tp T ————.
pxnp_l p :I:np—l

Pour p = 2, ¢ = 2 et ¢y = 2 on retrouve la suite déja vue au chapitre précédent.

Maxima et minima

On dit que la fonction f : I — R posséde un mazimum (global) au point z¢ € I
si f(zo) > f(z) pour tout = € I. Alors la valeur f(xo) est appelée maximum
de la fonction f. Un minimum de f est une valeur avec f(zo) < f(z) pour tout
x € I, et un extremum est un maximum ou un minimum.

Evidemment la fonction f(z) = x ne posséde pas d’extremum dans Uintervalle

ouvert |0, 1[. Cependant, on peut montrer :

Théoreme. (Existence du maximum et du minimum.) Toute fonction conti-
nue sur un intervalle borné fermé [a,b] posséde (au moins) un mazimum et un
minimum dans cet intervalle.
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Ainsi, il existe des points zpi, et *max dans [a, b] tels que

f(@min) < f(z) < f(rmax)

pout tout z € [a, b].

Proposition. Si f atteint un extremum en un point xo intérieur? de I, et si f
est dérivable en xq, alors f'(xg) = 0.

Pour le maximum (ou minimum) d’une fonction continue f dans [a,b], il y a
donc trois sortes de candidats :

e les points x avec f/'(z) = 0;
e les points ou f/(z) n’existe pas;

e les points x = a et x = b.

Cette remarque implique une méthode pratique pour trouver les extrema : on
trouve les candidats = et on établit la liste des valeurs correspondantes f(x).
Dans les applications typiques c’est une liste finie. La plus grande des valeurs
ainsi trouvée est le maximum, la plus petite le minimum.

Pour la preuve de la proposition, considérons le cas d’'un maximum. Com-
me zo est un point intérieur de I, les points xo + h appartiennent a I pour
tout A suffisamment proche de 0. Puisque f atteint son maximum en xo,
on a f(zg+ h) — f(zo) <0 pour de tels h, et donc

flwo+h)— f(zo) |20 sih<O
h T )1 <0 sikh>o0.

Calculons f'(x) de deux fagons :

0 h -
0 h
11 s’ensuit que f'(zo) = 0. Le cas d’'un minimum se traite de maniere

analogue.

Accroissements finis

Théoréme des accroissements finis (Mittelwertsatz). Soit f : [a,0] — R
continue sur [a,b] et dérivable a lintérieur de l'intervalle, ¢’est-a-dire dans |a, b.
Alors, il existe un xo €|a, b avec

) = =@ (+

Il est souvent plus utile d’écrire cette identité sous la forme

f@) = fla) = f'(x0) (b - a).

2¢’est-a-dire qui ne soit pas une borne de I'intervalle I
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Comme cas particulier, on obtient le théoréme de Rolle : Si f(a) = f(b), alors
il existe un xg €]a, b[ avec f'(xg) = 0.

Interprétation analytique. A l'accroissement Az = b — a de la variable x
correspond l'accroissement Af = f(b) — f(a) = f'(x0) - (b — a) de la fonction
f- Donc f’'(xg) est le taux de change moyen de f sur lintervalle [a,b], d’ou
l'appellation «Mittelwertsatz> en allemand. Remarquons que la qualification
de 'accroissement comme <fini> a perdu son objet - elle provient de I’époque
des quantités <infiniment petites.

Interprétation géométrique. 1l
existe (au moins) un zg €la,b| tel
que la tangente au graphe de f en
(zo, f(z0)) est paralltle & la sécante
passant par les deux points (a, f(a)) et

(b, £()).

|

|

|

|

|

;
T T T
a X, X b

Pour la preuve du théoréme des accroissements finis, considérons la fonc-

tion
F(a) = f(a) — fla) - OO gy,

continue dans [a,b] et dérivable dans |a,b[. Géométriquement, c’est la
distance verticale en = entre le graphe de f et la sécante

f(b)_f(a) (;r:—a).

z+— fla)+ b2

On calcule que F(a) = 0 = F(b). En conséquence, F' possede un maxi-
mum ou un minimum en un point intérieur zo €Ja,b[. (En effet, selon
le théoreme sur 'existence du maximum et du minimum, F possede un
maximum et un minimum dans [a, b], et comme F s’annule en a et en b,
on obtient un extremum dans Uintérieur.) En ce point, on a F'(z¢) = 0,
et (%) par le calcul.

Corollaires. Soit I C R un intervalle, f : I — R une fonction dérivable.

1. Soit M > 0 une constante telle que |f'(x)| < M pour tout x € I. Alors

F(@) = f)| < Mz —y| pour tout o,y € I.

2. Si f'(z) =0 pour tout x € I, alors [ est une constante.

Pour la preuve, on applique le théoréme des accroissements finis a I'inter-
valle [z, y] (ou [y, 2] si y < z) afin d’obtenir

|f(x) = FW)| = |f (o) |[# —y| < M |z —y|.

La deuxieme affirmation suit en posant M = 0.
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Regles de ’Hospital

Ces regles ont été publiées en 1696 par le marquis de ’'Hospital, mais c’est Jean
Bernoulli qui les a trouvées et démontrées. Elles servent a donner un sens au
quotient de deux fonctions f/g en certains points en lesquels il prend la forme
0/0 ou oo/o0, c’est-a-dire points xg avec f(xg) = g(xg) = 0 ou mhﬁnéo flx) =

lim g(z) = co. Voici une version simple :
r—T0o

Reégle de I’Hospital. Soient f, g : [a,b[— R deux fonctions continues avec les
propriétés suivantes :

o f et g sont différentiables sur]a,bl;
o f(a)=g(a)=0;
o g(x) #0 et g'(x) #0 pour tout x €la,b[;

!
e [a limite lim @)

Jm g’(x) existe.

Alors la limite lim ()
z—a g(m)

existe également et on a

f(z)

: o S
@ T Am )

Cas particulier, trés utile : si les fonctions sont encore différentiables (& droite)
au point a, avec dérivées f’(x) et ¢’(x) continues, et g’'(a) # 0, alors
f@) _ f'(a)

lim —= = .
v=a g(z)  g'(a)

La démonstration, que nous ne présentons pas, repose sur une généralisation du
théoréme des accroissements finis.

Il existe une version analogue pour lim,_,;. On peut méme admettre a = —oco
et b = 00, et il y a des versions analogues pour le cas

lim f(z) = mlgng(x) = +o00.

Exemples

in(2 2 2 2
1 lim sin(2x) Hoo cos(2x) _ 2c0s0 _ 9
z—0 z—0 1 1

C’est le cas le plus simple : le quotient prend la forme indéterminée
«<0/0> pour z — 0, et une seule application de la régle conduit & une
limite qu’on peut évaluer directement. Remarquons que le premier signe
d’égalité (marqué avec un lettre H pour indiquer Papplication de la regle
de I'Hospital) se justifie seulement & la fin : si la limite de f'/¢’ existe,
celle de f/g existe, et les deux limites sont égales.

Souvent on applique la regle de ’Hospital une deuxieme fois :
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o1
2. lim

x
—Cos3 H
z—0 1 —cosx

1 iz
5 SIn 5
HliQ. 2
z—0 SInx

Considérons® lim

x—0 ;CS

H

z—0 COSX

sinx — tanx

1

1 z
7 COS 3 1
4

On remarque tout d’abord que le numérateur et le dénominateur tendent
vers 0 pour z — 0. Des lors, on peut donc essayer d’appliquer la regle de

I’Hospital :

11m

x—0 1,‘3

sinx — tanx

COST —
1m
z—0

1
cos? x

=7
32

De nouveau, le numérateur et le dénominateur tendent vers 0 pour x — 0,
et en essayant une deuxieéme et une troisiéme fois avec la regle de ’'Hospital

on trouve

11m

x—0 3

sinx —tanz

!

[

1
COST — 5=
32

—sinx —

6x
1
—dim (14—
z—0 COs° T
1 1

——(142)1=—=.
g+ 2

lim
z—0
2sinz
lim cos3 x
z—0

2

sinx

)

X

La regle de 'Hospital ne donne que des conditions suffisantes d’existence

de la limite. Il existe des cas ou la limite du quotient des dérivées n’existe
pas et pourtant la limite du quotient des fonctions existe :

2?sin(1/x)

sinx

lim

z—0

= lim —
z—0 sin x

alors que le quotient des dérivées

limite en 0.

(

1

T

1
et —1

lim
x—0

)

~lim zsin(1/z) =1-0=0

x—0

2z sin(1/x) — cos(1/x)

n’admet pas de

Comme e° = 1, cette limite prend la forme indéterminée 1/0 — 1/0, donc
une évaluation directe n’est pas possible. Mais on peut écrire

et —1—=x

x(e? — 1)’

et cette derniére expression prend la forme <0/0> pour z — 0. La régle

de I’'Hospital s’applique :

( )

1

T

1
et —1

lim
z—0

[f==

lim
z—0

lim
z—0

e*!—1—x §u et —1

z(er —1) P50 e — 1+ zet
631'
2 +zer 2

3Comme auparavant, il est en fait prématuré d’écrire une lim dont nous ne savons pas
encore 'existence : celle-ci fait partie de la question.
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6. imzlnz
x—0

Le logarithme In est défini pour = > 0, et on a Inx — —oo pour z — 0.
La limite prend donc la forme indéterminée 0 - (—oo0) quand z — 0. Afin
d’appliquer la regle de I’'Hospital, on écrit x In x comme quotient :

1
Inz #© =
lim zInx = lim - = lim xl =—limz=0.
x—0 x—0 x—0 -2z x—0

x
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Chapitre 4

Formule de Taylor et séries
entieres

Polynomes
Considérons un polynoéme de degré < n
P(z)=by+bix+...+byz"

et fixons xg € R. Si ’on pose y := x — xg, on peut remplacer x par xg + y dans
P(x), et apres simplification on obtient une expression de la forme

ag+ a1y + ... +ayy”
pour certains coefficients ay. On peut donc écrire P(x) sous la forme

P(z) = ag+ai(z —x0) + ...+ an(z —x0)" (4.1)
Zak(x — xo)*
k=0

qu’on appelle le «développement > de P autour de xq. Les coefficients dans ce
développement (4.1) sont uniquement déterminés par les dérivées successives de
Penxp:

PO (z) =30 ar(x — x0)* PO (z4) = ag = 0'ag

PO (z) =30 kag(z — x0)*! PW(xg) =a; = 1la;

PP (z) =30, k(k — Vag(x — z0)F2 P@)(x4) = 2!ay

PO () =30 _sk(k—1)(k —2)ag(z —20)*2 PO () =3laz
et ainsi, pour kK =0,1,...,n

P ()
ap =~ (4.2)

Inversément, donnés n + 1 nombres dy,...,d, € R, il existe un seul polynome

P de degré < n dont les dérivées successives en xo sont P*)(zq) = dj, : en fait,
P est donné par la formule (4.1) avec les coefficients (4.2).
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Approximation locale : formule de Taylor

La formule

" p) (g
Py =Y T - o,
k=0

qui est exacte pour un polynéme de degré < n, donne encore une bonne ap-
proximation pour une fonction n-fois dérivable, si x est proche de xg :

Théoréme. (Formule de Taylor.) Soit f : I — R une fonction n-fois différentiable
(n > 1) sur Uintervalle I C R, et soit xg € 1. Alors, pour tout x € I, on a

") (g
fa) =S L s Ry (@) (43)

k!
k=0
ot le <reste> R, 11(x) a la propriété

lim Lot (4.4)

a—zo (T — )"

Le polynéme’

(k) (g
T, (z) = Z f7(0>($ — x0)F (4.5)

k!
k=0

S (o)

n! (= 20)"

= f(zo) + f'(zo)(x — wo) +... +

est appelé polynome de Taylor de degré n au point xg de la fonction f. Nous
avons vu que c’est I'unique polynéme de degré < n dont les dérivées jusqu’a
lordre n en xy coincident avec celles de la fonction f.

Voici les versions concretes de la formule de Taylor pour n =1et n =2 :
e n =1, pour f différentiable :
f(@) = fwo) + f'(20)(x — w0) + Ra(x)

. Re(x)
avec lim
T—xo T — T

= 0, c’est-a-dire

ey 1) = (o) = /(o) (x — w0)

T—To r — X

=0.

C’est la caractérisation de la différentiabilité de f en xg.

e n =2, pour f deux fois différentiable :

f@) = f(zo) + f'(zo)(x — x0) +

R
avec lim 3(7) 5 = 0.

z—zo (T — )

1Le polynéme de Taylor dépend de f et de zg qui doivent étre spécifiés dans le contexte.
Une notation plus explicite serait T ., n au lieu de 7). Une remarque analogue s’applique
au reste Ry41.
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Donnons la preuve de la formule de Taylor dans le cas ot la dérivée f(
d’ordre n est encore continue. Considérons le polynéme de Taylor T, et
le reste R(z) := Rpyi1(xz) = f(z) — Tn(x) correspondant. Le seul point
a4 montrer est que R possede la propriété (4.4). Comme f et T, ont les
meémes dérivées d’ordre < n en zo, on a

R(z0) = R (w0) = ... = R"™ (z0) = 0,
ce qui nous donne la possibilité d’appliquer la regle de ’'Hospital n fois :

/ (n)
lim ﬂ: lim %:...: lim L(x)

sz (T —x0)"  w—ozo n(x — x0)? L z—zg Nl
Puisque f (") egt (supposée) continue, la dérivée R™ est continue, et donc

(n) (n)
i @) _ BO0)

T—x( n! n!

=0.

Dans le cas ou f est n + 1 fois différentiable, on peut décrire le reste avec plus
de précision :

Théoréme. (Formule de Taylor avec reste de Lagrange.) Soit f : I — R une
fonction (n+1) fois différentiable (n > 0) sur Uintervalle I C R, et soit xg € I.
Alors pour tout x € I, il existe un point & (dépendant de x) entre xg et x tel que

n ) (g
1@ =Y T g )
k=0 ’

o (g)

Ryi(x) = m(m — )"t (4.6)

Dés lors, si M,, 11 est un nombre tel que |f"+1(&)| < M, 41 pour tout ¢ entre

o et x, alors
My

(n+1)! |
Pour n =1, le théoreme se réduit au théoreme des accroissements finis :
f(@) = f(zo) + '(§)(z — 20).

Corollaire. Si f: I — R est (n+ 1) fois dérivable avec f**+1) =0, alors f est
un polynome de degré < n.

En fait, on a f =T, car R,41 =0 d’apres (4.6).

|f(z) = Tn(z)| < x — zo|" . (4.7)

Preuve du théoréme. Si x = xo, laffirmation se réduit a ’égalité f(xo) =
f(z0). Fixons maintenant un x # xo et définissons un nombre ¢ € R par

(n+1)!

(nt1).

f(@) = Tu(2) + (z —20)

Il faut montrer que ¢ = f("H)(E) pour un £ entre xg et x. Soit g : I — R
la fonction

_ - f(k)(t) C n+1
g(t)—f(w)—kZ:O @t - el +1
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Alors g(zo) = 0 par le choix de ¢, et g(z) = f(z) — f(z) = 0. D’apres
le théoreme des accroissements finis, il existe donc un ¢ dans 'intervalle
ouvert borné par zo et x tel que ¢g'(¢§) = 0. Cependant, le calcul de la
dérivée donne

F)

g =T gy Lo

n!

et pour t = &, on obtient ¢ = f<"+1)(§).

Séries de Taylor

Définition. Soit f : I — R une fonction indéfiniment différentiable, et soit
xg € 1. La série de Taylor de f en xq est la série

£ (k) (5
T(z)=> fTSO)(x — o)k, (4.8)
k=0 ’

Les nombres f*)(xq)/k! s’appellent les coefficients de Taylor.

Les sommes partielles de la série sont les polynémes de Taylor T,,(x) de f en xq.
Fixons x € I. Alors (par définition de la convergence d’une série de nombres)
la série de Taylor T'(z) converge vers la valeur f(x) si et seulement si la suite
T,.(z) converge vers f(x) quand n — oo, c’est-a-~dire si et seulement si le reste

Roi1(z) = f(z) = Th(z) = 0  pour n — oo.

Si c’est le cas, alors (pour ce )
(k)
flo)=>" fi(%)(x — )" (4.9)

et on dit que la série de Taylor «représente> la fonction f en =x.

Il peut arriver que la série converge pour certaines valeurs x et diverge pour
d’autres. Pour montrer qu’elle converge vers f(x), on utilise souvent 1’estimation
(4.7). L’exemple 5 ci-dessous montre que, méme pour les 2 € I pour lesquels la
série de Taylor converge, sa limite peut étre différente de f(x).

Exemples

1. Considérons la série de Taylor pour f(x) = 1/(1 — x) avec zp = 0. Pour
les dérivées de f on trouve f*¥)(z) = k!/(1 —z) ! pour k =0,1,2,..., et
donc f®)(0) = k!. La série de Taylor de f en 0 est la série géométrique :

T(m)szk.

k=0

Nous avons vu (chapitre 2) qu’elle converge vers f pour |z| < 1 et diverge
pour |z| > 1.

2. Considérons f(z) = sinz avec ¢ = 0. Les dérivées de f sont données par

) (=1)Fsin(z) sim est pair, m = 2k
sin(™ (z) =
(—1)* cos(x) si m est impair, m = 2k + 1.
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Comme sin(0) = 0 et cos(0) = 1, on obtient
0 si m est pair
(—=1)* si m est impair, m =2k + 1,
et la série de Taylor est
sin
T _ e S ) 2k‘+1
(@) g; ml g%2k+n

Montrons que la série converge vers sin x pour tout x € R : I'inégalité (4.7)
s’écrit
|sin(z) — T (x )|_>4**Ei1*| s

(n+1)!

On peut choisir M,,;; = 1 pour tout n, car | sin™+) ()| est égal & +sin x
ou + cos z, et ainsi | sin™ Y (€)] < 1 pour tout £ € R. Comme? |z|"*+1/(n+
1)! = 0 pour n — oo, il s’ensuite que

|sin(z) — T, (z)] = 0 (n — o0),

et donc la série de Taylor converge vers sinx pour tout z € R :

) = (=) 2P
Slnx22m$2k+1:x_§+a¢... (410)
k=0
37 T 5
2_
y i
1_
f/‘21c ~T n 2w
71__ X sin
24
_3_- T3 T7

La fonction sin et ses polynémes de Taylor T1,73,75,T7 en 0

3. De la méme fagon, on obtient la série du cosinus : pour tout z € R

X X
2=l F o (4.11)

sl (_1 2 4
cosx =

4. La fonction exponentielle e® satisfait (e?)’ = e, et donc (e*)*) = ¢® pour
tout k € N. Comme e” = 1, la série de Taylor en xg = 0 est

oo 2 3
l‘ X X
=) g =ltr gt
k! 3!
k=0
an
2Lemme. Pour tout a €R, on ¢ lim — = 0.
n—oo n!

Preuve. Fixons un k € N avec k > 2|a|. Alors pour n > k

n k k 1\"— k 2k ko1
|a\ _ lal® la| la| lal < lal® (1 = jal” 1 —0 (n— 00).
2 k! 2n

a™

n! Eok+1k+2"""n — Kk
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A Taide de (4.7) on montrera au chapitre 6 que la série converge vers e”

pour tout € R, donc
k

T __ - x
e _kzﬂ. (4.12)
=0

1
exp | —— our x # 0
5. Soit f: R — R la fonction f(z) = P ( x2> P 7
0 pour x =0.
On peut montrer que f est indéfiniment différentiable et que toutes les
dérivées f*) gannulent en zy = 0. La série de Taylor en 0 est donc

T(z) = 0 pour tout z € R, tandis que f(z) > 0 pour tout x # 0. Donc la
série de Taylor converge pour tout « € R, mais pour x # 0 elle ne converge

pas vers f(x).

Séries entiéres

Une série entiére est une série de la forme
oo
Z ap(z — 20)* . (4.13)
k=0

Ici les coefficients ay et le centre xy sont des constantes, et x est une variable.
En particulier, toute série de Taylor est une série entiere dont les coefficients
sont ceux de Taylor d’une fonction f :

f(k)(l“o)

ap ="

Considérons le cas xg = 0, c’est-a-dire une série entiere de la forme
o0
> apz®. (4.14)
k=0

Lemme. Si la série (4.14) converge pour une certaine valeur x = x1 de la
variable x, alors elle converge absolument pour tout x € R avec |x| < |z1].

Preuve. Comme la série > axz} converge, on a axz;¥ — 0 pour k — oo (p. 18),
donc |arz1*| < M pour un nombre M > 0 et pour tout k& € N. Par conséquent

k
<M'qk

o] = faxa - |
x1

avec ¢ := |z/x1| < 1. Le critéere de comparaison avec la série géométrique comme
majorante implique que > po |axz®| converge.

Conséquence. Pour toute série entiere (4.14) il existe un <nombre> R €
[0, 00] := [0, 00[ U{o0}, son rayon de convergence, tel que

e la série converge absolument pour tout x € R avec || < R;

e la série diverge pour tout x € R avec |z| > R.
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Pour les x avec |z| = R, on peut avoir convergence ou divergence. Il existe une
formule générale® pour R, appelée formule de Hadamard, mais une des deux
méthodes suivantes permet souvent de déterminer ce rayon de convergence :

1
e Si L = lim y/|ag| existe, alors R = —.
k—o00 L
(4.15)
Ak+1
Qg

e Si L = lim

1
existe, alors R = — .
n—oo L

Ici il faut interpréter 1/0 = co et 1/00 = 0. Pour les séries entieres de la forme

plus générale
oo

Z ar(x — o)k,

k=0

on obtient (& ’aide d’une substitution z := x — x¢) convergence pour |z—xg| < R
et divergence pour |x — xzg| > R. La série converge donc pour tout z dans
Dintervalle de convergence | zo—R, xo+R ], et la somme de la série définit une
fonction f :]xg—R, zo+R[— R,

f(z) = Zak(x — x)*
k=0

pour z € |zg—R, zo+R][.

Exemples

6. La série géométrique Zz‘;o z" est une série entiere avec coefficients az, = 1.
Nous avons déja vu qu’elle converge pour |z| < 1 et diverge pour |z| > 1,
donc le rayon de convergence est R = 1. Les deux formules pour R =1/L
nous donnent le méme résultat, par exemple {/|ax| = /1 =1, donc L = 1
et R=1.

7. La série exponentielle Z?;O 2% /k! converge pour tout 2 € R, donc R = co.
De nouveau, vérifions ce résultat avec une de formules pour R : on a
a, = 1/k!, donc agq1/ar = 1/(k+ 1) — 0 pour k — oo. Ainsi L = 0 et
R=1/0=oc.

8. La série logarithmique

o0
1)kl 2 3 4
Zixk:x—x——i—xf—x—i...
k 2 3 4
k=1
converge pour 2 = 1 (série harmonique alternée) et diverge pour x = —1.

Son rayon de convergence est donc R = 1. On démontrera plus tard qu’elle
représente le logarithme naturel : pour —1 <z <1 on a

_1)k-1 2 3
ln(l—l—x)zz%xk:x—%—i—%?..., (4.16)
k=1

oo

d’ou le nom de la série.

SR=1/L avec L =limsup ¥/[ax| := lim sup; > {/la;l
k—o0 k— o0 =
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9.

10.

11.

12.

La série binomiale de Newton généralise la formule du binéme de Newton :
(1+2)" = i “) 2k (4.17)
k=0 k

pour —1 <z < 1et a € R, avec les coefficients binomiaux (généralisés)

(:) :a-(a—l)-.].g.!-(a—k—i—l)

Si « est un entier naturel, alors seulement un nombre fini de coefficients
sont différents de 0, et la formule se réduit a celle du binéme de Newton.

oo
Z 33kk Z'k
k=0

Les coefficients sont aj, = 33*k. On trouve que ayy1/ar = 33(k +1)/k —
33 = 27 pour k — oo. Le rayon de convergence est R = 1/27.

o0

Z 33kk‘ xk’

k=123

La série coincide avec 1’exemple précédent sauf qu’on a omis les termes
pour k = 0,...,122. La série converge et diverge pour les mémes x que
Pexemple précédent. Le rayon de convergence est donc R = 1/27.

oo

Z 3k{1§‘2k
k=1

Ici exposant de x est 2k au lieu de k, mais on peut écrire la série sous la
forme standard en posant 2k = m :

o0 o0
E 3k = E amx™
k=1 m=1

avec les coefficients a,, = { 3™/2 pour m Z 2 pair
0  pour m impair.

Les formules (4.15) ne s’appliquent pas, car la limite lim,,— oo V/|@m]
n’existe pas, et on ne peut pas former a,,+1/a,, quand a,, est égal a 0.
Mais on trouve le rayon de convergence comme suit : considérons la série
entiere > p | 3¥2% obtenue en remplacant 2 = z dans la série originale.
Avec les formules (4.15) on trouve que le rayon de convergence de cette
nouvelle série est égal a 1/3. Elle converge donc pour |z| < 1/3, et elle
diverge quand |z| > 1/3. Comme z = 22, la série originale converge pour
|22| < 1/3, c’est-a-dire pour |z| < 1/4/3, et elle diverge pour |z| > 1//3.
Le rayon de convergence de Y -, 3¥22% est donc R = 1/v/3.

Calcul avec les séries entiéres

Les fonctions qui peuvent étre écrites comme limites de séries entieres conver-
gentes constituent la plupart des fonctions utilisées dans les sciences. Les regles
de calcul avec les séries (chapitre 2, p.17) et le fait que les séries entieres
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convergent absolument a l'intérieur de leur intervalle de convergence montrent
qu’on peut les manipuler comme des polynémes. Si, par exemple,

fl@) = Z apz®
k=0

avec rayon de convergence R et

g(z) = Z brpz®

k=0

avec rayon de convergence Ry, alors le produit f(z)g(x) s’écrit également comme
limite d’une série entiere, le produit de Cauchy

f@M@fmfhﬁﬂyk (41)

k=0 ;=0

avec un rayon de convergence R > max{R1, Ra}, le plus grand des nombres Ry
et RQ.

Théoreme. Soit f :|zg—R, xo+R[— R la somme d’une série entiére
o0
fa) = ar(z — x)*
k=0

avec rayon de convergence R > 0. Alors [ est dérivable dans | xo—R,zo+R|.
On obtient la dérivée [’ en dérivant la série terme par terme :

f'(@) = Z kag(x — z) (4.19)
k=1

avec le méme rayon de convergence R.

En appliquant ce théoreme a la fonction f'(z) = Y ;o kax(z — 20)*!, on
obtient que f est deux fois dérivable avec

F@) = k(k = Dag(x - 20)"2,

k=2

et ainsi de suite. La fonction f est donc indéfiniment différentiable dans 'inter-
valle |z — R, zg + r[.

Exemples

13. On veut écrire la fonction f(z) = 1/(1 + z)? comme limite d’une série
entiere autour de g = 0. Pour cela, on note qu’elle est la dérivée de la fonc-
tion —1/(1 + ) qu’on peut développer en utilisant la série géométrique :
pour |z| < 1,

d -1 d 1

T By )

d oo
— - Z(—l)kxk série géométrique



(=1)*kar1 selon le théoreme

I
M

~
Il
-

(=) (j+1) 2! avec j=k—1

|
M

I
<)

(=17 (j+1)a’ .

M

[}

j:
Donc, pour —1 <z < 1,

=3 (“DFkt1)ab =122+ 327 F ...
k=0

1
(1+x)?

14. Afin de prouver 'identité (4.16) pour —1 < z < 1, considérons la fonction
g:(—1,1) — R définie par

O (_qyk—1
g(z) =In(1+z) — Z % 2.
k—

—

Il faut montrer que g = 0. En dérivant terme a terme selon le théoreme,
on trouve

o0

1 X
(_1)kmk
0

= 1
/ — _ _1 k—1,_k—1 - _ -
g ($> 14+ ;( ) v 1+ P

et donc ¢'(z) = 0 (série géométrique). Il s’ensuit que g est une fonction
constante g = ¢. Pour déterminer la constante ¢, on calcule g(0) = In(1) =0.
Donc ¢ = 0.

Séries entieres et séries de Taylor

Une maniere d’arriver a une série entiere est de commencer avec une fonction
indéfiniment différentiable f : I — R et de former sa série de Taylor en un point
o € 1,

() (p
k=0

Si le rayon de convergence R de cette série est strictement positif, celle-ci va
converger sur lintervalle |xg — R,z + RJ[, mais, comme nous avons vu dans
lexemple 5, pas nécessairement vers f(x).

;. RN o0
D’autre part, on peut commencer avec une série entiere Y o ag(z — 20)* de
rayon de convergence R > 0. Alors sa somme

fle) =" ar(x — z)* (4.20)
k=0

est une fonction f :] zg—R, zo+R [— R. Le théoréme suivant dit que la série de
Taylor de f coincide avec la série donnée.

Théoréme. Si la fonction f est la somme d’une série entiére (4.20) de rayon
de convergence R > 0, alors il s’agit nécessairement de sa série de Taylor en
g, c’est-a-dire les coefficients ay sont les coefficients de Taylor de f en xq :

1

= %l (k) (330)-

ag
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Preuve. Elle est analogue a celle de (4.2) pour les polynémes : dériver la série k
fois terme par terme et ensuite poser x = xg.

Exemple

X

15. Soit & trouver la série de Taylor en zy = 0 de la fonction f(z) = Py
-z

On peut résoudre ce probleme en calculant les coefficients de Taylor £*)(0)/k!.
Mais il est beaucoup plus facile d’utiliser une série déja connue, la série
géométrique : on a

T z 1 T = 23\ F
o= e m i ()

pour |23/2| < 1, c’est-a-dire pour |x| < /2. Donc

EOO 1 3k+1
k=0

pour tout €] — /2, v/2[. Le théoréme nous dit que cette série est la série
de Taylor de la fonction f, le probleéme est résolu.

En particulier, le coefficient de Taylor f(31)(0)/301! doit coincider avec le
coefficient de 2301 dans notre série, c’est-a-dire avec 1/2101. Par conséquent,
la dérivée d’ordre 301 de f en O est

301!

30
FE(0) = 5101
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Chapitre 5

Calcul intégral

Introduction

L’intégrale d’une fonction f positive sur un intervalle [a, b] C R est 'aire A entre
le graphe de f et I'axe des x, donc un nombre :

/abf(:zz)dacA.

a b x

Se posent les problemes de la définition et du calcul de cette aire; il existe des
fonctions f tres irrégulieres pour lesquelles I'aire ne peut étre définie raison-
nablement, mais il n’y a pas de probléme pour les fonctions continues ou les
fonctions bornées ne comportant qu'un nombre fini de discontinuités. Si f est
négative, alors ff f(z)dx est égale a (—1)fois aire entre le graphe et 'axe des
x; et dans le cas général d’une f qui change de signe, on compte les aires situées
au-dessus de 'axe = positivement, celles situées au-dessous négativement :

A A, b
a : /f(a:)dxz—A1+A2—A3+A4

’_‘}
<
]
o
x¥

Pour a > b, on définit f; f(a)dx := — [;" f(x)dx ; ainsi, par exemple (dessin!),

1 2 3
/ xdmz—/ rdr = —=.
2 1 2

Enfin, on définit [ f(2) = 0. Avec ces conventions, on a la régle

/ab f(z)dz + /bc f(z)dz = /ac f(x)dx (5.1)

pour des points arbitraires a, b, ¢ € R et pour toute fonction f continue dans un
intervalle contenant a,b et c.
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Sia<b,etsif(z)<g(x) pour tout x € [a,b], alors

/abﬂx)dxs/:g(x)dx.

On peut donc <intégrer> une inégalité f(x) < g(x).

La lettre x sous le signe d’intégration peut étre remplacée par toute autre lettre :

/abf(x)dx = /abf(t)dt - /abf(u)du _

Sommes de Riemann

Etudions plus en détail la définition de l'intégrale. On décompose l'intervalle
[a,b] en un nombre fini n de sous-intervalles [zj_1,z)] en choisissant n + 1
points g = a < x1 < ... < z, = b. Dans chaque sous-intervalle [xy_1,zg], on
choisit un point quelconque &;. Appelons pour le moment une telle subdivision
de lintervalle [a,b] avec des points & € [z_1, Tx] une subdivision décorée :

A:($0,...7$n;§17...,§n)~

La somme

S(F,A) =Y f(&)(@x — k1) (5.2)

k=1
s’appelle la somme de Riemann de f associée a la subdivision décorée A.

n

a=Xp & %1 g% &5 %3 g, Xn=b
S(f,A) est 'aire marquée en gris
Le pas d'une subdivision (décorée), noté h(A), est défini par!

h(A) := max{x1— xg, Ta— XT1,..., Tp— Tp—1 } = kll%axn(xk —Tp_1).

C’est donc la plus grande des longueurs des intervalles de la subdivision.

Définition. La fonction f : [a,b] — R est dite intégrable (au sens de Riemann,
sur [a,b]) si, pour toute suite Ay, Ay, As, ... de subdivisions décorées A,, avec
h(A,,) = 0 pour m — oo, la limite des sommes de Riemann associées S(f, A,,)
existe. Si c’est le cas, alors cette limite ne dépend pas de la suite (A,,)men
choisie. On définit alors I'intégrale de f sur lintervalle [a,b] comme la limite
des sommes de Riemann :

b
/ F@)da = Tim S(f,An). (5.3)

m— 00

On peut montrer que toute fonction bornée ne comportant qu'un nombre fini
de discontinuités est intégrable sur [a, b].

'max{a1, a2, ...,a,} signifie le plus grand des nombres a1, asg, ..., an.
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Intégration et différentiation

Des calculs d’aires de ce type étaient — pour certaines fonctions — connus bien
avant Newton et Leibniz : Archimede déja savait calculer 'aire d’un segment
de parabole. Le début du calcul infinitésimal moderne est plutot la découverte
de la relation entre différentiation et intégration. La aussi, on trouve quelques
résultats déja avant Newton et Leibniz, par exemple chez Torricelli et Barrow.
Cette relation est intuitivement facile a comprendre : en considérant la borne
supérieure de l'intégration comme variable, nous définissons la fonction

et donc

F(x) — F(xo)

r — X

~ f(z0)

ce qui pour z — xg rend la relation F'(xg) = f(xo) plausible. Une démonstration
rigoureuse utilise le théoreme suivant :

Théoréme de la moyenne.? Soit f : [a,b] — R une fonction continue. Alors,
il existe un & € [a,b] avec

b
[ H@yde= 1) ¢~ a) (5.4)
b
Interprétation : f(&) = w est la valeur moyenne de f sur [a, b].
f
‘ﬁ';_ B
a E b

aire du rectangle abBA = aire sous le graphe de f

Preuve. La continuité de f garantit l'existence d’'un minimum et d’un
maximum de f dans [a, ], c’est-a-dire il existe deux points z1, z2 € [a, ]
avec

flz1) < fz) < f(xz)

en allemand : Mittelwertsatz der Integralrechnung

2
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pour tout = € [a,b]. En intégrant cette inégalité, on obtient

b
) (b—a) < / (@) de < f(z2) - (b a),

donc fb fa)d

) dr

fz1) < abT < f(@2).

Selon le théoréme des valeurs intermédiaires, il existe un £ entre x1 et x2
avec .

o () dx

f§) = fbi
—a

Théoréme fondamental du calcul différentiel et intégral. Soit f : [a,b] —
R une fonction continue.

1. La fonction
x
Filab >R, F(z):= / () dt
a
est différentiable et sa dérivée est F' = f.

2. Soit G : [a,b] — R une fonction primitive de f, c’est-a-dire une fonction
avec dérivée G' = f. Alors

/a " F2) de = G(b) — Gla) = e (5.5)

Preuve. 1. Soit xg €]a, b[ quelconque. En utilisant (5.1) et le théoréme de
la moyenne, on obtient pour x # zo dans [a, b]

F(a) = Fzo) _ [y f®)dt— [ fdt _ o, [0t

X — Xo T — X0 X — X0

pour un & entre xg et x, donc

tim £@=FE) _ i pe) = o).

T—ITQ Tr — X0 E—xg
2. Soit >
Py [ ra
alors (d’apres 1.) F' = f. Comme G’ = f,ona (G—F) =0,et G- F

doit étre une constante. Par conséquent, G(b) — F(b) = G(a) — F(a) et
donc

b a b
G(b)—G(a):F(b)—F(a):/ f(t)dt—/ f(t)dt:/ () dt.

La fonction F(z) = [7 f(t)dt, ot la borne a est considérée comme fixe, mais
arbitrairement choisie, et x comme variable — et, plus généralement, toute
primitive de f — est appelée une intégrale indéfinie de f, tandis que f; ft)dte,
avec des bornes a, b fixes, est une intégrale définie. Une intégrale indéfinie de la
fonction f(z) est souvent notée [ f(x)dx, comme dans les exemples suivants :

3
/dxz/ldz:z+c, /IQdI:%+C, /cosxdx:sinerC’,
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ou C s’appelle la constante d’intégration. Cette notation veut indiquer que pour
toute constante C' € R la fonction sinx + C' est une intégrale indéfinie, c¢’est-a-
dire une primitive, de la fonction cos z. La notation est standard mais légerement
incorrecte : il serait mieux d’écrire [* f(t)dt ou [* f(t)dt au lieu de [ f(z) da.

Exemples

2

1. Calculer la dérivée de la fonction f :]0,00[— R, f(z) = / th dt.
1

Solution. Si 'on définit g(z) = / t'dt, alors ¢'(x) = ™ d’apres le théo-
1
reme fondamental. En plus,

2

x
f@) = / i dt = g(a?)
1
Donc, avec la regle de la chaine
Fl@) =g (@%) (%) = (2% 20 = 2271

Remarquons qu’il n’est pas nécessaire du tout de calculer I'intégrale f ttdt.

x2

2. Calculer la dérivée de la fonction f :]0,00[— R, f(z) = / 3t dt.

xT

Solution. Remarquons qu’on peut sortir le facteur 23 de I'intégrale, parce
que l'intégration est par rapport a la variable ¢. Ainsi,

z? 1 z?
f(x):z3/ ttdtx3</ ttdtJr/ ttdt>
x T 1

2

:a:3(—/ ttdt+/ t‘dt).
1 1

(Au lieu de 1 on pourrait choisir n’importe quel autre point dans le do-
maine de définition.) En utilisant la régle du produit et ’exemple précédent,
on obtient

22
fl(x) = 3$2/ tdt + 583( T 2x212+1)
2

= 372 /z thdt — 23 + 9 22" +4
xT

Une conséquence importante de la relation entre intégration et différentiation
est le calcul intégral proprement dit : les lois du calcul différentiel se traduisent
en lois pour le calcul intégral, dont nous présentons les plus importantes.

Regles du calcul intégral

Linéarité de ’intégrale. Soient f, g : [a,b] = R, et ¢ € R. Alors,

/ab (F(@) + g(z)) do = /abf(x) do + /abg(:zz) do

/abcf(ac)d:z = c/abf(:v) dzx.
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Preuve. C’est une conséquence immédiate de la définition de l'intégrale
comme limite de sommes de Riemann : on vérifie facilement que S(f +
9, Am) = S(f, Am) + S(g, Am) et S(cf, Am) = ¢ S(f, Aw). Puis la limite
m — oo donne le résultat.

Intégration par parties. Soient U, V : [a,b] — R différentiables avec dérivées
continues U' = u et V' = v. Alors,

/a bu(x)V(x) do = [U(x)V(m)K - / bU(x)v(x) dz. (5.6)

Preuve. La régle du produit pour la différentiation nous donne U'V =
(UV) —UV', et donc uV = (UV)' — Uv. On prend Vintégrale [’(...)dz
de cette identité en utilisant le fait que ff(UV)'(x) de = [U(z)V(2)]}
selon (5.5) dans le théoreme fondamental.

Reégle de substitution. Soit ¢ : [a,b] — R une fonction différentiable avec
dérivée continue, et soit f une fonction continue définie sur ¢([a,b]). Alors,

©(b) b
/ f(x)dz = / Flo() ' (1) dt (5.7)
w(a) a

Preuve. On considére la fonction h : [a,b] — R définie par

wo= [ wan [ s(em)e 0 a

(a)

Pour vérifier la régle de substitution, il faut montrer que h(b) = 0. Avec
la partie 1 du théoreme fondamental et la régle de la chaine on trouve que
la dérivée h'(s) = f(p(8))¢'(s) — f(e(s))¢’(s) est nulle pour tout s. Par
conséquent, h est une fonction constante, et comme h(a) = 0, on conclut
qu’elle est nulle. En particulier, h(b) = 0.

Des exemples montrent que la regle de substitution s’applique dans les deux
sens, en la lisant de gauche a droite et en la lisant de droite a gauche. Pour son
application correcte, il ne faut pas oublier d’effectuer la substitution = = ¢(t)
partout dans U'intégrale, c’est-a-dire qu’il ne faut pas seulement poser = = ¢(t)
et prendre les bornes correctes a et b pour l'intégrale avec la variable ¢, mais il
faut aussi poser dx = ¢’'(t) dt. Le symbole dz dans l'intégrale est donc tres utile
pour une application correcte de la regle de substitution.

Intégrales indéfinies. Souvent on utilise I'intégration par parties et la regle
de substitution pour des intégrales indéfinies :

/u(w)V(m) de =U(z)V(z) — /U(m)v(w) dz (5.8)

/ f(z)dz = / ()¢ () d. (5.9)
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L’égalité (5.9) exige des explications. Rappelons que [ f(z) dz signifie une
fonction primitive de f, disons F(z), déterminée & ’addition d’une con-
stante C pres. L’expression de droite signifie une primitive de la fonction
t— f((t))¢'(t), disons G(t). La formule dit (ou devrait dire) que les deux
primitives sont égales, a une constante pres, auz points correspondants,
c’est-a-dire pour x = p(t), donc que

Flp(t)) = G(t) + C. (5.10)

C’est une conséquence de (5.7), mais voici une vérification directe : avec
la regle de la chaine et la définition de G, on trouve

2 (Fle(t) ~ W) = Fe)$ (1) — F()& (1) =0,

si bien que F(¢(t)) — G(t) est une constante.

Intégration des séries entiéres. Soit f :|xo—R, x0+R[— R la somme d’une
série entiere

fl@) =" ar(x — z)
k=0

avec rayon de convergence R > 0. Alors la série

> a
F(a) =) (o —ao)**!
k=0

obtenue en intégrant terme a terme posséde le méme rayon de convergence R,
et sa somme F :]xo—R, xo+R|[— R est une fonction primitive de f.

En effet, d’aprés un théoréme du chapitre 4 (page 41) on peut calculer la
dérivée F’ en dérivant sa série terme & terme, et ainsi on obtient f.

Les lois du calcul intégral permettent de calculer un grand nombre d’intégrales
a partir d’'une liste de quelques fonctions et leurs primitives. On trouve ces
listes de fonctions avec leurs primitives dans des recueils de formules et, plus
completes, dans des tables d’intégrales. Ces tables existent sous forme imprimée
ou comme base de données, souvent intégrée dans un logiciel appliquant plus ou
moins automatiquement les lois du calcul intégral pour ramener les intégrales a
calculer & celles de la table. Mathematica™ et Maple™ sont deux logiciels de
ce type. Voici une mini-table d’intégrales pour quelques fonctions élémentaires.
Dans chaque formule, il faut ajouter + C avec une constante arbitraire C € R
au membre de droite.

a+1
-1
/:v“dx: a+1 pour a 7
In|z| pour a=—1
al‘
a® dx = pour a > 0, a # —1
In(a)

cos(z) dx = sin(x) /sin(x) dx = — cos(x)
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dx

/W = arctan(z)

d 1 1
/ 1 _xxz = Artanh(z) = iln 1 i_ i pour |z| <1
dz 1. |z —

[#5
=
|
|

= —Arcoth(z) = 3 In

1
:c+1‘ pour |z| > 1

= arcsin(z) pour |z] <1

= Arsinh(z) = In ‘m + Va2 + 1‘

= Arcosh(z) =In ‘Jc + Va2 - 1’ pour |z| > 1

/

d 2n — 3 d
z x i / x pourn =2,3,...

T+a2r  @n-2(1+a2) 1 2n-2) (I +a2)1

Exemples
sinx
3. x
Vcosz
Comme cos’ x = —sinz, 'intégrale est de la forme

- / (@) () da

avec p(x) = cosz et f(x) = 1/4/z. La régle de substitution donne

sinx 1
dr = — | —du=— [ w /%4
Jcosw * /\/ﬂ b /u b
L o)
_— :—2
1/2u +C Vu+C

= —2v/cosz + C'.

Vérification du résultat par différentiation :

sinx

4/ COS X

%(-2m+c> ~ 9 J

(—sinz) =

1
2 /cos x

En pratique, on pose simplement u = cosx et, en profitant de la notation
de Leibniz, du= 2 dz = —sinz dz et dz= — (1/sinz)du. Remarquer que

la regle pour la dérivation de la fonction inverse s’écrit

dx

1
du  du”

du o

On remplace toutes les expressions en z sous le signe d’intégration par des
expressions correspondantes en u afin d’arriver a une intégrale de la forme

[ g(u) du qu’on sait calculer. A la fin, on exprime le résultat en termes de
la variable x.
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En principe, cette procédure exige que la fonction u = @(x) utilisée
pour la substitution soit bijective de sorte qu’on puisse exprimer x en
termes de u. Elle est donc justifiée seulement sur des intervalles ou ¢
est bijective. Mais en pratique, on fait le calcul sans spécifier de tels
intervalles, et on justifie le résultat obtenu en calculant sa dérivée,
comme nous 'avons fait dans cet exemple.

4. /ln(x)d:v

1
On sait que In’(x) = =. Donc, en utilisant I'intégration par parties,
x

1
/ln(a:) dx = /1 “In(x) dz = z1In(x) — /x;dx
=zln(z)—z+C
Controle du résultat par dérivation :

%(wln(m) —z+4+C) =In(z) +x% —1=In(z)

5. /siandx
/Sin2xdx = /sinx~sinxdm

= —coszsinz — /(—cosx) cosx dx
= —cosxsinx+/(1—sin2x)dsc.

A ce point, on est arrivé & la méme intégrale [ sin? z dz que Ion voulait
calculer. Mais on peut résoudre I’'égalité obtenue par rapport a l'intégrale
cherchée : on a 2 [sin®zdx = —coszsinz + [1dz, et ainsi

1
/siandx = 5(;10 —sinz cosz) + C'.

Comme auparavant, on peut vérifier le résultat par différentiation.

6. /sin\/x— ldz

On utilise la substitution v = v/ — 1. Alors = u? 4+ 1 et dz = 2udu.
Ensuite, on continue avec une intégration par parties :

/sin\/x—ldx = 2/u sinudu = —2ucosu+2/cosudu

= —2ucosu + 2sinu+ C

= —2Vr—1cosvr—1+2sinvez—1+C
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1
7. / 2227+ gy
0

On utilise la substitution u = 2341 et la formule 2% = €2 (voir chapitre
6). Alors du = 32%dx. Pour z = 0Qonawu = 1, et & x = 1 correspond u = 2.

Ainsi,
1 2 2
1 1
/ 2227y = 7/ 2%du = f/ evM2dy
0 31 31
Clr ey 1 2In2 _ _In2
- 3{11126 Lzl’glnz(e ")

Comme alternative, on pourrait calculer 'intégrale indéfinie [ 2225° 1 gy
] x=1

et évaluer [ ... o

/4
8. / e” cos(2z) dx
0

Avec une intégration par parties on trouve

/4 S /4
/ e” cos(2z) dx = [e” - cos(2x)] _ " + 2/ €” sin(2z) dx
0 0
/4
= -1+ 2/ e sin(2z) dz.
0

Pour la derniere intégrale, une deuxiéme intégration par parties donne

/4 - /4
/ e’ - sin(2z) dz = [e”sin(2z)] 2;3/4 - 2/ e® cos(2zx) dx
0 0

w/4
e/t — 2/ e’ cos(2x) dx.
0
Par suite,
/4 /4
/ e’ cos(2z)dxr = —1+42 (e”/4 - 2/ e’ cos(2zx) da:)
0 0

/4
= —1+2e"/4 4/ e’ cos(2z) dx,
0
/4
d’ou l'on tire 5/ e® cos(2x) dz = —1 + 2¢™/* et enfin le résultat
0

7T/4 1
/ e’ cos(2x) dx = £ <71 + 26“/4) .
0

Résolution d’équations différentielles

On traitera ce sujet plus tard, mais expliquons brievement le réle du
théoreme fondamental du calcul différentiel et intégral dans la résolution
d’équations différentielles. L’exemple le plus simple d’une équation différen-
tielle est une équation de la forme



avec une fonction donnée f. Ici on cherche une fonction y qui satisfasse a
I’équation, c’est-a-dire une fonction primitive y de f. Le théoréme fonda-
mental nous dit que, si f est continue, la fonction

y(x) = / " f(tyde

est une solution. Cette solution remplit la condition initiale y(zo) = 0, et
pour la déterminer il faut calculer 'intégrale, ce qui revient au calcul d’une
aire. Comme la construction d’un carré de méme aire permet le calcul de
celle-ci, on parlait aussi d’une quadrature. (La célebre quadrature du cercle
est la construction—avec régle et compas—d’un carré ayant aire 7mr?
d’un cercle de rayon r donné.) C’est pourquoi on dit encore aujourd’hui
qu’une équation différentielle peut étre <résolue par quadrature si elle
se rameéne & une équation du type 3’ = f. L’intégration joue donc un
role dans la résolution d’équations différentielles, et on parle méme de
I'<intégration > d’une équation différentielle au lieu de sa résolution.

Exemple. Considérons la chute libre sous I’hypothese T5(0)=0
galiléenne d’accélération constante (un cas particulier de
la deuxieme loi de Newton). Soit s(t) la distance parcou-
rue au temps t. On cherche la fonction s. La vitesse au
temps t est la dérivée v(t) = $(t), et accélération est
la dérivée seconde §(t). Nous pouvons donc reformuler
I’hypothese de Galilée comme une équation différentielle

+s(t)=7

5(t) = a,
avec une constante a. Une intégration fot( ..)dt donne §(t) — $(0) = at, et ainsi
5(t) = vo + at

avec la vitese initiale vg = $(0). Une intégration supplémentaire conduit &
t
a2
s(t) = / (vo + a7) dT = vot + §t
0
puisque s(0) = 0.

Intégration numérique

Quand on ne connait pas de primitive de f, on utilise des méthodes d’approxi-

mation pour trouver la valeur approchée de 'intégrale définie f: f(z)dx. Une
approximation simple est donnée par les sommes de Riemann avec un pas h(A)
suffisamment petit. Nous présentons deux autres méthodes d’approximation.
Les deux utilisent les valeurs de la fonction f en un nombre fini de points x; de
Pintervalle [a, b]. Elles sont de la forme générale

b n
| t@ydem Y wns(an),
a k=0

ol les constantes wy sont appelées poids de la méthode utilisée.

Reégle du trapéze. Découpons l'intervalle [a,b] en n sous-intervalles en choi-
sissant ©g = a < z1 < ... < x, = b. Dans chaque sous-intervalle [zy_1, zk],
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nous interpolons la fonction f linéairement, c’est-a-dire que nous remplagons le
graphe de la fonction entre zp_1 et x; par un segment de droite :

*
I
(=2

a=Xp X1 X3

En posant Az := x, — x1_1, nous obtenons 'approximation
p ) PP

N

b n
/ f(x)de ~ L > (flarer) + flaw)) Ay
@ k=1

Dans le cas ot les points x, sont équidistants avec Az, = ... = Ax, = h = }’_T“,
la formule se simplifie :

b
[ @ o~ h(G @)+ fan)+ o+ fan) + )

avec xx = a + kh pour k =0,...,n.

Comme pour d’autres méthodes approchées, on peut estimer 'erreur de cette
approximation de l'intégrale, c’est-a-dire la différence entre la valeur effective
de l'intégrale et la valeur donnée par la regle du trapeéze. Une analyse détaillée
démontre :

Estimation d’erreur. Si la fonction f est deuz fois continiment différentiable,
avee |fP)(z)| < M pour tout = € [a,b], alors Uerreur d’intégration par la régle
du trapeze satisfait

\/abfu) do — h(%f(xo) FF@1) + e+ fam) + %f (en))] < (0 %h

Regle de Simpson. Découpons U'intervalle [a, b] en un nombre pair 2n de
sous-intervalles en choisissant xo = a < 1 < ... < T2, = b. Sur chacun
des intervalles [zo, z2], [T2, Z4], - . .[X2n—2, T2n] nOUs remplagons la fonction
f par un polynéme d’interpolation de degré < 2.

Pour l'intervalle [xo, 2], on choisit le polynéme p; de degré < 2 qui prend
les mémes valeurs que f en xo, x1 et x2. La formule d’interpolation de
Lagrange (chapitre 1, p. 7) nous donne p; sous la forme

_ (=) (x — x2) - (z —x0)(x — 22) -
pl(‘r) - (xO 7$1)($() 7ZE2) f( 0) + (:El 7ZE())(ZE1 7:”2) f( 1)
(:L’—.I,'o)(l‘—l‘l)
(2 —20) (@2 — 21) f(@2)

Un calcul direct donne
T2
X2

[ m@ydo = 25 (fan) + 47(an) + Fla2)).

zo
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D’une maniére analogue on construit les polyndémes interpolants pa, . . ., pn.
Prenant comme approximation de I'intégrale

/f dw~Z /pk )d,

127@ 2

on arrive a la régle de Simpson :

/f dw’“zww(l’% 2) +4f (w2 1)+f(1?2k))
k=1

Dans le cas ou les points xx sont équidistants avec zx — xx—1 = h := b;—n“
pour k =1,...,2n, la formule devient
b
[ f@s
h

~ 5 (F(@o) + 4f () +2f(@2) + ... 4 2f (@2n2) + Af (w202) + f(@20))

w

32( Tok—2) + 4f(Tar— 1)+f($2k))
avec xr = a + kh pour k =0,...,2n.

Estimation d’erreur. Si la fonction f est quatre fois continiment dif-
férentiable, avec |f™ (z)| < M pour tout x € [a,b], alors Uerreur d’inté-
gration par la régle de Simpson avec points équidistants satisfait a

M

b
'[L f(z dﬂ?**Z( ZTok—2) + 4f(Tak— 1)+f($2k))‘§(b*a)@h4-

Intégrales impropres

Jusqu’ici, nous avons étudié I'intégrale d’une fonction f continue sur un inter-
valle [a,b] fermé et borné. Considérons maintenant le cas d’un intervalle de la
forme [a,b[. Soit f : [a,b[— R une fonction continue. Notez que f n’est pas
définie en b. On parle d’un intégrale <impropre en b>, et on définit

b 3
/af(a:)dx::y}ré/a f(x)dx

si cette limite existe. On dit alors que l'intégrale impropre <existe>, ou qu’elle
converge. La méme définition s’applique lorsqu’on integre jusqu’a une borne

infinie : -
/a (@) do = Jim / e

D’une maniére analogue, pour f :]a,b] — R on pose

b b
/af(x)dﬂczgh\lzr}b/E f(x)dx

si cette limite existe. Finalement, pour une intégrale impropre en les deux bornes
a et b, c’est-a-dire pour une fonction continue f :]a, b[— R, on choisit un ¢ €]a, b|
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arbitrairement et définit

[ rwae = [(s@ars [ swa
_ gli{I}l/gcf(x)deréi}I})/jf(I)dx

si les deuz limites de droite existent. On voit facilement que le résultat ne dépend
pas du choix de c.

Exemples

10.

11.

12.

13.

14.

——h ——hm2
VT 5\0/\f EN0 \f]

L de . Ldx . 171
—2211111 —2:11m{—7} = 400
o 22 &0 a2 el ale

E 1

> d ¢ d
Y~ lim % lim [zaurctan:v]5 =7/2.
0 1+ 2 §—0o0 Jo 1+ 2 §—o0 0

/°° dx /0 dx N /°° dx
= S = T.
70014-372 70014_$2 0 1+.’172

o 0 o
/ x dx n’existe pas, parce qu’on a / rdr =—o0 et / rdr = 4+o00.
—00 —00 0
3
Mais la limite lim dx existe et est égale a 0.
E—)OO _5

Plus tard nous verrons que
o 2
/ e dx = /7.
—o00

Avec la méthode de la substitution on en déduit que

o0 2 2
o (=12 /(20%) gp — 1

oV 2T

pour tout o,u € R avec ¢ > 0. En statistique, cette relation dit que la
densité du loi normale gaussienne est une densité de probabilité.
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Chapitre 6

Logarithmes et fonctions
exponentielles

Le logarithme naturel

La fonction In : Ry =]0, 00[ = R, appelée logarithme naturel, est définie par

T dt
Inx = —. (6.1)
1 t
On a
ln(my)—/wy@—/wﬁﬁ-/w@
1t 1t s t
Avec la substitution t = zs, dt = x ds on trouve
T dt Y ds
1 — it i
n(zy) /1 R et
et donc «!’équation fonctionnelle> du logarithme
In(zy) =lnzx +Iny. (6.2)
Pour y = 1/, il s’ensuit que
1 1
Inz +1n— :ln(x~ 7) =Inl=0,
T x
et ainsi 1
In—=—Inzx. 6.3
n— nx (6.3)

1
Puisque R —, on obtient comme conséquence de (6.2) et (6.3)
Y Y

In <§> =Ilnz—Iny.

Par sa définition, la fonction In satisfait In’(z) = 1/z et In(1) = 0. Comme la
primitive d’une fonction définie sur un intervalle est uniquement déterminée a
I’addition d’une constante pres, la fonction In est uniquement déterminée par
ces deux propriétés : In est la seule primitive de 1/ sur Ry avec In(1) = 0.

60



La loi (6.2) peut étre également vérifiée d’une autre fagon. Pour cela, fixons
y > 0 en laissant x variable. Alors (y étant fixé)

d 1

d
—(In(zy) —Inz —Iny) = - %(xy) L=

1
——=0.
dx T

8=

Par conséquent, In(zy) — Inz — Iny = ¢ avec une <constante> ¢ (qui dépend
de y). En posant = 1 dans cette identité on obtient ¢ = 0, d’ou le résultat.

Note historique. La découverte des logarithmes au début du 17ieme
siecle était bienvenue, car ils permettaient de ramener une multiplication
a une addition. Bien que la premiere table de logarithmes, publiée par
John Napier en 1614, contint une autre fonction avec une autre loi, les
mathématiciens se rendirent vite compte qu’'une fonction In : Ry — R
satisfaisant

In(zy) =Inz +Iny

et dont on trouve les valeurs dans une table, était le moyen idéal pour
ramener une multiplication & une addition : pour le calcul du produit xy
on cherche les logarithmes In x et In y dans la table, on les additionne, et on
cherche dans la méme table le nombre ayant cette somme In x+Iny comme
logarithme. (Par une procédure analogue on rameéne une division & une
soustraction.) Si on veut utiliser les logarithmes pour la réduction d’une
multiplication a une addition, on a besoin de l'injectivité de la fonction
In: Ry — R :sinon il n’est pas possible de retrouver le nombre zy & partir
de son logarithme In(zy). En effet :

Proposition. Le logarithme naturel In: Ry — R est une fonction bijective.

Preuve. Par construction, il s’agit d’une fonction différentiable avec dérivée
In’z = 1/x > 0. Le logarithme naturel est donc une fonction strictement mono-
tone croissante et, par conséquent, injective. Pour voir qu’elle est surjective, il
suffit (& cause du théoréeme des valeurs intermédiaires, p. 21) de montrer que

limlnx = —oco et lim Inz = +oo0.
N0 T——+00
In x
5L
1t
X
-1t
-2+

Montrons d’abord la deuxieme égalité : soit x > 2 et soit n le plus grand nombre
entier < z. On a alors

lna:—/dt>/ndt—/2dt+/3dt+ +/" ﬂ
1t Tt 1t o t n—1t
1
+ ..

=
n

xT
+

vV
DN |
W
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car % > I%‘,—l pour ¢ dans Uintervalle [k, k 4 1]. Donc lim,_, o In x = oo, puisque

la série % + % + ... diverge. La premiere égalité est une conséquence de la
deuxiéme, car In(1/z) = —Inz :

limlnz = lim In(1/z) = — lim lnz = —oco.

N0 T—>00 T—r00

La fonction exponentielle

La bijectivité de In : R} — R permet de définir la fonction réciproque. Définissons
la fonction exponentielle
exp: R —> R,

comme la fonction réciproque du logarithme naturel, c’est-a-dire exp = In~!.
A la place de expx on écrit aussi e, car cela peut étre interprété comme une
puissance d’un certain nombre e - voir plus bas. Donc

y=¢€" < =y (6.4)
expx
20
10+
5 |
I L /1—//1’ I I I Ly
-3 -2 -1 1 2 3 4

Propriétés de la fonction exponentielle.

e exp(z+y) =expx-expy pour tous les z,y € R

e exp(0) =1

1
o exp(—x) = po— pour tout x € R

e expzx > 0 pour tout z € R

e La fonction exp : R — R est bijective; plus précisément : elle est stricte-
ment croissante et

lim expx =0, lim expz = +4o00.
T——00 r—+00

e La fonction exp est différentiable. Elle est égale a sa propre dérivée :

exp’(z) = exp(x) .
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Ces propriétés découlent des propriétés du logarithme naturel. Le fait suivant
était déja mentionné au chapitre 4.

Proposition. La série de Taylor de la fonction exp en xg = 0 converge vers
expx pour tout x € R, donc
(o] k
T
T __
e’ = E o
k=0

Preuve. Soit T}, le n-ieme polynéme de Taylor de la fonction exponentielle :

n mk
Tp(z) = 0
k=0

Il faut montrer que, pour tout « € R, T, () converge vers exp z lorsque
n tend vers co. A cette fin, nous utilisons estimation (4.7) (page 37)
du reste |expxz — T, (z)| dans la formule de Taylor pour montrer que
|expz — Th(xz)] — 0 quand n — oco. Rappelons l'estimation (4.7) du
reste : si My41 est un nombre tel que |f" Y (€)| < M,+1 pour tout &
entre xo et x, alors

M1

[f(z) = To(z)|] < m

|z —z0l"". (%)

Dans le cas présent, zo = 0 et f = exp, et on a

] = [exp™ V(€)= exp(§) 1+ e”

pour tout! ¢ entre 0 et . On peut donc choisir M, 1 = 1+€® indépendamment
de n, et Pestimation (x) devient
. |x|n+1
expr —Tn(x)| < (1+e€")——.
Jexpa = Tu(o)] < (14 ) 0,
On voit facilement que

n+1
im g
n—o00 (n + 1)'

Par conséquent, |expz — Tn(z)| — 0 quand n — oo.
Proposition. Pour tout x € R
n—oo

expx = lim (1—&-5) .
n

Preuve. Fixons x € R. Alors il existe un no € N tel que 1+ < > 0 pour
tout n > ng. Pour de tels n, considérons ’expression

In ((1 + f) )
n
La formule de Taylor donne pour la fonction f(y) = In(1 + y)

In(1+y) =y + R(y)

IEn fait, exp(§) < 1siz < € <0, et exp(¢) < expr=e® si 0 < ¢ < z, donc en tout cas
exp(§) <1+e”.
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_
=
VR
S
=
JF
38
—
3
~—
Il

nln(1+ ) <5+R( ))
n n
(5)==(+)
x—l—xf — T
z/n
pour n — oo. Par conséquent,
lim (1 + E) = lim exp (ln (1 + E) )
n—oo n n—oo n
exp ( lim In <1 + f) )
n—o0o n

= expzx.

exp(x) comme puissance

Nous voulons maintenant justifier I’écriture de exp x comme une puissance e”.
Soit le nombre e (d’Euler)

e:=exp(l) =2.71828...

Rappelons que, pour a € R positif et pour tout nombre rationnel positif x =
% € Q (avec p,q € N et ¢ > 0), la puissance a” est définie comme

p
T q

a* =a? = Va? = (Ya)? .
Pour z € Q négatif on définit alors a® := —. Ainsi,
aH = = 41(13 .
Considérons maintenant a = e.
Proposition. Pour tout x € Q on a
exp(z) = €”. (%)

La valeur exp(z) est donc vraiment une puissance au sens habituel de e quand
x est rationnel, ce qui justifie la notation.

Preuve. Pour démontrer I'égalité () pour tout x € Q positif, c’est-a-dire

pour montrer que
yz
q

el = v/eP, (%)

pour tous p,q € N avec ¢ > 0, on utilise la regle exp(x +y) = expx-expy
plusieurs fois. On procede en trois étapes. Commencons avec le cas p > 0
etg=1:

expp=exp(l+...+1)=exp(l)-...-exp(l)=e-...-e=€".

Dans le cas plus général ou p,q € N avec ¢ > 0,

q
(expg) :eXp<B+"'+B>:eXP(Q'B>:6pr:ep7
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ol nous avons utilisé le fait déja établi que exp p = eP. En prenant la racine
¢/ on obtient (x*). Enfin pour € Q négatif, —z est un nombre rationnel
positif et donc, comme nous Pavons déja montré, exp(—x) = e~ . Par
conséquent,
— J— 1 — x
expr = m == =€,

d’ott le résultat (x) pour tout = € Q.

Puissances et logarithmes généraux

Le logarithme naturel et la fonction exponentielle nous permettent de donner
une définition raisonnable de la puissance a® pour tout a > 0 et tout x € R.
Fixons a > 0; alors la fonction f(x) = e*!"¢ satisfait & I'équation fonctionnelle
flx+1y) = f(x)f(y) avec les conditions f(0) = 1 et f(1) = a. En suivant la
preuve de la proposition précédente on obtient pour z rationnel f(z) = f(1)* =
a®, c’est-a-dire

a® = erne (6.5)
pour tout x € Q. Nous définissons a* par cette formule pour z € Q. Pour a = 1,

nous obtenons la fonction peu intéressante a® = 1, et pour a # 1 une fonction
strictement monotone. La fonction inverse

log, : Ry — R,

le logarithme de base a, est donc bien définie si a # 1 :

zlna

r=log,y & y=a"=e < zlna=1Iny.

Par conséquent, Iny

1 = — .
08y = 1 (6.6)
Pour a = e on a log, y = Iny puisque Ine = 1. Le nombre e est donc la base du

logarithme naturel.

Croissance exponentielle

Soit N(t) le nombre d’individus d’une population (par exemple de bactéries) au
temps t. Souvent, I’hypothése suivante n’est pas trop irréaliste :

Sur un petit intervalle de temps At, Iaccroissement AN = N(t +
At) — N(t) est (& peu pres) proportionnel au produit N (¢)At, avec
un facteur de proportionnalité A > 0 :

N(t+ At) — N(t) ~ AN(H) At

Pour ¢t fixe, la fonction N (¢t + At) de At est donc & peu pres linéaire dans cet
intervalle, avec pente AN(t) :

presque droit

\

t  t+At

N(t+ At) =~ N(t) + AN (t) At

¥
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Pour I’étudier avec les méthodes du calcul différentiel, nous faisons abstraction
du fait que N ne prend que des valeurs entieres et admettons aussi des valeurs
réelles quelconques. (En étudiant par exemple la croissance de bactéries, on ne
va pas compter les individus, mais peser toute la culture; notre idéalisation est
donc raisonnable.) L’allure locale presque linéaire de la fonction N(¢) implique
maintenant

N() = lim N(t+ At) — N(¢)

A0 At = AN(),

c’est-a-dire que la fonction N (t) satisfait 1'équation différentielle
N = AN.

Cherchons donc les fonctions N : R — R avec N = AN, ot A > 0 est une
constante. La proposition suivante montre que, si nous y ajoutons encore une
condition initiale N (tg) = Ny, il y a une et une seule solution, & savoir la fonction

N(t) = Ny ertto), (6.7)

Proposition. Soit A € R, et soit I C R un intervalle. Alors les solutions
y: I — R de l’équation différentielle

Y=y

sont les fonctions
y(t) = AeM

avec A € R. Donné tg et yo, l'unique solution remplissant la condition initiale

y(to) = yo est la fonction

y(t) = yo ).

Preuve. Pour toute constante A € R, la fonction ¢ — Ae™ est une solution de

Péquation différentielle. Soit maintenant ¢ — y(¢) une solution quelconque de
cette équation. Il faut montrer qu’elle est de la forme A e* pour une constante

y(t)

A. A cette fin, étudions la fonction h(t) = =7 Pour sa dérivée on trouve
e

h(t) _ y(t)ekze_)\t:ggt))\eht _ /\y(t)e’\(;;)yz(t))\eht o

Par conséquent, h est une fonction constante, disons h(t) = A, et par suite
y(t) = Ae . Enfin, la condition initiale y(ty) = yo permet de déterminer la
constante A : on a yg = AeMo, donc A = yge Mo et ainsi

y(t) = yo e}F10),

Décroissance exponentielle : décomposition radioactive

On utilise le méme modele mathématique pour la décomposition radioactive,
mais avec un facteur de proportionnalité négatif. Soit N(¢) le nombre de noyaux
radioactifs d’une élément donnée présents dans un échantillon au temps ¢. Alors

N = —-AN

avec A > 0, et par conséquent



En général on ne donne pas le facteur \ mais plutdt la demi-vie 7, le temps
apres lequel il ne reste que la moitié de la masse initiale :

1 1
N(to + T) = N(to)eiAT: iN(tO) <~ 67>\T = 5 — A =2

La relation entre \ et 7 est donc
In2 In2
= —, A= —.
A T
Exemple. Si la demi-vie d’une substance radioactive vaut 400 ans, apres com-
bien d’années 90% de cette substance se seront désintégrés ?

T

On calcule le temps en années apres lesquelles il reste 10% de la substance. On
a donc I'équation N (t) = 15N (to), et on cherche At =t —ty. Avec (6.8)

N(t) = N(tg)e M=7) = N(tg)e 24

on obtient 15 = e **!, ce qui donne In(75) = —AA¢ et
1 1 400 1
A=y () = -5 () ~ 13288
x 1o m2 " \10

Il faut donc environ 1328.8 années pour que 90% de la substance se désintegrent.

Exemple. On considere des substances radioactives A et B. La demi-vie de la
substance A vaut 500 ans, la substance B perd un pour mille par an. Laquelle
de ces deux substances se décompose le plus vite ?

On compare les demi-vies en années des deux substances, 74 = 500 et 75. Pour

la substance B on a N(t+ 1) = N(t) — 1555 N (t), donc

999

D’autre part, N(t +1) = N(t) e *8t+H1-0) = N () e=*2, et ainsi

999 B ,AB
g V(O = Ny

d’ou on déduit que Ag = —In %. Pour la demi-vie on obtient

TTB = 1n72 ~ 692.8
AB

C’est donc la substance A qui se décompose le plus vite.
Exemple. Dans un délai d’'un mois, la concentration d’une substance radio-
active dans un échantillon de glace a diminué par décomposition radioactive

de 45,62% & 45,61% de la concentration originelle. Quel est 'age de la glace ?
Quelle était la concentration il y a 100 ans?

On mesure le temps en années. Soit N(t) la quantité de substance radioactive
dans I’échantillon au temps ¢. Si ¢y dénote le moment de la formation de la glace,
et si ¢y est le moment présent, on sait que N(t1) = 0.4561 N (to) et N (t,— 55) =
0.4562 N (tp). On a alors les deux équations

04561 N(t()) = N(tO) e_A(tl_tO)
0.4562 N (to) = N (ty) e~ (=5 —t0) |
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La premiere équation donne

(1) —)\(t1 - to) = 1n0.4561.

En divisant les équations, on obtient aussi ig’% = 12 donc la valeur
4562
=121 (—)z 00263...
A 0 { 1561 0.00263
L’age de la glace est égal a la différence ¢ — to. L’équation (1) ci-dessus donne
In0.4561 In 0.4561
ty —tyg = — =— ~~ 298.414...
P A 12 In(4562/4561)

La glace date donc d’environ 298 ans. La concentration il y a 100 ans est donnée
par

N(tl _ 100) — N(to) e—)x (t1—100—¢0) — N(to) e—A(t1—t0)6100)\
4562

4561
Elle était donc environ 59.3% de la concentration initiale.

1200
:N(t0)0.4561< ) ~ 0.593 N (to)

La croissance ou décroissance exponentielle n’est qu’'un exemple parmi
beaucoup d’autres d’applications de la fonction exponentielle. C’est effec-
tivement une des fonctions les plus importantes. Mais a son origine était
bien I'idée de simplifier des calculs grace aux logarithmes.

Le baron écossais John NAPIER (1550 — 1617) publia sa table de loga-
rithmes sous le titre Mirifici logarithmorum canonis descriptio, ejusque
usus, in utraque trigonometria; ut etiam in omni logistica mathematica,
amplissimi, facillimi, & expeditissimi explicatio en 1614 & Edimbourg.

L’horloger et mécanicien suisse Jost Biirgi (1552 — 1632) publia sa table de
logarithmes sous le titre Aritmetische und Geometrische Progress Tabulen,
sambt grindlichem unterricht, wie solche nitzlich in allerley Rechnungen
zugebrauchen und verstanden werden sol en 1620 a Prague.
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Chapitre 7

Equations différentielles :
introduction

Terminologie

Une équation différentielle est une équation exprimant une relation entre une
fonction et ses dérivées. Quand il s’agit d’une fonction de plusieurs variables et de
ses dérivées partielles (voir le chapitre 10), on parle d’une équation auz dérivées
partielles. Nous ne traitons ici que des équations différentielles ordinaires, ou
lon a des fonctions d’une seule variable x — y(z). L’ordre d’une telle équation
différentielle est le plus grand ordre des dérivées qui y figurent :

y =3y +a2®  premier ordre
y'sin(y”) +ay+y®> =z  second ordre
avect y=y(x), v =y'(x) etc. Commencons par les équations différentielles de

premier ordre. Une telle équation est appelée ezplicite si sa forme est 3y’ =
F(z,y), implicite dans le cas contraire :

y' = F(z,y)  explicite
G(z,y,y') =0  implicite

En général, il faut préciser le domaine de définition de ’équation, c’est-a-dire
celui de la fonction F' pour une équation explicite :

y' = F(z,y) pour (x,y) € D, (7.1)

ol D est un sous—ensemble du plan R?, par exemple un rectangle ou tout le
plan. Une solution de cette équation différentielle est une fonction différentiable
@ : I — R, ou I est un intervalle dans R, telle que

1. le graphe de ¢ est contenu dans D, c’est-a-dire que (a:, 4,0(3;)) €
D pour tout x € I ;

2. la fonction ¢ satisfait 'équation : ¢’(z) = F(z, ¢(x)) pour tout
zel.

IDans ce contexte, il est courant de désigner la fonction en question par y. Traditionel-
lement, on regardait y comme une < quantité variable> qui dépend d’une autre quantité
z. Mais pour éviter toute confusion, il est souvent préférable d’utiliser un autre symbole, et
d’écrire la premiere équation, par exemple, comme ¢’ = 3p+g, ot g est la fonction g(x) = z2.
Evidemment, d’autres désignations pour les variables sont possibles.
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Interprétation géométrique
A une équation différentielle
y' =F(z,y), (z,y)€D,

on peut associer un champ de directions dans D : pour chaque point (z,y) €
D on considere la droite passant par ce point et ayant la pente F(x,y). Une
solution est alors une fonction ¢ dont le graphe est une courbe dans D telle que
ses tangentes font partie de cette famille de droites. Dans une représentation
graphique, on symbolise quelques-unes de ces droites par des petits traits.

Exemples

1.y = pour (z,y) € D = R?.

1+ 22
Solutions : y = arctanz + C, C € R.

2. Yy = —g pour (z,y) € D avec D = {(z,y) e R%; y #0}.

Solutions : y = £/ C? — 22, C € R.

Les solutions sont obtenues en utilisant la méthode de la séparation des
variables expliquée ci-dessous. Pour un C' € R donné, la solution est définie
pour |z| < C, c’est-a-dire sur 'intervalle I =] — C, C]. Son graphe est un
demi-cercle.

N
VPN
\

Problémes a valeur initiale

Souvent, on cherche une solution de 1’équation (7.1) remplissant une certaine
condition initiale y(xo) = yo, ou le point (zg,yo) € D est donné. On parle alors
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d’un probléme a valeur initiale ou d’'un probléme de Cauchy. Ce probleme se
formule donc ainsi : trouver une fonction y, définie sur un intervalle I contenant
xg, telle que
y'(z) = F(z,y(z)) pour tout z €T,
y(zo) = Yo -

Géométriquement, on cherche une solution dont le graphe contient le point
(70, Y0). Dans les exemples 1 et 2 on voit que chaque point (zg,%o) € R? est situé
sur une seule courbe. Il y a donc une seule solution de I’équation différentielle
qui satisfasse a la condition initiale y(xg) = yo.

(7.2)

On peut montrer que tout probleme d valeur initiale (7.2) posséde une solution
unique définie sur un certain intervalle I, pourvu que F satisfasse a des hy-
potheses de régularité assez peu exigeantes. Il suffit par exemple de demander
que F possede des dérivées partielles OF /0x et OF /0y qui soient des fonctions
continues sur D (voir le chapitre 10 pour la notion de dérivée partielle).

Une autre condition suffisante, la condition de Lipschitz, est qu’il existe
une constante c telle que

[F(z,y1) — F(z,y2)| < clyr — y2|

pour tout (z,y1), (z,y2) € D (théoréme de Picard—Lindelof, également ap-
pelé théoréme de Cauchy—Lipschitz). Mais voici un exemple d’un probléme
a valeur initiale dont la solution n’est pas unique :

y = [yl®
y(0) =0, =

On vérifie que la fonction constante y(z) = 0 et la fonction y(z) = z° /27
sont deux solutions différentes. En fait, il y a un nombre infini de solutions
y: R — R : pour toutes constantes a,b avec a < 0 < b, la fonction

(zx—a)®R7 si z<a
y(z) =1 0 sia<z<b
(x—b)*/27 si b<z

est une solution du probleme (7.3).

2F

Une méthode de résolution : la séparation des variables

On a déja considéré au chapitre 5 I’exemple le plus simple d’une équation dif-
férentielle, une équation de la forme y'(x) = f(z) dans laquelle on cherche
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une primitive y(z) d’une fonction f(z) donnée. On trouve les solutions par
< quadrature >, c’est-a-dire par intégration :

y(z) = / F@)de+C.

Ici nous traitons une classe plus large d’équations différentielles qui peuvent
étre également résolues par quadrature. La méthode s’applique aux équations
y' = F(z,y) dans lesquelles F' est un produit d’une fonction f(x) et une fonction
de y que nous écrivons sous la forme 1/¢(y) pour simplifier la notation dans ce
qui suit.

Considérons donc une équation différentielle de la forme

y = @) (7.4)

9(y)

avec deux fonctions continues f : I — Ret g : J — R, ou I et J sont des
intervalles, et ou la fonction g ne s’annule pas : g(y) # 0 pour tout y € J. On
peut séparer les variables, c’est-a-dire écrire I’équation sous la forme équivalente

9(y) -y = f(x).

On prend l'intégrale des deux cotés de cette égalité :

o) @) ds = [ faydo+c.

et avec la substitution v = y(x), du = y/'(z)dx on a

/g(u) du = /f(:c) dx + C. (7.5)

Soient F' et G des primitives de f et g respectivement. Alors (7.5) s’écrit G(u) =
F(z) + C, et comme u = y(z), nous avons obtenus les solutions y = y(x) sous
la forme implicite

G(y) =F(z)+C. (7.6)

Pour calculer y(z), il reste & isoler y dans 1'équation (7.6). Ce dernier pas est
souvent difficile ou impossible. Mais méme si on ne parvient pas a résoudre par
rapport a y, '’équation (7.6) donne les graphes des solutions comme courbes
dans le plan z,y, et on peut souvent se contenter de cette description implicite.

Pour décrire le passage de I’équation différentielle donnée a I’équation G(y) =
F(z) + C, la notation de Leibniz est trés pratique, car elle permet de résumer
nos raisonnements comme suit.

Méthode de la séparation des variables : Pour résoudre I’équation différen-

tielle
, f2)

9(y)
on procede en trois étapes :

1. Séparerles variables entre les deux membres, c’est-a-dire utiliser

d
la relation y' = el et écrire I'équation différentielle comme

dx
9(y) dy = f(x) da;
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2. intégrer cette équation :
G) = [ gw)dy = [ fia)da=F(@) + C:

3. résoudre Péquation G(y) = F(z) + C par rapport a y, c’est-
a-dire isoler y, ou trouver les courbes {(z,y) € I x J; G(y) —
F(z) =C}.

Condition initiale. La solution y = y(z) trouvée dépend encore d’une cons-
tante C. On peut choisir C' de manieére a satisfaire a une condition initiale
y(z0) = yo. Mais pour cela il est souvent avantageux de prendre les primitives
F et G de sorte que G(yo) = F(xg) = 0 (et donc C = 0), c’est-a-dire de
remplacer les intégrales indéfinies du deuxieéme pas par les intégrales définies :

G@:LF@@:L?@@:ﬂm

Exemples

3. 4 = Ay avec A € R. Nous avons déja vu les solutions au chapitre 6 : ce

sont les fonctions y = Ae** avec A € R. Retrouvons-les par la méthode
de la séparation des variables dans le cas ou y # 0 :

1
séparation : T Ay — —dy=\dx
Y

intégration :  Inly| =Xz +C

résolution :  |y| = e**TC = Bel®
avec une constante positive B = e® .

L’égalité |y(x)| = B e montre que la fonction y n’a pas de zéro et par
conséquent ne change pas de signe sur R. Ainsi on a soit y(z) = Be®
pour tout = € R soit y(z) = — B e pour tout € R. En tout cas on peut
écrire la solution sous la forme y = A e*® avec une constante A € R.

.y =xy pour (z,y) € D =R2,

d, 1
séparation : d—y =xzy — —dy=axdzx poury#0
€L Y

22
intégration : Inly| = 5 +C

2
résolution : ly| = Be® /2
avec une constante positive B = e .

Comme dans I'exemple précédent, 1'égalité |y(z)| = B ¢**/2 montre que la
fonction y n’a pas de zéro et par conséquent ne change pas de signe sur
R. Ainsi on a soit y(z) = Be® /% pour tout = € R, soit y(z) = —Be* /2
pour tout = € R. En tout cas la solution sécrit sous la forme y = Ae®/?
avec une constante A € R.
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/ 1 oy o ey
5. ' = — pour y > 0, avec condition initiale y(x¢) = yo > 0.
Yy

d 1
séparation : d—y =- = ydy=dzx
zr Yy
intégration :  L(y? — yo?) =z — xo
résolution : % = 2(z — zg) + yo>

y = \/2(x — o) + yo?

Pour que y(zp) = yo, il faut prendre la racine positive, parce que yo > 0.

La solution remplissant la condition initiale y(xg) = yo n’existe que pour
1, 2

T >0 — 3Y0°-

Noter que dans cet exemple ¢ est la variable indépendante, et on cherche
des fonctions = = z(t).

. . dx
séparation : ——— =dt
72 — 21 + 2
T dz
intégration : / o v t+C

Avec complétion du carré 22 — 22 +2 = (r — 1) + 1
et substitution x — 1 = u, on obtient

arctan(x — 1) =t + C
résolution :  z(t) =1+ tan(t + C)
avec C' € R.

Vérifions que les fonctions trouvées satisfont a ’équation différentielle : de
z(t) = 1 + tan(t + C) on obtient z'(t) = tan’(t + C) = 1 + tan?(t + C).
D’autre part, 22 — 2z +2 = (1 +tan)? — 2(1 +tan) + 2 = 1 + tan?(¢t + C).
7 dy  sinz
“dr  y+4cosy
Séparation des variables et intégration donnent le résultat

1
§y2 +siny = —cosz + C

avec C' € R. On ne peut pas résoudre par rapport a y, donc on n’obtient
pas de formule explicite pour la solution y = y(z).
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Réduction au cas séparable

Dans certains cas, on peut ramener I’équation différentielle y' = F(z,y) & une
équation a variables séparables avec une substitution convenable. C’est le cas si
la fonction F' est homogéne, c’est-a-~dire si elle satisfait a 'identité

F(tx,ty) = F(x,y) (7.7
pour tout ¢ # 0. Pour la fonction y cherchée, on fait ’ansatz
y(x) =z u(x). (7.8)
La substitution dans y' = F(z,y) donne la condition
u+ zu = F(z,zu) (7.9)

pour la fonction u. Comme F est homogene, on a F(z,zu) = F(1,u), et (7.9)
équivaut & u + zu’ = F(1,u). Donc u satisfait 'équation

1
u = —(F(1,u) —u).
x
On peut alors souvent déterminer u par la méthode de la séparation des va-
riables. Enfin, y(x) = zu(z) est une solution de 3’ = F(z,y).

Exemples

L’équation n’est pas séparable. Comme la fonction F(z,y) = (y + z)/x
est homogene, on utilise ansatz y(z) = xu(x). L’équation differentielle
devient alors

Txu+x
u4zu = ,
T

c’est-a-dire xu’ = 1. Séparation des variables et intégration conduisent &
u=In|z| + C, et enfin

y(x) = z(lnz| + C)

avec C' € R.

9. On cherche la solution du probléme a valeur initiale

22 + 2y?
y=— yl)=2
zy

Notons que la domaine de définition de 1’équation est D = {(z,y) € R? |
xy # 0}, c’est-d-dire le plan privé des axes x et y. Si & — y(z) est une
solution, alors les fonctions © — —y(z) et z — y(—z) sont des solutions.
Il suffit donc de considérer les solutions dans le quadrant =,y > 0.

La fonction F(x,y) = (2% +2y?)/xy est homogene. L’ansatz y(x) = x u(x)
donne I’équation

, 14u?
Tu = .
U
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La séparation des variables conduit a

U 1

On trouve l'intégrale du coté gauche de 1’équation par la substitution
14+u?=v, 2udu=dv:

u 1 (1 1 1 ,

L’équation (7.10) devient
In(1 +v?) =2In|z| + C = In(2?) + C

avec C' = 2(Cy — Cy) et donc 1 +u? = Bx? avec B = e“. La résolution
par rapport & u donne u = &/ Bxz? — 1, et les solutions dans le quadrant

z,y > 0 sont
y(z) =xzv/Ba? -1

avec une constante B > 0.

Reste a choisir B telle que la condition initiale y(1) = 2 soit satisfaite :
pour x =1,

2=y(1)=1y/B12—1=vVB—-1.

Il faut donc que B = 5, et la solution du probléeme & valeur initiale est la

fonction
y(z) = z/5a? — 1.

Elle est définie sur I'intervalle ]%, ool

Considérons un autre cas qui se laisse ramener & une équation séparable : ce
sont les équations différentielles de la forme

y' = flax + by +c) (7.11)

avec des constantes a,b,c € R, b # 0. Dans ce cas, on pose u = ax + by + ¢ ou,
plus précisement,

u(z) = ax + by(x) + ¢,

c’est-a-dire que 'on fait 'ansatz y(z) = (u(xz) — ax — ¢)/b avec une fonction u
a déterminer. Pour u on obtient u’ = a+by’. Par conséquent, y est une solution
de (7.11) si et seulement si u est une solution de I’équation séparable

u =a+bf(u).

Exemple

10. y = (z +y)%.

C’est une équation différentielle de la forme (7.11) aveca =b = 1et ¢ = 0.
La fonction u(x) = x + y(x) satisfait

W =1+y =1+ (x+y)? =1+,
donc on a I’équation différentielle

w=1+u?.
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La séparation des variables donne

du

Par suite, arctanu = x + C et u = tan(x + C'). Pour la fonction y = u —x
on obtient finalement

y(x) =tan(z + C) — x

avec C € R.

Application : ’équation logistique

Le modele. Rappelons le modele de croissance d’une population (par exemple

de bactéries) ]
N(t) = aN(t),

ot N = dN /dt. Nous avons vu que ce modele décrit une croissance exponen-
tielle :
N(t) = Noeat.

Mais une telle croissance n’est pas tres réaliste sur une longue période, car elle
serait illimitée. C’est pourquoi le mathématicien belge Pierre Frangois Verhulst
proposa en 1838 I’équation différentielle logistique pour la description de certains

processus de croissance : )
N = aN — N2, (7.12)

avec deux coefficients positifs a et 8. Le coefficient « est le taux de croissance
non freinée, tandis que le coefficient 3 tient compte de la <concurrences entre les
individus de la population : la croissance est freinée par le nombre de rencontres
entre les individus, et celui-ci est & peu prés proportionnel & N2.

Un autre raisonnement pour justifier la présence du terme —3N? est le suivant :
I’espace vital et la nourriture de la population étant limités, il y a une taille
maximale possible N, et on suppose que la vitesse de croissance N (t) est
proportionnelle et & la taille actuelle N () et & la «marges disponible Ny, —N (¢).
Cela nous donne une équation différentielle de la forme

N =AN(Ny — N) : (7.13)
nous retrouvons ’équation logistique avec @ = AN, et 5 = A.

Solution de ’équation. Ecrivons I’équation logistique sous la forme N =
N(a—BN), ce qui nous permet de trouver déja les deux solutions stationnaires,
c’est-a-dire constantes : N = 0 et N = /. Afin de trouver les autres solutions,
nous séparons les variables :

dN

Ma—gwy "

Pour l'intégration nous écrivons le premier membre comme
1 _ (L. 8
N(a—pBN) a\N a—-3N)’
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(Une méthode pour trouver de tels décompositions est expliquée dans I’applica-
tion suivante.) Ainsi,

[ =5+ [a55w)

1 1 N
= = (In|N|-In|a— N):fl A
(¥l - mla - 1) = 2| o
Donc
| | —ar+
n T =at+ec,
et par conséquent
N{(t)
—— = Ce™ 7.14
a_pN@) ¢ (7.14)
avec C' = +e°. La résolution par rapport a N(t) donne le résultat
aCe®
Nit)= ———— 7.15
0= T3 sgem (7.15)

avec C' € R. (Pour C' = 0 c’est la solution constante N = 0.) On peut exprimer
la constante C' & l'aide d’une valeur initiale N(0) = Ny : posant t = 0 dans
(7.14) on obtient C = Ny/(a — BNp), et la substitution de cette valeur dans
(7.15) donne finalement la solution

aNge®t
N(t) = . 7.16
( ) o+ BNo(eo‘t - 1) ( )
& N(t)
]

09

Solutions de I’équation logistique

Remarque : en voyant la solution (7.16), il est difficile de <comprendre> la
signification des constantes a et 3, tandis que dans I’équation différentielle
N = aN — BN? leur réle est clair. Cet exemple est typique : il est souvent
plus facile de comprendre une loi naturelle si elle est exprimée par une
équation différentielle que si ’on connait seulement la solution explicite.

Discussion des solutions

e La formule a un sens pour Ny = 0 et donne dans ce cas la solution triviale
N(t)=0.

e Pour Ny = «a/f, on obtient la solution constante N(t) = «/f8, c’est-
a-dire que la taille de la population reste constante : c¢’est une solution
d’équilibre. Pour cette taille, les deux termes du c6té droit de ’équation
(7.12) se compensent, puisque aN = o?/8 = BN2.
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e Pour 0 < Ny < «/f, la solution est strictement croissante, car N =
aN — BN? > 0 pour 0 < N < a/B. De plus, Ny, := tlirn N(t) = «a/p.
— 00

e Pour Ny > a/f3, la solution est strictement décroissante vers tlim N(t) =
— 00
a/f = Neo.

e Pour 0 < N < N, la vitesse N (t) de croissance est maximale lorsque
N(t) = a/(2p), c’est-a-dire au moment ou la population atteint la moitié
de sa taille asymptotique N.

e Considérons une solution N(t) avec 0 < N < N. Elle est alors définie
sur R, avec , lim N(t) =0 et tlim N(t) = Ny. Soit tg le temps auquel
——00 —00

N est maximal, ¢’est-a-dire avec N(tg) = Noo/2. Alors, le graphe de la
fonction N (t) est symétrique par rapport au point (tg, N(tg)).

N

al/B

(t0, N(70))

Application : Réaction bimoléculaire

L’équation différentielle. Considérons une réaction chimique bimoléculaire
A+ B — X entre deux réactifs A, B dans une solution, dont le produit est
la substance X. Au cours de la réaction, une molécule de A réagit avec une
molécule de B pour former une molécule de la substance X. Soient a(t), b(t) et
z(t) les concentrations (molécules par volume) de A, B, X au temps ¢, avec les
valeurs initiales données a(0) = ag, b(0) = by et 2(0) = 0. Alors

a(t) + x(t) = ag, b(t) +z(t) =bo.

On cherche la concentration x(t) pour ¢ > 0. Un raisonnement analogue a celui
utilisé pour la loi de la décomposition radioactive conduit a

z(t) = ka(t)b(t) (7.17)
avec une constante k > 0. Il faut donc résoudre le probleme a valeur initiale
i(t) =k (ao — z(t)) (bo — z(t)),
2(0) = 0. (7.18)

Notons que ’équation différentielle est du méme type que 1’équation logistique
(7.13). Supposons que 0 < ag < by, c’est-a-dire qu’il y a un surplus de la
substance B. La séparation des variables donne

/mo_x)l(bo_q;)dm/kdt. (7.19)
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Calcul de l’intégrale. Pour calculer le premier membre de (7.19), nous uti-
lisons une méthode standard, la décomposition en éléments simples (en alle-
mand : Partialbruchzerlegung) de la fonction rationelle m : on peut
déterminer des constantes ¢y et co telles que

1 c1 Co

@—a)@—by) 7—a z—b (7.20)

pour tout  # ag, by. En fait, si 'on multiplie I'égalité (7.20) par (z—ag)(x—bo),
on obtient 1 = ¢j(x — by) + ca(x — ag) ou

1= (C1 + Cg).%‘ — ¢1bg — ¢c2ag .

Cette derniere condition est remplie pour tout z € R (et donc (7.20) l’est pour
tout & # ap, bp) si 'on choisit ¢; et ¢y tels qu’ils satisfassent au systéme linéaire

c1+c=0
—Clbo — C2a0 = 1
dont les solutions sont ¢; = 1/(ag — bg) et c2 = —1/(ag — bo). En substituant
ces valeurs dans (7.19), on a la décomposition en éléments simples
1 1 1 1 1

(.’ﬂ*do)((ﬂ*bo) aofb()x*ao_aofbol'*bol

Pour l'intégrale, on obtient alors

/ 1 P / LR S
(z —ag)(x — by) x_aofbo T —ay T — by v

1
= ao_bo(ln\x—a0|—ln|x—bo|)
_ 1 lnx—ao
_ao—bo x—bo

Solution de I’équation différentielle. Retournons a I’équation (7.19) : nous
avons maintenant

1 T — ag
1 =kt+C
ag — bo . T — bo +
et ainsi v a ( :
— t0 k(ao—bo)t
— =B 7.21
pr—— e (7.21)

avec une constante B = +e(90~%)C T3 résolution de cette égalité par rapport
a z (multiplier par « — by et isoler ) nous donne les solutions

apg — b()B ek(a()ibo)t

z(t) =
1_ Bek(aofbg)t

avec B € R. Finalement, la constante B est déterminée par la condition initiale
2(0) = 0 : posons t = 0 dans (7.21); alors x(0) = 0 implique que B = ag/bo.
Avec cette valeur pour B, nous obtenons la solution de notre probleme (7.18) :

1— ek(ao—bg)t

ZL'(t) = CLobO (722)

k(ag—bo)t *
bo—aoe(o 0)
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Nous laissons 'étude detaillée de cette fonction comme exercice, mais notons
que &(t) > 0 et que tlim x(t) = ap, car ag — by < 0.
— 00

Méthodes numériques

Pour la plupart des équations différentielles aucune solution explicite (en termes
de fonctions connues) ne peut étre trouvée. Dans ce cas, on utilise des méthodes
numeériques pour calculer des solutions approchées. La encore, il n’y a pas de
méthode miracle, mais il faut bien choisir la méthode appropriée pour traiter
une équation différentielle donnée, ce qui est l'affaire du spécialiste.

Nous présentons ici la méthode numérique la plus élémentaire, dite méthode du
polygone d’Euler.

L’idée est tres simple, car liée a la représentation géométrique d’une équation
différentielle par son champ de directions. Au lieu de chercher une solution
exacte ¢ du probleme

{y’ = F(x,y) avec (z,y) € D
y(xo) = yo

nous construisons une fonction ¥ linéaire par morceaux, c¢’est-a-dire une fonction
dont le graphe est un polygone, de sorte que chaque segment de droite ait la pente
prescrite par ’équation différentielle en son extrémité gauche.

Plus précisément, afin d’obtenir une valeur approximative en x > xy d’une
solution ¢, considérons des points g < 1 < 22 < ... < x,, = x, et la fonction
¥ définie comme suit sur V'intervalle [zg, z] :

pente F(x1,y1)

(x1y1) »[ (x2,y2)

pente F(x0,y0)
pente F(x2,y2)

(x0,y0)

Y(t) = yo + F(z0,y0)(t —x0) pour zg <t < a9
Y1 = (1) = yo + F (20, y0)(x1 — T0)

Y(t) ==y + F(x1,y1)(t —21) pour 71 <t <2
Y2 == P(x2) = y1 + F(x1,y1) (T2 — 21)

V() == yn—1+ F(xn—1,Yn-1){t —xpn_1) pour z,_; <t <z
Yn = P(@n) = Yn—1 + F(Tn-1,Yn-1)(Tn — Tn-1).
Enfin la valeur y,, est prise comme valeur approximative en x,, =  d’une solu-
tion ¢ :
@(r) = yn

On procede d’une maniere analogue pour = < xg.
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Exemple. Considérons le probleme & valeur initiale ¢y’ =y, y(0) =1 et fixons
2 > 0. Nous décomposons U'intervalle [0, 2] en n parties de longueur z/n, c’est-
a-~dire que nous posons

x kx
1‘0:0,%‘12*,...,J}k:f,...,xn:x.
n n
La méthode d’Euler donne les valeurs suivantes y, pour k =0,...,n :

yo = 1 (condition initiale)

€T T
Y1 =y tyo— =1+~
n n

T T T\ 2
y2:y1+y1*:y1<l+f>:<1+—)
n n n

' X x T\ "
Yn =Yn—-1+Yn—1— = Yn—1 (14‘*) = (1—|—*> .
n n n

En passant & des subdivisions toujours plus fines de U'intervalle [0, z], c’est-a-dire
pour n — 0o, nous trouvons

x\ "
lim y, = lim (1 + f) =e",
n—00 n—00 n

la solution exacte du probleme.
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Chapitre 8

Equations différentielles
linéaires

8.1. Equations différentielles linéaires du premier
ordre

Soit I un intervalle dans R, et soit a : I — R une fonction continue donnée.
Nous considérons 1’équation différentielle

y'(z) +a(z) y(z) =0, (8.1)

ou encore, avec une deuxieme fonction continue donnée g : I — R,

y'(z) + a(z) y(z) = g(z). (8.2)

On appelle (8.1) une équation différentielle linéaire homogéne, et (8.2) une
équation différentielle linéaire inhomogéne.

Résolution de 1’équation homogene. Traitons d’abord ’équation homogene
(8.1) par séparation des variables. Supposons que nous ayons une solution ¢ :
I — R avec p(z) # 0 pour tout x € I. L’équation (8.1) est alors équivalente a

En intégrant de z¢ € I a x et utilisant le théoréme fondamental, on obtient

In | (z)| = —/xa(t) dt +C

zo
avec g € I et C =In|p(zo)| € R, ou

lo(2)] = e

e ffo a(t) dt

et finalement .
pl(a) = ce Jzo ?O (8.3)

avec une constante ¢ = +e“ € R\{0}. En admettant aussi ¢ = 0, on obtient
encore une solution, la solution triviale ¢ = 0. Posant x = xy on voit que

¢ = (o).
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Vérifions que nous avons trouvé toutes les solutions. Soit zg € I, et soit
o la solution
pola) = e oo,

Soit ¢ une solution quelconque de (8.1). Alors, la fonction /o satisfait

=0.

(£>' _ ¢vo—vop _ (=ap)eo + (apo)p
©o ©5 ©o?

La fonction ¢/po est donc constante, c’est-a-dire que
o(x) =dpo(z) =de” Jrga®dt g e R,

Donc toute solution est de la forme (8.3) avec une constante ¢ € R.

Résolution de ’équation inhomogéne. Soit ¢;(x) une solution non-triviale
de I’équation homogene. Alors, comme nous venons de le voir, la solution générale
de ’équation homogene est donnée par

p=cp (8.4)

avec une constante ¢ € R. La méthode de la <variation de la constantes, permet
de trouver une solution ¢ (x) de 'équation inhomogene (8.2) : on remplace la
constante ¢ dans la formule (8.4) par une fonction y(z). On fait donc I’ansatz

Y(z) =v(x) p1(z),

V' tay =901 +701 +vap:.
—_———
=0
Donc la fonction v vérifie I’équation 1’ + a1 = g si et seulement si v'¢7 = g,

c’est-a-dire
/ g

Y=
¥1

On trouve alors « par intégration :
x
g(t)
v(z) =co + / dt
To Qpl(t)

ot ¢g € R. Avec ce y(z) (et un choix arbitraire de la constante ¢y) nous obtenons
une solution

1(z) == (@) pr(2) (8.5)
de I’équation inhomogene (8.2). La proposition suivante nous donne alors toutes
les solutions.

Proposition 1. Fizons une solution 11 de l’équation inhomogéne (8.2). Alors
on obtient la solution générale de (8.2) sous la forme

Y =191+, (8.6)

ot @ est la solution générale de I’équation homogéne (8.1).

Donc la solution générale de I’équation inhomogene (8.2) est

=11+ cpr (8.7)

avec une constante ¢ € R.
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Preuve de la proposition. On vérifie que, pour toute solution ¢ de I’équation
homogene, la fonction ¢ = 11 4+ ¢ est une solution de 1’équation inho-
mogene. Inversément, pour toute solution ¥ de I’équation inhomogene,
la fonction ¢ définie par ¢ := 1) — ¥1 est une solution de I’équation ho-
mogene :
/ / /

¢ +tap =P —Pi+alh — )
(¢ + ay) — (Y1 + agr)
=g—-9=0

Donc v s’écrit sous la forme ¢ = 1)1 + ¢ avec une solution ¢ de ’équation
homogene. Remarquons que la proposition est un cas particulier de la
proposition 2 plus bas.

Exemples

1.y +ay==2x

Equation homogene : 3’ + 2y = 0;
solution générale de I’équation homogene selon (8.3) :

@

Y= Ceffo‘tdt = cefz2/2’ ceR.
solution particuliere de 1’équation inhomogene : y =1 (devinée)
solution générale de 1’équation inhomogene :

y:l—&—ce_rZ/Q, ceR.

2x

2. y’—f—%:e , x>0

Solution générale de I’équation homogene :

c
pla)=ce ™= ceR;
variation de la constante :
T
ansatz : P(x) = v(z)
T

I ke e A A N>
w101 -1,
v =xe*
integration :
’ z 1
’Y(.’L‘):/ tledtJ’_CO:,:(2_4)eQT+Cl
0

o= (5-1) %

Solution générale de ’équation inhomogene :

b(x) = v (z) + 5 ceR
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8.2. Equations différentielles linéaires d’ordre n
Une équation différentielle linéaire d’ordre n est une équation de la forme
Y™ (@) + an 1 (2)y" V(@) + .+ ar (2)y (2) + ao()y(x) = g(=)
ou, de maniere plus concise,
v a1y 4ty ay=g (8.8)

avec des fonctions continues données a,_1,...,a9,9 : I — R sur un intervalle
I C R. Les fonctions a,_1, .. ., ag sont appelées coefficients de I’équation. Celle—
ci est dite homogéne quand g = 0, c’est-a-dire

™ +a, 1y 4 ay + agy = 0. (8.9)
Dans le cas n = 1 on retrouve les équations (8.1) et (8.2).

Afin de mieux comprendre la structure de (8.8) et (8.9), considérons les en-
sembles de fonctions

Co(I) :={+: I — R | ¢ continue }
C*(I) :={¢:I— R | p n-fois continliment différentiable }

et I'application (un < opérateur différentiels) L : C™(I) — C°(I) définie par

dr dnt d
L=—— nl———+... — . 8.10
dx”+a Va1 + +aldm+a0 (8.10)
Avec cette notation, les équations (8.8) et (8.9) s’écrivent simplement
L(y) = g, 8a
L(y)=0 9a

On vérifie facilement que L est une application R—linéaire, c’est-a-dire

L(p1 + 2) = L(p1) + L(p2)
L(cp) = cL(yp).

pour tout ¢ € R et ¢, 1, 2 € C*(I). Les équations différentielles (8.8) et
(8.9) sont donc des équations linéaires dans le sens de I’algebre linéaire.

Solutions de 1I’équation homogene

Soit & C C™(I) 'ensemble de toutes les solutions ¢ : I — R de ’équation
homogene (8.9), c’est-a-dire

S={peC"(I)[L(p) = 0}.

Alors S est un sous-espace linéaire de C™(I), c’est-a-dire si @1, 2 € S et ¢ € R,
alors 1 + w2 € S et cp; €S.

Supposons en effet que @1, w2 € S, donc que @1 et w2 soient des fonctions
n-fois contintiment différentiables avec L(y1) = 0 et L(p2) = 0. Alors @1+
2 est n-fois continiiment différentiable, et, puisque L est une application
linéaire,

L(p1r + ¢2) = L(p1) + L(p2) =0+ 0= 0.

Ainsi @1 + 2 € S§. Par un argument similaire, cp; € S.
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Par conséquent, I’équation homogene satisfait un principe de superposition :
toute combinaison linéaire

Y =c1p1 + Cap2 + ...+ CLPE

de solutions (avec des coefficients constants c¢i,...,cx € R) est encore une so-
lution. Afin de donner une description générale de I’ensemble S des solutions,
introduisons une autre notion de 1’algebre linéaire.

Definition. Un ensemble {1, ..., ¢k} de fonctions ¢ : I — R est dit linéaire-
ment dépendant (sur lintervalle I) si 'on peut écrire la fonction constante 0
comme une combinaison linéaire non-triviale des fonctions 1, ..., ¢, c’est-a-
dire 81l existe des constantes ci,...,c; € R qui ne sont pas toutes nulles avec!

cipr + ...+ crpr =0.

Sinon on lappelle linéairement indépendant. Autrement dit : {¢1,..., ¢k} est
linéairement ‘ndépendant si la relation

apr(z)+ ... +eppr(z) =0 Ve el
avec des constantes cq,...,c, entraine que ¢ = ... =c; =0.

Exemples

3. L’ensemble de fonctions {z,e”, 2z} est linéairement dépendant sur tout
intervalle I, puisque

1
1-x+0~em—|—<—2>~2x:0,

pour tout € R. (Ici ¢; =1, co=0¢et c5= —1/2.)

4. Par contre, le sous-ensemble {x, e”} est linéairement indépendant sur tout
intervalle I non dégénéré, c’est-a-dire qui contient au moins deux points
différents. Supposons en effet une relation

cx+cpe® =0 Voeel

avec des constantes c¢; et cp. Il faut déduire que ¢; = c5 =0. En prenant la
dérivée seconde de la relation par rapport a x on arrive a cs e® = 0, d’ou
co =0. Donc c;x = 0 pour tout x € I et ainsi ¢; =0.

Il existe un critere, facile a vérifier quand k est petit, pour I'indépendance linéaire
d’un ensemble de fonctions ¢, ..., pg qui sont (n—1)-fois dérivables sur 1.

Definition. Le déterminant de Wronski (le «Wronskiens) W (x) des k fonctions
©1, ...,k est le déterminant

GV @) o V@) e (@)

LC’est une égalité entre fonctions, i.e. c1p1(x) + ...+ cxpr(z) =0 pour tout x € 1.
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Nous renvoyons a la littérature pour la définition générale d’un déterminant,
mais rappelons que pour k = 2,

ab
' cd ‘ =ad — bc .
Donc le Wronskien de deux fonctions @1, s est donné par
p1(x) P2(x)

i e

= p1(2)ph(x) — pa(x)p) (x).

Critére de Wronski. S’il existe un x € I tel que W (x) # 0, alors ¢1,..., ¢k
sont linéairement indépendants.

Exemple

5. Considérons de nouveau les fonctions ¢1(x) =2 et po(z)=¢e* sur un in-
tervalle non dégénéré. Le Wronskien est

T e*

W(l‘) = 1 e*

=ze® —e” = (x—1)e".

On a W(x) # 0 pour tout x # 1. Par le critere, les fonctions x et e” sont
linéairement indépendantes sur I.

Retournons & 1’équation homogeéne (8.9).

Théoréme. (i) L’équation différentielle linéaire homogéne d’ordre n & coeffi-
cients continus

™ 4 a1y Y+ ay +agy =0 (8.9)
posséde n solutions indépendantes sur I. Un tel ensemble de n solutions indé-
pendantes @1, ..., e, s’appelle un systeme fondamental de solutions.

(il) Si @1, ..., @n est un systéme fondamental de solutions, alors toute solution

de (8.9) est une combinaison linéaire

p=crp1+C2p2+ ...+ Crhpn

avec des coefficients constants c1,...,c, € R.

Par conséquent, si I'on dispose d’un systeme fondamental, la solution générale
de (8.9) est donnée par

@ =c1p1tc2p2+ ...+ CuPn (8.11)
avec des constantes arbitraires cq,...,c, € R.

Le théoreme garantit ’existence d’un systéme fondamental. En général il
n’est pas possible de donner un systéeme fondamental explicite pour une
équation donnée. Ceci est cependant possible lorsque les coefficients a;
sont des constantes. Nous retournerons plus tard a cette question. Re-
marquons que, dans la terminologie de ’algebre linéaire, un systéme fon-
damental est une base de I'espace vectoriel S de solutions. Donc S est un
espace vectoriel de dimension n.
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Solutions de I’équation inhomogene

Considérons maintenant 1’équation inhomogene L(y) = g, c’est-a-dire
v a4 day ray=g. (8.8)

Proposition 2. Fizons une solution 1 de ’équation inhomogéne L(y) = g.
Alors on obtient la solution générale de cette équation par

w:¢1+§05

ot ¢ est la solution générale (donnée par (8.11)) de l’équation homogéne L(y) =
0.

En termes des ensembles de solutions, on peut exprimer ce résultat comme
suit. Rappelons que S dénote I'’ensemble de toutes les solutions de I’équa-
tion homogene. Soit maintenant

Sy :={peC"(I) | L(¢) = g}

I’ensemble des solutions ¢ : I — R de I’équation inhomogene. Soit Y1 € Sy
un élément arbitraire. Alors

Sg=th1+S:={1+¢|peSh

Pour la preuve de la proposition 2, montrons que S; C 11 + S et que,
inversément, 11 +S C Sy. Si ¢ € Sy, alors la fonction ¢ := ¢ —1)1 satisfait
aLlp)=Lp—1Y1)=g—g=0.Doncp € S,et Yy =¢1+p €Y1 +S.
Inversément, si ¥ € 11 + S, alors il existe ¢ € S tel que Y = ¥1 + . Par
conséquent

L(y)=L(1+¢) = L(Y1) + L(p) =g+ 0=y,
et donc Y € S,.

Suivant la proposition 2, la procédure pour trouver la solution générale de
P’équation inhomogene (8.8) est la suivante :

1. Trouver un systeme fondamental @1, ..., @, de ’équation homogene.
2. Trouver une solution 1 de ’équation inhomogene.

3. La solution générale de I’équation inhomogene est alors

w:wl +01<P1 ++cn@n (812)
pour des constantes arbitraires ci,...,c, € R.
Quand on connait la solution générale, on peut choisir les n constantes ¢y, ..., ¢,

afin de remplir des conditions auxiliaires, par exemple n conditions initiales
w(xo) =Yo, W(xo) =Yty ¢(n—1)(x0) =Yn—1 aveC To, Yo,---,Yn—1 donnés.

Méthode de variation des constantes

Pour réaliser la deuxiéme étape de la procédure ci-dessus, il faut déterminer
une solution 1, de ’équation inhomogene L(y) = g. A cette fin, il existe des
méthodes directes quand les coefficients a; sont constants et pour certains types
de fonctions g, utilisant un ansatz convenable. Dans quelques cas tres simples,
on peut méme deviner une solution.
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Par contre, la méthode variation des constantes est une méthode générale pour
trouver une solution 1, mais a condition qu’on dispose déja d’un systeme fon-
damental ¢q,...,@, de I’équation homogene. Considérons le cas n=2 pour
simplifier la notation. L’équation L(y) = g est alors de la forme

Yy (z) + a1 (2)y'(z) + ao(2)y(z) = g(2). (8.13)
Supposons que @1, @2 soit un systeme fondamental, donc en particulier que
(,0/1/ + CLlQO/l + app1 = 0 (814)
@3 +a1ph +agp2 = 0.

La solution générale de I’équation homogéne est alors

y(x) = crp1(z) + c2p2()

avec des constantes ¢ et co. Pour trouver une solution de I’équation inhomogeéne,
considérons maintenant I’ansatz

y(x) = 71(z)p1(x) + v2(7)p2(z) (8.15)

avec des fonctions 1 () et y2(x) & déterminer. En le substituant dans I’équation
différentielle (8.13) et & l’aide de (8.14) on obtient la condition

Y p1 + 73 P2 + 27101 + 27505 + a1y1@1 + arveee = g

pour les fonctions y; et 2. On peut réarranger cette équation sous la forme

(171 + ©275)" + (D171 + 9972) + a1 - (L1711 + w2vs) = 9.

Cette derniere équation est certainement satisfaite si 'on trouve des fonctions
Y1 et o telles que
Q171 + 272 = 0
P17+ P = g,
c’est-a-dire , ,
o1(x)71(2) + p2(x)r2(x) = 0 (8.16)
e (@)1 (2) + Ph(x)7a(z) = g(@).
Notons que, pour tout = € I fixé, le systeme (8.16) est un systéme linéaire pour
les inconnues v (z) et v5(x) avec des coeflicients connus ¢ (), 2(x), ©](x)
et ph(x). Et si Pon connait leurs dérivées 7, 74, les fonctions v et 72 s’en

déduisent par intégration. La méthode de variation des constantes procede donc
comme suit :

1. Partir d’un systeme fondamental donné 1, 2 de I’équation homogene.
2. Résoudre (8.16) afin d’obtenir les dérivées ~1,~5 des fonctions cherchées.

3. Calculer des fonctions primitives de ¥} et +4 par intégration afin d’obtenir
T et ya.

4. Alors la fonction 1 (z) := 71 (x)p1(z) + Y2(z)p2(x) est une solution de
I’équation inhomogene.
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Le raisonnement et la méthode se généralisent aux cas n > 3 : on obtient une
solution de la forme

P1(z) = m(x)pi() + .+ n(r)en ().
Le systeme (8.16) est alors un systéme de n équations linéaires pour les n in-
connues Vi (x), ..., v (x).

Exemples

6. Considérons I’équation différentielle

T

y' =2y +y= % (8.17)
sur lintervalle I =|0, co[. On en cherche la solution générale.

Notons que (8.17) est une équation différentielle linéaire inhomogene d’or-
dre n =2 a coeflicients continus (en fait constants). On vérifie que les fonc-
tions 1 (x) =e” et a(x) =xe” sont des solutions de 1’équation homogene
correspondante
y' =2y +y=0.

(On verra plus tard comment arriver & ces solutions.) A 'aide du critere de
Wronski on confirme facilement que ¢1, @2 sont linéairement indépendan-
tes. Donc ils forment un systeme fondamental de I’équation homogene.

Appliquons la méthode de variation des constantes pour trouver une solu-
tion 11 de I’équation inhomogene. Dans le cas présent, le systeme linéaire
(8.16) devient

ey (z) + zeyy(x) =0

e.’E
e (2) + (& +ae)h(e) = <
La résolution de ce systéme par rapport & v(x) et v4(x) fournit
1
n@=-1 7@ =_

et par suite
m(z) = /(—1)das—|—C’1 =—z+C

1
Yo(x) = /;dlen\:c|+02:1nx+02

car x > 0 sur l'intervalle I. On peut choisir les constantes d’intégration
Cy =0 et Cy = 0 parce qu'on n’a besoin que d’une seule solution )y de
I’équation inhomogene. Ainsi

Y1(z) = n(z)p1(2) + 12(2)p2(z)
= —ze+ze’lnx,

et la solution générale de ’équation différentielle (8.17) est

Y(z) = ¥1(2) + c191() + c2ip2(7)
= —ze*+zeflnr+ e +egxe”

=ze’Ilnz+cre® +c3xe”

(c3 = co — 1) avec des constantes arbitraires ¢, c3 € R.
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7. Pour l'équation (8.17) de l’exemple précédent, on cherche la solution %
qui satisfasse aux conditions initiales (1) =3 et ¢'(1) = — 1.

On substitue la solution générale
Y(@)=ze’Inz+cre” +cpxe” (c1,c2 €R)
dans le systeme de deux équations

P(1) =3
¢/(1) = _17
ce qui donne deux équations pour les deux constantes ¢, co inconnues

cie + coe = 3

cie+2ce = —1—e.

En soustrayant la deuxieme équation de la premiere, on a —coe = 4 + ¢

d’ou ¢y = —% —1et g = % = g + 1. La solution cherchée est donc

Y(x)=ze’lnz+ (7+1> e’ — <4+1) ze’.
e e

8.3. Equations différentielles linéaires du second
ordre a coefficients constants

Il s’agit d’équations différentielles de la forme

y" () + a1y () + aoy(x) = f(z)

avec des constantes ay,ag € R ou, dans une autre notation (que nous utilisons
pour le reste du chapitre),

() + bi(t) + cx(t) = f(t) (8.18)

avec b,c € Ret f: I — R une fonction continue sur l'intervalle I. Nous utilisons
la lettre t pour désigner la variable indépendante, car elle représente souvent le
temps. Voici plusieurs variantes d’un exemple physique :

Exemples

8. Une masse m est suspendue a un ressort de longueur ¢y qui suit la loi de

Hooke.
Forces :
g
o Fi=k-(t—ty), F, =g-m.

La force totale est donc

F, F=g-m—k-({—1{)
et, selon la loi de Newton mi =

T, F,ona:
F 1 I+ =t =g+ —l.
2 m m
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9. En ajoutant un amortissement par une force proportionnelle a la vitesse,
par exemple un frottement, on obtient ’équation plus générale

L+al+—0=qg+ —4
m m
avec a > 0.

10. Supposons que le point de suspension du ressort soit en mouvement ver-
tical oscillatoire. On a donc pour la hauteur de ce point (relative a la
position neutre)

h(t) = hg sin(wt),

et, si z(t) est la position de la masse au temps ¢, la longueur du ressort
est

L(t) = x(t) + h(t).
L’équation du mouvement est maintenant

k k k
i4at+ —x =g+ —Lly— —hgsin(wt).
m m m

Polynoéme caractéristique
Pour trouver les solutions de ’équation différentielle linéaire homogene
Z(t) + b (t) + cx(t) =0 (8.19)

avec b, ¢ € R, nous essayons des fonctions de la forme z(t) = e*. En substituant
cet ansatz dans (8.19), on obtient

MM 4 preM 4 et =0
et donc, comme et # 0 pour tout ¢,
M4 bA+c=0. (8.20)
Définition. Le polynome
XA == A2+ b+ ¢ (8.21)
s’appelle le polynéome caractéristique de 1’équation différentielle linéaire homo-
gene (8.19).

Il en résulte que la fonction x(t) = e est une solution de ’équation différentielle
(8.19) si et seulement si A est une racine du polynéme caractéristique. Mais est-
ce qu’on trouve ainsi deux solutions linéairement indépendantes, c’est-a-dire un
systeme fondamental 7

Rappelons d’abord la formule de résolution de I’équation quadratique
M +bA+c=0
avec b, ¢ € R. Les solutions de cette équation sont

b+ VA —b—+VA
= 2TV e A= — 5

A
! 2 2

A:=b>—4c

est le discriminant de I’équation. Il faut distinguer trois cas :
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1. Lorsque A > 0, on a deux solutions réelles distinctes Ay # Ao ;
2. lorsque A = 0, on a une solution réelle «double> A; = Ay

3. lorsque A < 0, il n’y a pas de solution réelle.

Dans le cas ot A < 0, il y a deux solutions complezes (voir le chapitre 9 pour
la justification)
Al=a+if et A =a—if

avec o, 3 € R et i := y/—1. En effet,

\ b+ VA —b+ /1A
1.2 = =
' 2 2

—b+V—1/A]
2
_ b VIAl

2 2
et donc @« = —b/2 et 8 = 4/|A|/2. Comme dans les deux premiers cas, on a
A1+ A= — b et AAy=c. Retournons maintenant a 1’équation différentielle
(8.19).

Systéme fondamental

Considérons d’abord le cas A > 0. Le polynéme caractéristique x(A) possede
deux racines réelles distinctes A1 # A2. Nous avons donc les deux solutions
71(t) = eM? et z9(t) = e*2t, dont le Wronskien en t = 0 est égal &

#1(0) 22(0)

11
A1 A2

‘:Az—xﬁéo.

Les deux solutions z1(t) et zo(t) forment donc un systeme fondamental.

Dans le cas A = 0, le polynome caractéristique possede I'unique racine A; = As.
L’ansatz nous donne une seule solution x;(t) = e**. Mais on vérifie que, dans
ce cas, la fonction z5(t) = te’? est une deuxieme solution.

En fait, avec A = 0 les formules pour ;2 donnent b = —2X\; et ¢ = )\%.
Par conséquent, 1’équation (8.20) s’écrit

F—2M3+ Mz =0

et un calcul direct montre que la fonction x(t) = te*** en est une solution.

Calculons le Wronskien des fonctions 21 (t) = eM? et w5(t) =te*t ent =0 :

21(0) z2(0) ‘ _
@1(0) 22(0)

10
Al

-

Les deux solutions z(t) et x2(t) forment donc un systeme fondamental.

Dans le cas A < 0, le polynéme caractéristique x(A) posséde deux racines com-
plexes distinctes A\; o = o £ ¢/ avec o, 8 € R, 5 # 0. Ce cas est mieux traité en
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utilisant la fonction exponentielle complexe introduite au chapitre 9. On trouve
que les fonctions

z1(t) = e cos(Bt), x2(t) = e sin(Bt)
forment un systeme fondamental. Résumons les résultats :

Théoréme. Soient \1, Ay les racines du polynome caractéristique
X(A) = A2+ b\ +c
de l'équation différentielle linéaire homogéne
Z(t) + b (t) + cx(t) =0

aux coefficients b,c € R constants. On trouve alors un systéme fondamental de
solutions comme suit :

1. Ay # Ao réels : 21 (t) = e, xo(t) = et
2. A1 =M\ réel : x1(t) =eMt, ao(t) =teM?
3. Ma2=a=xif non réels (B #0) : x1(t) =e* cos ft, xo(t) =e* sin fSt.

Remarquons qu'un théoréme plus général donne un systéme fondamen-
tal pour les équations différentielles linéaires homogenes a coeflicients
constants d’ordre arbitraire n. Comme dans le cas n =2 considéré ici, on
arrive au polynome caractéristique x(\) en substituant ansatz z(t) = e
dans I’équation. Le degré du polynéme x(\) est alors égal a n, et la forme
du systeme fondamental dépend des zéros Ai, ..., A\,. Nous nous limitons
cependant au cas le plus simple et important n = 2.

Exemples de la physique

Leur équation homogene était de la forme & + b + cx = 0 avec b > 0 et ¢ > 0.
En posant § := b/2 et wg := /¢, nous pouvons écrire

i+ 264 + wjz = 0,

et les racines du polynéme caractéristique sont

)\172:75:|:\/527W8.

On distingue quatre cas selon la valeur du coefficient d’amortissement §.

e §=0:0mna A2 = Fiwy, et la solution générale est donc de la
forme
x(t) = Acos wot + B sin wyt

avec A, B € R; on peut aussi I’écrire sous la forme
x(t) = Csin wy(t — 1)

avec C > 0 et 0 < 7 < 27/wgy. C’est une oscillation non
amortie ’amplitude C et de fréquence v = wy /2.
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e 0 < < wp : Les racines

)\1’2 = —(5:|:i\/w§ —52

du polynéme caractéristique ne sont pas réelles; apres avoir

posé w 1= y/wd — §2, la solution générale est

z(t) = Ae % coswt + Be %! sinwt,
ce que nous pouvons de nouveau écrire comme
— =0t
z(t) = Ce " sinw(t — 1)

avec C > 0 et 0 < 7 < 27w. Clest une oscillation amortie.
La fréquence est ¥ = w/2m, donc plus petite que la fréquence
du méme oscillateur non amorti, et 'amplitude C(t) = Ce™%
décroit exponentiellement.

e § = wy : Le polynoéme caractéristique a la racine double A\ = Ao = —
0 ; la solution générale est par conséquent

z(t) = (A + Bt)e .

e § > wp : Le polynoéme caractéristique a deux racines réelles

négatives :
)\1,2 = 75:':\/527(.08 < 0.

La solution générale est donc de la forme

z(t) = AeMt + Ber2t,

\\\\ - (\\ %
A — —

Dans les trois derniers cas, on a lim;_,+ 2(t) = 0 pour les solutions. Mais pour
un amortissement faible, c’est-a-dire dans le cas 0 < § < wg, une solution non
triviale (i.e. non nulle) décrit encore une sorte d’oscillation : x(t) s’annule en
une infinité de points ¢ équidistants. Lorsque I’amortissement devient plus fort,
c’est-a-dire pour & > wo, le caractére oscillatoire disparait : une solution non
triviale s’annule au plus une fois. C’est pourquoi on parle aussi du < cas-limite
apériodique > lorsque § = wy.

Résolution de I’équation inhomogeéne
Afin de trouver une solution particuliere de 1’équation inhomogene (8.18),
Z(t) + b (t) + cx(t) = g(t)

on peut appliquer la méthode de variation des constantes. Mais, dans certains
cas, on trouve une solution en l'essayant avec une fonction du méme type que
Pinhomogénéité g(t). Nous illustrons ceci par quelques exemples.
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Exemples

11.

12.

13.

g(t) = d avec d € R constante : En cherchant une solution < du méme
type » que 'inhomogénéité, on trouve la solution constante x(t) = d/c si
¢ # 0. (Dans le cas ¢ = 0, on a une équation du premier ordre pour la
fonction y := &, & savoir y + by = d, et dans le cas b = ¢ = 0, I’équation
est simplement & = d avec la solution générale z(t) = At + B.)

g(t) = ap+ait+...+a,t"™ un polyndme en ¢. En cherchant un polynéme
du méme degré comme solution, disons

x(t) = o+ art+ ...+ ant™,

on obtient un systeme d’équations linéaires pour les coefficients inconnus
APy .oy Oyt

cag + bay + 2as = aop,
cap + 2bas + 6as = ay,
CQm = Gy

Pour ¢ # 0, ce systeme admet une solution : on détermine les a; dans
Pordre m, Gm—1, @m—2, -- ., ag. (De nouveau, le cas ¢ =0 doit étre traité
différemment.)

g(t) = ky sin Bz + ko cos fx. On cherche une solution de la forme
x(t) = Asin Sz + B cos Sz

avec des constantes A, B & déterminer. La substitution de cet ansatz dans
I’équation différentielle conduit & une équation de la forme

(1A 4+ v B) sin Sz + (y3A + y4B) cos fx = ky sin Bz + ks cos Sz

avec certains coefficients 7, ...,v4. On trouve alors A, B en résolvant le
systeme linéaire

NMA+ 7B =k
Y3A + 7B = k2.
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Chapitre 9

Les nombres complexes

Nous avons vu 'utilité des nombres complexes dans le traitement des équations
différentielles linéaires du second ordre. Ici, nous allons approfondir le sujet et
trouver une fagon moins mystérieuse d’obtenir les solutions dans le cas ou le
polyndme caractéristique ne posséde pas de racine réelle.

Nombres entiers et nombres rationnels. Au début, «nombre> signi-
fie entier naturel : 0,1,2,3,... . Ces nombres servent surtout a compter
ou & numéroter des objets. Il est encore assez facile d’étendre cette notion
en introduisant les nombres négatifs. On obtient ainsi I’ensemble Z des
nombres entiers.

On sait aussi calculer avec les fractions ou nombres rationnels, c’est-a-dire
les quotients d’entiers : on a les quatre opérations élémentaires addition,
soustraction, multiplication et division, avec les lois de calcul bien connues,
ol les nombres 0 et 1 jouent des roles particuliers. Le mathématicien dit
que les nombres rationnels forment un corps, que ’on dénote normalement
par Q pour rappeler qu’il s’agit de quotients de nombres entiers. Si les
nombres naturels servent & compter des objets, les nombres rationnels
peuvent servir a mesurer des grandeurs, et la relation “<” permet de
comparer les résultats de ces mesures.

Nombres réels. Pensant aux nombres rationnels comme résultats de
mesure, on les représente souvent par des longueurs ou comme points d’une
droite. Déja les Pythagoréens avaient découvert qu’il existe sur cette droite
des points auxquels ne correspond aucun nombre rationnel : la longueur
de la diagonale dans un carré de c6té 1 représente un tel point sur la
droite ; autrement dit : il n’existe pas de nombre rationnel a avec a® = 2.

En comblant pour ainsi dire les < places> non occupées sur la droite par
les nombres rationnels, on obtient le corps R des nombres réels. 11 est
complet dans le sens suivant :

Six1 < xa < x3 < ... est une suite monotone croissante de nombres
réels et si cette suite est bornée, c’est-a-dire qu’il existe un M € R avec
Tn < M pour tout n, alors la suite converge : il existe un x € R tel que

r= lim z,.
n— oo

Remarquons encore que tout nombre réel s’écrit comme limite d’une suite
de nombres rationnels. En effet, chaque fois que nous écrivons un nombre
réel comme fraction décimale infinie, nous le décrivons comme limite d’une
telle suite. Par exemple, m = 3,1415926. .. signifie que 7 est la limite de

la suite
3 31 314 3141 31415

1° 10 100’ 1000° 10000° """ ¥
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L’extension du corps Q des nombres rationnels en R, le corps des nombres
réels, a — entre autres — Peffet que 1’équation z? = 2 admet maintenant
des solutions, & savoir +v/2 € R. Plus généralement, 2> = a admet des
solutions dans R pour a € R,a > 0. Par contre, ’équation z?> = —1 n’a
pas de solution dans R puisque z? > 0 pour tout = € R.

Arithmétique des nombres complexes

On va construire une extension de R, le corps C des nombres complexes, dans
lequel I’équation 22 = —1 a une solution. Pour arriver & la construction de C,
nous faisons provisoirement comme si nous ’avions déja, avec notamment une
solution de I’équation 22 = —1 que nous désignons par la lettre i (pour nombre
<imaginaire>). Un nombre complezxe est alors une <expression> de la forme

a+ bi

avec deux nombres réels a et b. Nous calculons avec ces expressions comme avec
les polynomes a + bx de degré un, mais en utilisant la regle

i =—1.

Nous obtenons ainsi les formules suivantes pour ’addition, la soustraction et la
multiplication :

(utvi)+ (z+yi) = (u+z)+ (v+y)i
(u+vi) — (@ +9i) = (u—2) + (v — )i
(u+vi) - (x + yi) = ux + vri + uyi + vyi?
= (ux —vy) + (ve + uy)i
car vyi2 = vy(—1) = —vy. Pour la division

U+ vl
x+yi’

quand z # 0 ou y # 0, on amplifie la fraction par le nombre x — yi dit conjugué
de x4+ yi :
utvi  (utvi)(x—yi)  (ur+ovy) + (ve — uy)i
c+yi (w+yi)(e—yi) 22 4 y?
ur +vy  vr —uy .
21y? | a4 b

(9.2)

Ainsi, on arrive de nouveau & une expression de la forme a + bi avec a,b € R.
Par exemple,

142  (142)@3+4) —5+10i 1

— — = —— —1

3—4i (3—4i)(34+4i) 25

Si ’on regarde les nombres réels comme des nombres complexes a+bi avec b = 0,
les opérations arithmétiques (9.1) et (9.2) se réduisent aux opérations connues
pour les nombres réels, par exemple

(u+0i) - (x4 0i) = (ux — 0-0) + (0 + u0)i = ux + 0i.
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Justification

Apparemment, nous sommes capables de calculer avec les expressions de la forme
a + bi comme nous avons I’habitude de calculer avec les nombres réels. Mais les
nombres complexes existent-ils 7 Qu’est-ce qu'une <expression> ? Remarquons
que a+bi est caractérisé de maniére unique par le couple (a, b) de nombres réels.
En termes de tels couples, nos calculs (9.1) et (9.2) s’écrivent comme suit :

o) £ (2, y) = (utz,vty)
,0) - (z,y) = (ur — vy, va + uy)
(u,v)  (ux+vy ve—uy

= ( )

(zy w2 +y? "2ty

(u
(u (9.3)

On définit maintenant le corps des nombres complexes en posant
C:=R*={(z,y) | z,y € R}

et on définit les opérations arithmétiques par les formules (9.3). Un nombre
complezxe z € C est donc simplement un couple

z=(z,y)
de nombres réels.

On vérifie que C, muni des opérations (9.3), est un corps, c’est-a-dire qu’on a les
mémes lois de calcul que pour les nombres rationnels ou pour les nombres réels,
par exemple la commutativité et 'associativité de la multiplication : 2120 = 2221
et (2122)2z3 = z1(2223) pour z1, 22, 23 € C. L’élément nul est (0,0), et I'unité est
(1,0).

R comme sous-ensemble de C

C est une extension de R dans le sens suivant : considérons ’application
a:R—C, t~(t,0).

Cette application est compatible avec les opérations arithmétiques dans R resp.
C : si pour un instant +r denote ’addition dans R et +¢ celle de C, alors

a(t +Rr S) = (t R S,O) = (t,O) +c (S,O),

et de maniere analogue pour les autres opérations. Calculer dans R avec les
nombres réels s, t, ... ou calculer dans C avec les nombres complexes (s,0),
(t,0), ... revient donc au méme. En identifiant le nombre réel z € R avec le
nombre complexe (z,0) € C, on considére R comme un sous-ensemble de C. Les
opérations algébriques dans C sont alors compatibles avec celles de R.

Le nombre 1

Définissons I'unité imaginaire i par

i:=(0,1)
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Alors on peut écrire z = (z,y) € C comme

(z,y) = (2,0) + (0,y) = (#,0) + (,0) - (0,1) =z + yi

et ainsi!
z=(z,y) =z +yi,

ce qui justifie Pécriture x + yi (= x + iy) & la place de (x,y).
Vérifions que le nombre i est bien une solution de 1’équation 22 = — 1 ('autre
étant —i) : selon (9.3) on a

i =(0,1)-(0,1) =(0-0—1-1,0-1+1-0) = (~1,0),
et comme (—1,0) = —1 on obtient

i*=-—1.

Pour un nombre complexe z = x + yi avec x,y € R on appelle

x la partie réelle de z Rez: ==z
Y la partie imaginaire de z Imz:=y

x —yi le (nombre) conjugué de z z:=x — yi.

Un nombre complexe iy avec x = 0 et y # 0 est dit purement imaginaire.

Géométrie des nombres complexes

Identifions le nombre complexe z = = + iy avec le point du plan dont les co-
ordonnées cartésiennes sont = et y. Si ¢ dénote l'angle entre I’axe des x et le
vecteur ()—z>, alors

3

T .
cosp =— et sinp=
r

REES

ou r=|z| est la valeur absolue ou la norme de z, c’est-a-~dire la longueur eucli-

dienne du vecteur 0z :

|z] == Va2 +y?=Vz -2z (= 22 = |2%).

Im
i z=x+ 1y
L T=x+1y r=lz| = Va? +y?
v ! T =TCosg
i : y=rsiny (9.4)
I
(lﬁ | ’z:r(cos<p+isin<p)‘
I

= Ra

r et @ sont les coordonnées polaires de z; 'angle ¢ s’appelle aussi argument de
z, noté arg z. Il n’est pas unique mais seulement déterminé & un multiple entier
de 27 pres, et pour z = 0 il n’est pas du tout défini.

Le conjugué Z est le point symétrique de z par rapport & ’axe réel (des z).

INormalement, on préfere les lettres z,w pour les nombres complexes, et x,y,T,s,t, ...
pour les réels.
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Interprétation géométrique des opérations arithmétiques

Im Z+w=(x+u)+i(y+v)

y+v

Addition : C’est I’addition gl Ty

vectorielle usuelle dans le

plan, si nous identifions le
. —

point z avec le vecteur 0z. v W=U+iv

Re

X u X+u

Multiplication : Pour le produit de deux nombres complexes

z=ux+1iy = r(cosp + isinp)
w=u+iv = s(costp + isin)

on trouve en utilisant les formules
sin(¢ + 1) = sin @ cos ¥ + cos @ sin v
cos(p + 1) = cos @ cos ) — sin @ sin ¥

le résultat
z-w=rs(cos(p + 1) +isin(p +)). (9.5)

Donc on a

|z-w| =|z] - |Jw| et arg(z-w)=arg(z)+ arg(w). (9.6)

Pour une interprétation géométrique, fixons maintenant un nombre complexe
zo = 1o(cos pg +isinpg) # 0,

et considérons I'application m,, : C — C donnée par la multiplication avec zg,
c’est-a-dire donnée par m,,(z) = zpz. Alors la formule

M (2) = 202 = 107 (cos(p + o) + isin(e + ¢g))

montre que m,, est une similitude directe (en allemand : Drehstreckung) com-
posée de la rotation d’angle g = arg(zo) et de centre 0 et de ’homothétie de
facteur ro = |2o].

z,

Les triangles hachurés
sont semblables.

Si l'on applique I'égalité (9.5) plusieurs fois pour calculer 2™ = z - ... z avec
z = cos ¢ + isin g, on obtient la formule de De Moivre :

(cosp + isinp)™ = cos(ngp) + isin(ny) (9.7
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Passage d’un nombre compleze a son inverse : Pour z = |z|(cos ¢ + isin ) on
obtient avec 2z = |z|?

1 —ii— |z|(cos ¢ — isin p)
z 22 |22 7 7
1
= T (cos(—p) +isin(—¢)). (9.8)
Ainsi,
E‘ = B et arg (%) = —arg(z) (9.9)

Les triangles hachurés
sont semblables.

De (9.6) et (9.9) on obtient

z| 2] AN B
‘—w’ = Tu] et arg <—w) = arg(z) — arg(w). (9.10)
Distance et limites

La distance entre deux points z; = x7 + iy; et 20 = zo + iys dans le plan
complexe C = R? est définie par

21 — 22| = /(21 — 22)2 + (y1 — 12)°. (9.11)

C’est donc la longueur du segment de droite entre z; et zo. A 'aide de cette
notion de distance, on définit la convergence d’une suite (zx)ren = (20, 21, 22, - - )
comme pour les nombres réels dans le chapitre 3. On voit facilement qu’une suite
Zkr = Xk + 1y converge vers z = x + ¢y si et seulement si les parties réelles xj, et
les parties imaginaires gy convergent : x; — x et yr — y.

En fait, avec la définition (9.11) on trouve que la distance |z — zj| satisfait
aux inégalités

max{|z — x|, [y — yl} < |z — 2| < V2 max{je — @kl [y — yel},

ot max{a, b} est le plus grand des deux nombres a,b € R. Par conséquent
|z — zk| — 0 si et seulement si |z — zx| = 0 et |y — yx| — 0 pour k — oo.

On obtient ainsi les notions de limite, continuité et différentiabilité (complexe)
d’une fonction f: C — C. La convergence d’une série

oo
>
k=0

a termes complexes est de nouveau définie comme la convergence de la suite des
sommes partielles s, 1= >}, Zk.
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Equations algébriques

Par construction, C est le plus petit corps contenant R et une solution de

I’équation z2 + 1 = 0. Il est donc surprenant que toute équation algébrique
2" 4 apn_12""+ .. +arz+ay=0

de degré n > 1 admette des solutions dans C. Plus précisément :

Théoréme fondamental de ’algébre. Soit P(z) un polynéme de degrén > 1
& coefficients (réels ou) complezes :

P(z) =a,2" + 12"V 4. +arz+ag

avec ag, ay,-..,a, € C et a, # 0. Alors P posséde n zéros z1,...,2z, € C (pas
nécessairement distincts) et s’écrit comme

Piz)=an-(z—2z1) ... (2 —2zn). (9.12)

Remarquons néanmoins que la résolution effective d’une équation algébrique
n’est pas facile, car il n’existe pas de formule générale pour les solutions z1, .. ., 2y,
sauf pour les polynomes degrés < 4. Rappelons celle des deux solutions d’une
équation quadratique az? + bz +c=0:

—b+Vb% — dac

21,2 =
2a

Lorsque les coefficients a, b et ¢ sont réels, nous pouvons distinguer trois cas
suivant la valeur du discriminant A = b? — 4ac : Si A > 0, alors il existe deux
solutions réelles z1 # 2o ; pour A = 0 il existe une solution réelle double z; = 25 ;
et si A < 0 il existe deux solutions complexes non réelles et conjuguées zo = Z;.

Racines n-iémes de 'unité. A laide de la formule de De Moivre (9.7)
on voit facilement que les solutions de I’équation 2™ = 1 sont les n nombres

complexes
2km . 2km
Zk = COS —— +18In ——
n n
pour kK = 0,1,...,n—1, appelés les racines n-iémes de l'unité. Ils sont
situés sur le cercle unité et sont les sommets d’un polygone régulier a n
cOtés.
Im
Les racines 5-iemes de Re
P'unité
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La fonction exponentielle complexe

La série exponentielle

oo n

exp z := Z % (9.13)

n=0

converge pour tout nombre complexe z. Comme dans le cas réel considéré au
chapitre 6, on a de plus I'égalité

expz = lim (1—}—3) . (9.14)
n

n— oo

Pour z € C on définit, d’apres Euler,

e® :=expz.

Théoréme. La fonction exponentielle exp : C — C a les propriétés suivantes :

(a)
(b)
(c)

elle est continue;
exp(z + w) = expz-expw pour tous z,w € C;

pour tout t € R on a la formule d’Fuler :

’ exp(it) = cost + isint ‘ (9.15)

Conséquences

(1)

(ii)

(iii)

exp(z) exp(—z) = exp(z—z) = exp(0) = 1, donc exp(z) # 0 pour tout
zeC.

Pour z=z+iyeCona

e* = et = e%e™ = e%(cosy + isiny)

et ainsi [e*| = eR°(*) et arg (e*) = Im(z).

La représentation d’un nombre complexe en coordonnées polaires s’écrit
a 'aide de la fonction exponentielle

z =re"? = r(cosp +isin ) (9.16)

Remarquons qu’on peut arriver a la formule d’Euler en utilisant I’argu-
ment fallacieux suivant : la formule de De Moivre implique notamment

o t .. t\"
cost+isint = | cos — + ¢sin — .
n n
Or, pour n assez grand, cos £ ~ 1 et sin £ ~ £. Donc,

. t . t\" it\"
cost+tsint = | cos — + 2sin — ~ (14 — ~e .
n n n
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Une preuve rigoreuse de la formule d’Euler s’obtient en utilisant les séries
connues pour sin et cos : avec 1% = (i?)¥ = (=1)* on obtient

n=0
St
= kZ:O @k ' 2 kT 1)

s & t2k ) Rt & t2k+1
= ,;0(71) (2k)!“;(’1) @k 1)

= cost +sint.

Dérivée d’une fonction a valeurs complexes

On définit la différentiabilité et la dérivée d’une fonction f : R — C d’argument
réel, mais & valeurs complexes, comme pour une fonction g : R — R a valeurs

réelles :
f(t) — f(to)
t5t0 t—t ’
On démontre facilement que f = u + iv est différentiable si et seulement si ses
parties réelle u et imaginaire v le sont, et que

(9.17)

F@) = (t) +iv' (). (9.18)
~ . . P / ¢ df
On a les mémes notations alternatives pour la dérivée, f'(tg) = f(to) = a(to),

que dans le cas réel.

Exemple. Pour un nombre complexe A, considérons la fonction f : R — C
donnée par f(t) = e . Le calcul direct de la dérivée est facile :

A(t+T7) _ At AT 1
f(t) = lim S | eM
70 T T—0 T
_ T 1 (A7)? At
—}_%(T(/X'FAT—I- ot —1))e
= XeM = \f(t).

On arrive au méme résultat en utilisant la formule (9.18), c’est-a-dire en
passant par la décomposition de f(t) en parties réelle u(t) et imaginaire
v(t) :si A =a+1i8 avec «, 8 € R, alors

f(t) = EAt = emelﬂt = €at (COS ﬂt =+ 7sin /Bt)
= ™ cos At + i e sin Bt.
Donc f(t) = u(t) + tv(t) avec

e®t cos Bt

v(t) = e sinBt.

£
—~

~
~

I

On trouve W' (t) = ae™ cos Bt — e Bsin Bt
v'(t) = ae® sin Bt + e** B cos fBt,
et finalement
o' () +iv'(t) = e (a cos Bt — Bsin Bt + i(asin St + B cos ﬂt))
(o +iB8)e™ (cos Bt 4 isin Bt) = Ae .
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Exemple. On peut prouver la formule d’Euler en utilisant la dérivée de la
fonction f(t) = (cost +isint)/e" :

£t = (— sint—i—icost)e“;t (cost + isint)iet o
e

Cette fonction est donc constante, et ainsi f(t) = f(0) = 1, ce qui démontre

e = cost + isint

pour tout t € R.

Les équations différentielles linéaires revisitées

Rappelons le probleme : Comment résoudre l’équation différentielle linéaire ho-
mogeéne a4 coefficients constants

T+br+cx=0

dans le cas o son polynéme caractéristique x(\) = A2 +bA\+c n’a pas de racine
réelle ?

Admettons maintenant des solutions complexes de I’équation différentielle, c’est-
a-~dire des fonctions différentiables ¢ : R — C avec $(t) + bp(t) + cp(t) = 0.
Nous venons de voir que, pour une fonction de la forme ¢(t) = e’ avec A € C
on a la méme forme de la dérivée que pour A € R, & savoir ¢(t) = Ae . Cela
nous donne le

Théoréme. Une fonction z(t) = e* est une solution (complexe) de I’équation
différentielle 24+ bz +cz = 0 si et seulement si A € C est une racine du polynome
caractéristique x(\) = A% + b + c.

Dans ce théoréeme, on peut méme admettre des coeflicients b, ¢ complexes ; mais
revenons a notre probléme ou b et ¢ sont réels mais tels que le polynome ca-
ractéristique n’a pas de racine réelle. Il a donc les deux racines complexes
conjuguées A\ 2 = a £if avec B # 0. Elles sont donc différentes, et on voit
facilement que les deux solutions

21(t) = eMt = eelPt = e (cos(Bt) + i sin(Bt))
25(t) = 2t = et = ¢(cos(Bt) — isin(fBt))

sont linéairement indépendantes et forment un systéme fondamental complexe.

Toute combinaison linéaire a;21(t) 4+ az22(t) & coefficients a1, as € C est une so-
lution. En particulier, nous retrouvons le systeme fondamental de deux solutions
réelles donné a la page 95 comme suit :

x1(t) = %zl (t) + %Zz(t) = e™ cos(Bt)
2a(t) = % A(t) - % 2(t) = ¢ sin(Bt)

Oscillations et complexification. Les solutions complexes sont utiles pour
traiter les oscillations induites. Considérons par exemple I’équation différentielle

&+ 204 4+ wiz = cos(wt). (9.19)
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avec 0,wg € R. On peut regarder cette équation comme la partie réelle de
I’équation complexe ‘
54202 +wiz = et (9.20)

Lorsque z(t) = z(t) + iy(t) est une solution complexe de (9.20), sa partie réelle
x(t) résout (9.19).
Pour (9.20) nous cherchons une solution du méme type que I'inhomogénéité,
c’est-a-dire que nous faisons I'ansatz z(t) = Ae®*. On trouve

54262+ wiz = (—w? + 200w + wi) Ae™.
C’est une solution de (9.20) si I'on choisit

1

A:‘ .
w37w2+2i5w

Exemple. Pour obtenir une solution de & + = = cos2t, on procede en trois
étapes :

1. Complexification : % 4 z = €2,

2. Résolution de cette équation par I'ansatz z(t) = Ae? : on obtient A =

L= —%, donc la solution complexe

-4
Z(t) — eZzt
L . 1 .
3. La partie réelle de z(t) est la fonction z(t) = 3 cos 2¢t. Elle est bien
solution :

4 1
r+x= gcos2t— gcos2t:cos2t.

Il faut remarquer que cette méthode ne fonctionne pas si w3 — w? + 2idw = 0.
Mais ce n’est le cas que lorsque 6 = 0 et w = fwg. On trouve alors une solution
avec la méthode de la variation des constantes.

Note historique

L’idée de résoudre 1’équation z? = —1 tout simplement en ajoutant encore

des nombres — notamment i avec i> = —1 — n’était pas & lorigine
des nombres complexes. On se contentait plutét de constater que cette
équation n’avait pas de solution : si 1’équation z? = b est interprétée
géométriquement comme recherche d’un carré de co6té x tel que son aire
soit égale & b, ’équation n’a pas de sens pour b = —1, et la non-existence
d’une solution ne géne pas.

Par contre, on connaissait au 16eme siecle des formules pour la résolution
d’équations cubiques. Une de ces formules de CARDAN donnait comme
solution de I’équation

mszpa:—kq avec p,qg >0

I’expression
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Pour P’équation x® = 15z + 4 la formule nous livre

1= {2+ VoT20 4+ {2 — Vo121,

Cette expression contient le nombre v/—121, qui n’avait pas de sens pour
les gens de l’époque. Mais en ignorant ce fait et en calculant avec ce
nombre inexistant ou imaginaire suivant certaines regles, on trouva le
résultat x1 = 4, une solution parfaitement admissible !

Dans cet exemple, les nombres complexes sont donc un outil qui permet de
trouver les solutions réelles d’un probléme & données réelles. Nous avons
vu une autre application de ce genre, a savoir l'utilisation des nombres
complexes dans la résolution de certaines équations différentielles réelles.

L’interprétation géométrique des nombres complexes fut découverte vers
la fin du 18eme siécle (Caspar Wessel, Jean-Robert Argand) : comme elle
joua un role essentiel dans la démonstration du théoréme fondamental de
lalgebre par Gauss, on parle aujourd’hui du plan (numérique) de Gauss.
La construction des nombres complexes a partir des nombres réels que
nous avons présentée n’a été introduite qu’en 1833 par le mathématicien
et physicien irlandais W.R. Hamilton.
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Chapitre 10

Gradient et dérivées
partielles

Dans ce chapitre, nous traitons des fonctions f(z1,za,...,2,) de plusieurs va-
riables, principalement dans les cas n=2 et n=3 qui montrent déja les diffé-
rences essentielles par rapport au cas n=1. On utilisera aussi x,y,z comme
noms des variables, a la place de x1,z2,x3. Les fonctions considérées sont en
général définies sur des sous-ensembles D C R"”, tels par exemple

{(z,y) ER?* | (x —x0)* + (y —yo)? <1} (un disque ouvert),
{(z,y) eR* |a <2 <b, c<y<d} (un rectangle fermé),
{(z,y,2) € R®| z,y,2 >0} (un octant).

Représentations graphiques

Graphes. La premiere méthode de visualisation d’une fonction f : D — R de
deux variables (c’est-a-dire avec D C R?) est la représentation par son graphe
Gy C R3 défini par
Gy ={(z,y,f(z,y)) | (x,y) € D}
= {(%ZU,Z) € R3 | (xay) € D> = f($7y)}7

une sorte de <tapis flottant> dans l’espace R? au-dessus de D :

Ensembles de niveau. Une autre méthode de visualisation graphique d’une
fonction f : D — R définie sur D C R? est la représentation par ses lignes de
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niveau (ou courbes de niveau, plus précisément ses ensembles de niveau). Pour
tout s € R, la ligne de niveau Ny est ’ensemble des points (x,y) du plan en
lesquels la fonction est définie et prend la valeur s :

Ns:{(zay) €D|f($’y):5}'

On obtient Ny comme projection de l'intersection du graphe de f avec le plan
horizontal z = s dans le plan z, y.

2

Exemples

1. Une fonction linéaire inhomogéne (ou fonction affine) de deux variables
f :R? = R est une fonction de la forme

f(z,y) = ax +by +c

avec des constantes a,b, ¢ € R. Son graphe est un plan dans R3. Si a # 0
ou b # 0, alors toute ligne de niveau

N, ={(x,y) | ax + by + ¢ = s}

est une droite. Mais si a = b = 0, alors f est une fonction constante ; dans
ce cas, Ny, = () pour s # ¢, et N, = R? pour s = c.

2. Si f(z,y) = 2® + y?, alors le graphe G est un paraboloide de révolution,
obtenu en faisant tourner la parabole z=z? autour de 'axe des z. Pour
s > 0, la courbe de niveau Ny est un cercle de rayon /s centré 1'origine
(0,0); pour s < 0, Ny est 'ensemble vide, tandis que Ny consiste en un
seul point, (0,0).

L1
P-‘-{ |
LA

\
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3. Le graphe de f(x,y) = 22 —y? est un paraboloide hyperbolique, une surface
qui posseéde la forme d’une selle. Pour s # 0, les lignes de niveau N sont
des hyperboles, tandis que Ny est une paire de droites.

——— 2
N

4. La fonction f(z,y) = /1 — (22 + y2) est définie pour 22 + y? < 1, c’est-
a-dire f : D — R avec le disque D = {(z,y) € R? 2%+ 3% < 1}. Son
graphe est un hémisphere de rayon 1. Pour 0 < s < 1, la ligne de niveau
Ny = {(z,y) | 2% + y?> = 1 — 5%} est un cercle de rayon /1 — s2.

5. Les lignes de niveau sur une carte topographique sont celles de la fonction
f(z,y) = altitude au point (x,y). Les isobares sur une carte météorologi-
que sont les courbes de niveau de la pression atmosphérique.

Tue 18-Feb-2003
< e

Wettorkarte van 12 UTC
Cartadu temps de 12 UTC.

Cas général. Plus généralement, pour les fonctions f : D — R de n variables,
c’est-a-dire avec D C R", on a aussi les notions de graphe Gy C R+ et
d’ensemble de niveau, Ny C D. Dans ce cas général, ils sont définis par

Gf = {(xla"'axn7$n+1) |$n+1 = f(x1,~-~,$n)}
Ny ={(x1,...,2n) € D| f(x1,...,2n) = S}.

Par exemple les surfaces équipotentielles d’un champ électrique dans R? sont les
ensembles de niveau du potentiel électrique. Pour n > 3 les ensembles Ny C R"™
sont impossibles (ou au moins difficiles) & visualiser, mais ils ont une signification
trés concrete : les <points> (x1,...,x,) € N, sont les solutions de ’équation

flxy,...,z,) = s.
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L’espace R"

On peut regarder les fonctions de n variables comme fonctions # — f(Z) d’une
seule variable — mais cette variable & représente des points dans R™. Rappelons
que R™ est I’ensemble des n-uples

= (x1,22,...,2Tpn)

de nombres réels. Donc R! = R est la droite réelle, R? le plan avec ses coor-
données cartésiennes, et R®* = {(z,y,2) | x,y,2 € R} I'espace euclidien. Les
éléments £ € R™ s’appellent les points de R™ ou les vecteurs, et x1,xo ... sont
les composantes du vecteur Z. Dans ce contexte, les nombres A € R s’appellent
les scalaires.

Remarquons que, dans un traitement plus approfondi, on distingue entre
points © € R"™ et vecteurs ¥. Géométriquement, les vecteurs sont des
< fleches> avec un point initial z et un point final y. On peut formaliser
ce concept en définissant qu’un vecteur en x est un couple ¥ = (z,y) de
points de R™. Dans notre régime simplifié, on identifie ¥ = (z,y) avec y,
et on utilise la notation ¢ au lieu de y seulement pour se rappeler qu’il
ne s’agit pas d’un scalaire.

Opérations algébriques. Dans R™, on utilise les opérations algébriques sui-
vantes : ’addition des vecteurs, la multiplication des vecteurs par des scalaires
A, et le produit scalaire (Z, ) de vecteurs. Elles sont définies par
f—'_:lj: (xla LR ,.’L'n) + (ylv' .. 7yn) = ($1+y17° .. 7x’n+yn)
AE=X(T1,...,2n) = (A21,..., Azp)

n
(Z,9) = > Ty =T1y1 + .. + ToYn
k=1

pour Z, ¥ € R™ et A € R. Notons en particulier que le produit scalaire de deux
vecteurs n’est pas un vecteur mais un nombre (ou scalaire). Dans la littérature,
on trouve souvent la notation ¥ - ¢ au lieu de (Z, 7). On vérifie facilement les
regles

<f+g7 Z) = <‘fvz> + <Z7727>

<f, ?7+Z> = <5737> + <f,§')
<)‘f737> = A(f,@ = <fv )\ZD
@9 =159,

Distance. Les notions de longueur, distance et d’angle connues de la géométrie
vectorielle dans R? et R® se généralisent a R™ : la norme euclidienne (ou lon-
gueur) d’un vecteur Z est définie par

2] = V(@) = \Ja? +... +a2,

la distance (euclidienne) entre & et § par

dist(Z,7) = |7~ 7l = V(@1-91)? + ... + (@0 —yn)?
et I'angle 0 € [0, 27] entre Z, 7 # 0 satisfait

{7, 9)

COSHZ T ———
[1Z(H]471]
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(Remarquons que, comme dans le plan R? et dans R3, il y a en fait deuz angles
caractérisés par cette relation, 6 et 2r—0. ) Les vecteurs &, ¢ sont dits orthogo-
nauz (ou perpendiculaires) si (Z,4) = 0. Un vecteur unitaire est un vecteur &
avec ||Z|| = 1.

La boule (ouverte) de centre @ et de rayon r > 0, aussi appelée r-voisinage de
a, est ’ensemble de points a distance < r de d, c’est-a-dire

B.(a) ={ZeR" | ||Z—d|| <r}.
Un point Z est dit un point intérieur d’'un ensemble D C R™ s’il existe un rayon

r > 0 tel que la boule B,.(Z) est contenue dans D ; et ensemble D est dit un
ensemble ouvert si tout point de D est un point intérieur de D.

Le concept de distance dans R™ donne lieu aux notions de convergence et de
continuité comme dans le cas n = 1. Une suite
(T )ken = (Lo, 1, .. .)

de points T dans R™ est dite convergente vers @ si la suite de ses distances
||Zx — @|| & @ tend vers zéro. Dans ce cas on écrit Ty — @ (k — 00) ou

lim .’fk =d.

k—o0

Comme dans le cas n = 2 (voir p.101), on montre que Zx — @ si et seulement

si xp; — a; pour tout j = 1,...,n, c’est-a-dire si et seulement si la jieme
composante de Ty = (zk,1,...,Zk,n) converge vers la jieme composante de & =
(alv RS an)'

Une fonction f : R™ — R est dit continue en T si klim f(Zx) = f(Z) pour toute
— 00

suite ¥, avec Ty — T.

La base standard. Considérons maintenant les vecteurs unitaires

& = (1,0,0,...,0)
42:(()’1507"'50)
& =(0,0,1,...,0)

€, =(0,0,0,...,1).

(ensemble ordonné ¢, ..., ¢, s’appelle la base standard de Uespace R™.) Ils
satisfont aux <relations d’orthogonalité >

ooy 1, sij=k;
(€5 € = Oy = { 0, si j # k.
On obtient les composantes z; d'un vecteur & = (z1,...,2,) comme produit

scalaire de & avec €,
S
z; = (Z, €;).

Tout & s’écrit comme combinaison linéaire des €; : par exemple, pour n = 3,
3_5" = ($1,$2,$3)
€y (17()’0) + T2 - (0)170) +x3 - (0,0, 1)

= T1€1 + T2€2 + T3€3

—

= (T, €1)e1 + (T, €2)é + (T, €3) €3
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et en général
n

n
=Y w6, = (T,6)¢.
j=1 j=1

Fonctions différentiables, différentielles, gradients

Rappelons (voir p. 23) qu'une fonction f : R — R d’une seule variable
réelle est différentiable en x¢ si elle admet une bonne approximation par
une fonction linéaire inhomogene x — f(xo)+a-(x—xo) dans un voisinage
de zo. Plus précisément,

f(@) = f(zo) +a- (z —z0) + R(z)
avec un reste R(z) ayant la propriété

lim R(z)

T—x( |:r — .IJQ| -

Si c’est le cas, alors a est la limite d’un quotient de différences

f(wo+h) = f(zo0)

a= f'(z0) = lim Y ,

et on appelle la fonction linéaire h +— dfy, (h) := f'(z0) - h la différentielle
de f en xg. Sous cette forme, la définition de la différentiabilité s’étend
aux fonctions de plusieurs variables.

Une fonction L : R™ — R de h = (h1,...,hy) est dite linéaire si elle est de la
forme

L(h) = (k) = by + ... + lnhy
avec un vecteur constant | = (I4,...,1,) € R™. Les composantes I; sont alors
uniquement déterminées par L, car L(€;) = (I, €;) = [;.

Définition. Soit D C R™. La fonction f : D — R est (totalement) différentiable
en Iy € D s'll existe une fonction linéaire L : R™ — R, L(h) = (I, h), telle que
pour tout ¥ € D

f(@) = f(&o) + L(Z — &) + R(Z) (10.1)
= f(Zo) + (I, ¥ — Zo) + R(Z) (10.2)
et ou le reste R satisfait & la condition
lim R@) _,,

Nous verrons que [ et donc L sont alors uniquement déterminés. La fonction
L s’appelle la différentielle, le vecteur [ le gradient de f en Zy. On désigne la
différentielle par dfz, et le gradient par gradf(Zp) ou ﬁf (o) (& lire «nabla ).
Ainsi par définition,

dfz,(h) = (gradf (o), h) (10.3)

Donc la différentielle dfz,, une application linéaire R™ — R, est donnée par le
produit scalaire avec le vecteur gradf(Zy).
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En posant Z — &y =: h on peut maintenant écrire les équations (10.1-2) sous la
forme

f(@ +h) = f(Zo) + dfz,(h) + R(h) (10.4)
= [(#o) + (grad (7o), h) + R(h) (10.5)
avec lim R(_,H) =0
h—G ||h]]

Dérivées directionnelles

Fixons & et ¥ € R™ et considérons la droite paramétrée t — T +t7 (t € R) dans
R™. Considérons la fonction t — f(Z + t7) de la seule variable réelle ¢.

et donc

f(@+t0) — f(@)
t
A la limite t — 0 nous obtenons

R(t7)

= (grad f(Z), ) +

J@+10) — £()

fe() = {gradf (7). ) = lim t (10.6)
Cette limite HE 4 1) - (@)
S T+ t0) — f(Z

pn t:Of(x + V) = }gr(l) . (10.7)

s’appelle la dérivée directionnelle de f le long de v, ou suivant ¢, bien qu’elle ne
dépende pas seulement de la direction de v. C’est le taux de variation instantanée
de f considérée comme fonction de t sur la droite ¢t — £+ tv/, pour ¢t = 0. Quand
¥ est un vecteur unitaire, c’est simplement la croissance (ou la pente) de f en
Z dans la direction de v.

Signification du gradient

La formule (10.6) donne la signification du gradient. Prenons en effet un vecteur
unitaire ¥, et soit 6 Pangle entre ¢ et gradf(Z). Alors

d o L
Sl @+ 1) = (radf(@),9)
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= |lgradf(Z)[|[|7]] cos 6
= |lgradf ()] cos 0
< [lgrad f(Z)]],

avec I’égalité si et seulement si cos @ = 1, c’est-a-dire si ¥ et grad f(Z) ont la méme
direction. Donc la croissance de f est maximale dans la direction du gradient,
et la valeur de cette croissance maximale est égale & sa longeur ||gradf(Z)||.

Dérivées partielles et calcul du gradient

Si f : D — R est une fonction différentiable en #, comment calculer son gradient
grad f(Z) 7 Rappelons qu’on peut calculer les composantes d’un vecteur @ en
prenant les produits scalaires w; = (&, €;). Ainsi pour obtenir les composantes
(gradf(Z), €;) du vecteur gradf(Z), nous appliquons la formule (10.6) avec ¥ =
€;. Par exemple pour j = 1,

(grad f(7), &) = lim L&) = /(@)

t—0 t
— lim flei+t,za,. .. xn) — f(z1, 22, ..., 2p)
t—0 t

Mais c’est simplement la dérivée en £ = x; de la fonction de la seule variable
réelle &,

E f(& xay . xn),

qu’on obtient & partir de f en fizant les autres variables zo, .. ., x,. Cette dérivée
est dite dérivée partielle en & de f par rapport a xy, et notée

of
8$1

De maniere analogue ex1stent les dérivées partielles par rapport aux autres va-
riables 0;f = 0., f = 5.~ pour j = 2,...,n. La dérivée partielle de f par rap-

— (&) ou O, f(Z) ou Of(Z).

port a une variable xj se determme en Considérant les autres variables comme
constantes, c’est-a-dire en traitant f comme fonction de la seule variable ;, et
en calculant la dérivée ordinaire de cette fonction. Pour le gradient, nous avons

finalement o of o7
df = =——,=—,..., =— 10.
weaf = (L2050, (103)
et la formule (10.5) (avec Z a la place de ) s’écrit
f(@+h) = f(Z) fji )h; + R(h). (10.9)
= oz

Exemples

6. Dans le cas n = 2 et avec la notation (z,y) a la place de & = (x1,22) et
(h, k) & la place de 1t = (hy, hs), le gradient de f est

_(9f of
gradf = <8w’ 8?!)
la différentielle en (z,y) est la fonction linéaire df(, ) : R* — R donnée
par
_of of
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et la formule (10.9) devient

0 0
fot b+ 1) = Fo) + G @+ G @)+ BB, (1010)

7. Pour f : R? = R, f(z,y) = 2y + sin(zy?) on obtient

of _ 3y.3
39:(x’y) =y + cos(zy”)y
of _ 3y .2
By (x,y) = x + cos(zy”)3zy~.

8. Différentiation implicite. Supposons que la fonction z = z(x,y) satis-
fasse a 1’équation
xyz = sin(z + y + 2).

Calculer 0z/0x en termes de z, ¥, 2.

Solution. On ne peut pas résoudre ’équation par rapport a z afin d’obtenir
une formule explicite pour la fonction z(z,y). Au lieu de cela, on prend la
dérivée 0/0x de I’équation en utilisant la régle de la chaine :

0 J .
%(xyz) . sin(x + y + z)

cos(z +y+ 2) (1—|— %)

n 0z
z 4 ry—
Y y@x
En résolvant cette derniere équation pour dz/dx, on obtient le résultat :

0z cos(z +y+2)—yz
Or  ay—cos(x+y+2)

Noter que cette formule ne donne pas 9z /9x explicitement comme fonction
de = et y, mais en termes de x,y et z = z(x,y).

Critere de différentiabilité

Si toutes les dérivées partielles 0, f(¥) existent, alors f est dite partiellement
différentiable en I. Nous avons vu que toute fonction totalement différentiable en
T est partiellement différentiable en Z. Par contre, il existe des fonctions partielle-
ment différentiables qui ne sont pas totalement différentiables : on peut écrire la
formule (10.9), mais le reste ne satisfait pas la condition lim; 5 R(h)/||n]] = 0.
Néanmoins on peut démontrer le théoréme suivant :

Théoréme. Si les dérivées partielles O1f,...,0nf de f : D — R existent en
chaque point d’une voisinage de & et sont des fonctions continues en I, alors f
est totalement différentiable en Z.

Pour vérifier que f est différentiable dans (chaque point d’) un domaine D,
il suffit donc de calculer ses dérivées partielles et de contréler qu’elles sont
continues. Selon ce critére, la fonction f(x,y) = xy + sin(zy?) de 'exemple
précédent est différentiable dans tout R2.
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Application : propagation d’erreurs

Soit f(Z) = f(z1,...,2n) une fonction de plusieurs variables que 'on
aimerait évaluer au point @ = (a1, ..., ay). Si’argument @ n’est pas connu
avec précision mais seulement a une petite erreur € pres, on se pose la
question de l'influence de cette erreur sur la valeur de f : si ¥ ~ a avec
# — @ = h satisfaisant ||h|| < &, comment estimer Perreur |f(Z) — f(@)|?

Pour cette estimation, nous utilisons ’approximation
F@) = f@+h) = f(@ -+ (Vf(@,h) + R(h)
~ f(@)+ (Vf(@),h) (10.11)

et mesurons erreur entre @ et £ par leur distance euclidienne, c’est-a-dire
nous supposons que

En négligeant pour le moment l'erreur de I’approximation (10.8), nous
obtenons

(&) - f@] = (Y f(@),h)]
IV £@@)|] - |IF]| - | cos 6]
|V £(@)|

IN

Il s’agit d’'une estimation du < premier ordre>, ce qui veut dire qu’en
tenant compte du fait que (10.9) n’est qu'une approximation, nous avons
en réalité

(@) - £(@) < ||V £(@)]] + R(e)

avec lim R(e)/e = 0.
e—0

Regle de la chaine

Courbes. Une courbe (paramétrée) différentiable dans R™ est une application
différentiable 7 : I — R™ définie sur un intervalle I C R. Donc

'7(75) = ('71(t>7 <. 7'7n(t))a

et la différentiabilité veut dire que tout composante 7; est une fonction diffé-
rentiable. L’interprétation cinématique est la trajectoire d’une particule qui se
meut dans l'espace R™ : on consideére le parametre ¢ comme le temps et ()
comme la position de la particule au temps t.

Le vecteur vitesse de la courbe v en t € I est la dérivée

oy AV Y(t+ h) — ()
i = g0 = oy "

— lim (71(t+h)—71(t) Yn(t + h) —%(ﬂ)

h—0 t B t
_ (lim y1(t+ h) *’Yl(t)"”7 lim Yn(t + D) *'Yn(t))
h—0 t h—0 t
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C’est un vecteur tangent a la courbe au point ().

Exemple

9. La courbe ¥ : R — R2, §(t)=(cost,sint), est une paramétrisation du
cercle unité dans le plan. Son vecteur vitesse en ¢ est (t) = (—sint, cost).

Théoréme. (Regle de la chaine) Soient ¥ : I — D C R™ une courbe et f :
D — R une fonction différentiable. Alors la fonction composée fo# : I — R,
(fo)(t) = f(H(t)) est également différentiable, et sa dérivée se calcule par

9 1G(0) = iz (310)
= ((gradf)(7(t)),7(t) ) (10.12)
= ¥ S ) G

Donc le taux de variation instantanée de f le long de la courbe est donné par
le produit scalaire du gradient de f avec la vitesse de la courbe.

Voici une autre fagon, moins précise mais souvent utilisée, d’écrire cette formule :
la courbe est décrite en donnant les coordonnées comme fonctions x1 (), . .., 2, (¢)
du parametre t; alors

df <~ Of daj
o :Z—f—ﬂ. (10.13)
dt - 813]' dt
Jj=1
Dans cette notation, I'application 4 n’est pas explicitement mentionnée : on
utilise z;(t) au lieu de ~;(t). Il faut s’assurer d’évaluer 0f/0x; au point correct.

Indiquons la preuve de (10.12) dans le cas n =2, i.e. montrons que

3 ra,ve) = 2L,y 2 dy

o) G0 0

sous ’hypothese que les dérivées partielles de f soient continues :

fO+R) = @) _ fEt+h),yE+h) - f=(),y(t)

h h

_ St h), y(t+h)) — f(x(t), y(t+h))
h

fz@),y(t+h)) — f(2@), y(t))
h

= 2L or, gl ny DN =20 L (o4 ) LD Z 00

+

avec un 61 entre x(t), z(t+ h) et un 62 entre y(t), y(t+ h). Ici nous avons
appliqué le théoréme des accroissements finis (voir p. 30) a la fonction

120



z — f(z,y(t+h)) et la fonction y — f(z(t),y). Quand h tend vers zéro,
on a 01 — z(t), y(t+h) — y(t) et 02 — y(¢t). Par conséquent

o O, (e+ ) = 2L (@(0),90)

_>
(2(t), 02) — %"(w),y(m

05
o
et donc
timg HOEERDZIEO) 8 ), y(0)) 57 0) + 5 0. 0(0) L 0
Exemples

0
10. Exprimer la dérivée partielle p ( f(z, g(x, y))) en termes des dérivées par-
x

11.

tielles de f et g.

Solution. Rappelons que a%(f(a:,g(x,y))) est la dérivée de la fonction
d’une variable z — f(x,g(z,y)) avec y fixé. Soit ¥ la courbe z — (z,
g(z,y)) dans R%. Nous appliquons la régle de la chaine pour calculer la
dérivée de la fonction z — f(z,g(x,y)) = f(F(x)) :

52 (e ata) = F @ gloa)) - 1+ 5 (o) 520,

Noter la différence entre %(f(x,g(m,y))) et of

%(x, g(x,y)), la dérivée

partielle 9 f/0x évaluée au point (z, g(x,y)).

(Différentiation implicite.) Supposons que la fonction z = z(x, y) satisfasse
a I’équation

F(z,y,2) =0
avec une fonction F différentiable connue. Calculer 9z/dy en termes de
T, Y,z

Solution. On prend la dérivée /9y de I'équation en utilisant la regle de
la chaine pour la fonction y — F(z,y, z(z,y)) :

0]
@F(xvyvz) =0

OF Ox OF 0y OF 0z

oa oy "oy oy Tz oy "
OF | OF 0z _ |
oy 0z oy

En résolvant cette derniére équation pour 9z/dy, on obtient le résultat :

OF
92 a—y(m,y,z)
oy oF
o (z,y,2)
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Gradient et ensembles de niveau

Montrons que le gradient d’une fonction différentiable f : D — R est orthogonal
auzx ensembles de niveau de f dans le sens suivant : soit Ny = {& € D | f(¥) = s}
un ensemble de niveau, et soit 7 : I — Ny C R™ une courbe différentiable conte-
nue dans Ng. Alors pour tout ¢t € I, le gradient gradf(%(t)) est orthogonal au
vecteur tangent ¥(t) de la courbe. En fait, la fonction ¢t — f((t)) est constante
(égale a s), donc sa dérivée s’annule, et en utilisant la régle de la chaine (10.12)
on obtient

0= %fﬁ(t)) = ((grad /) (7(1)), 7(t))-

Donc gradf(5(t)) est orthogonal au vecteur (t).

AR
M

Courbes de niveau et gradient

Exemple

12. Trouver la droite normale & la surface S C R? donnée par
z?yz 4 3y? = 2022 — 8z
au point py = (1,2, —1).

Solution. On vérifie que le point py satisfait a 1’équation, donc qu’on a
vraiment py € S. Si 7 est un vecteur perpendiculaire a la surface en py,
alors la droite normale est donnée sous forme paramétrique par

t > Po + tid.

Il suffit donc de trouver 7. A cette fin, notons que S est I’ensemble de
niveau Ny de la fonction

f(z,y, Z) = wzyz + 31/2 — 2222 + 8z.

Comme gradf(py) est un vecteur perpendiculaire & S en py, on peut
prendre 77 = grad f(pp). Calculons

gradf(z,y, 2) = 2zyz — 22°%, 222 + 6y, vy — 4oz + 8)
ii = gradf(1,2, —1) = (=6, 11, 14).
La droite normale est donc donnée par

t (1,2,—1) + £(—6,11,14) = (1 — 61,2 + 11¢, —1 + 14¢).
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Chapitre 11

Extrema des fonctions a
plusieurs variables

Considérons une fonction f : D — R définie sur D C R™. La valeur f(@) est
le mazimum (global) de la fonction f dans D si pour tout point & € D on a
f(@) < f(d@). On dit alors que f possede un maximum en @. De méme, f a un
minimum (global) en @ si f(Z) > f(@) pour tout € D. Un extremum (pluriel :
extrema ou extremums) de f est un maximum ou un minimum.

On dit que f posséde un maximum local en @ s’il existe une boule Bs(a@) autour
de a telle que la restriction de f & cette boule possede un maximum en @ ; plus
explicitement, si on a f(Z) < f(@) pour tout & € Bs(a) N D.

Rappelons qu'un point & est dit un point intérieur d’'un ensemble D C R" g’il
existe une rayon r > 0 tel que la boule B, (Z) C D.

Théoréme. (Condition nécessaire pour un extremum local.) Soit f : D — R
une fonction qui posséde un extremum local au point @ € D. Si d est un point
intérieur de D et si le gradient gradf(a) existe, alors

grad f(@) = 0. (11.1)

Un point @ qui satisfait a (11.1) s’appelle un point critique de la fonction f. On a
donc un systéme (en général non-linéaire) de n équations pour les composantes
ai,...,a, de a:

0
8—;1(111,(12, ceyan) =0
0
a—ai(al,ag, ceyap) =0
%(alvaﬂv" aan) =0

Preuve du théoreme. La fonction d’une variable

tl—>f(t,a2,...,an)
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est définie sur une voisinage de a; et possede un extremum local en ¢ = a;. Par
conséquent,

af d
Iy, an) =2 tas, ... an) = 0.
8301 (alv , @ ) dt t:alf( as a )
. N . of ,
De la méme manieére on voit que 87(0,1, e ,an) =0 pour ) = 2, ey . D
Lj

Remarquons que la question de ’ezistence d’'un maximum ou minimum
d’une fonction f sur un ensemble D n’est pas triviale. On peut montrer :

Théoréme. Toute fonction continue sur un ensemble D C R"™ compact
posséde (au moins) un mazimum et un minimum.

Ici D est dit compact si D est borné (c’est-a-dire contenu dans une boule)
et fermé (c’est-a-dire que le complément R™\D est un ensemble ouvert).
Par exemple, toute boule fermée B, (@) = {T € R" | || — a|| < r} est un
ensemble compact. Dans ce cours nous n’insistons pas sur ces notions et
sur la question d’existence.

Selon le théoreme précédent, un extremum de f : D — R peut intervenir seule-
ment en trois sortes de points :

e points intérieurs avec gradf () = 0 (points critiques),

e points intérieurs ou grad f(#) n’existe pas,

e points ¥ € D sur le bord de D.

Le théoréme fournit donc une stratégie pour trouver le maximum (et de maniere
analogue le minimum) d’une fonction dans un domaine D :

Trouver les points intérieurs de D avec gradf(Z) = 0 ou dans
lesquels grad f(Z) n’existe pas. Evaluer f en ces points. Compa-
rer avec les valeurs de f sur le bord de D, et prendre la plus
grande valeur ainsi trouvée.

Exemples

1. Soit f:R? — R la fonction

3 3

flz,y) =a* +y* —2® — 29"

Déterminer si f posséde un maximum et/ou un minimum sur D = R2. Si
c’est le cas, les trouver.

Solution. Montrons que f(z,y) — +oo quand r := ||(z,y)|| — oo. Par
conséquent, f n’a pas de maximum dans R2. A cette fin, écrivons f en
coordonnées polaires © = rcosf, y =rsinf :

f(z,y) = r*(cos* 6 + sin? 0) — r3(cos® 6 + 2sin® )

B
r4(A — —) — 400 quand r — 400
r
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car
1 1
A =cos* 0 +sin 0 > 5(00529+sin2 0)* = 3 et
|B| = |cos® 6 + 2sin® 9] <1+2=3.

(On a utilisé I'inégalité a? + b* > %(a +b)? pour a,b € R, que I'on vérifie
aisément & partir de l'inégalité (a — b)% > 0.)

Puisque f est continue et comme f(z,y) — +oo quand r := ||(z, y)|| tend
vers +00, il est plausible que f posséde un minimum. En fait £(0,0) = 0,
et & lextérieur d’une boule B,.(0) de rayon r suffisamment grand on a
certainement f > 1 (disons), donc on doit avoir un minimum de valeur
< 0 dans un point intérieur de B,(0). Comme le gradient de f existe
en tout point de R2, les seuls candidats pour le minimum sont les points
critiques. On calcule

of 6f> (42 — 322, 4y — 6y?).

e fe,) = (5.5

Les points critiques sont donc les solutions du systeme

22 (4r — 3) =
y*(4y — 6)

On trouve les points critiques (0, 0), (Z, O), (O7 g) et (Z, g) Les valeurs
de f en ces points sont

f(0,0) =0, f(%o) = f%, f(O, ;) SIS —1,6875

16
33 459
t - =) =—=—=-1,7929...
¢ f<4’2) 256~ 1020
Résultat : f n’a pas de maximum dans R?; I'unique minimum de f est
e
4'2) 256

ﬂgﬂ

=

Graphe de f, lignes de niveau et gradient
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2. Montrons que la fonction f(z,y,2) = zy + yz — xz n’a pas d’extremum
local dans D = R®. Comme le gradient de f existe partout dans R3, et
puisque tout point de R? est un point intérieur de R3, les seuls candi-
dats pour un extremum local sont les points critiques de f. La condition
gradf(z,y, z) = 0 équivaut au systéme

y—z=20
r+2z=0
y_l‘:07

dont la seule solution est (0,0, 0). Ce point critique n’est pas un extremum
local : on a f(0,0,0) = 0 mais f(¢,¢,0) = t> > 0 et f(t,0,t) = —t? < 0
pour tout ¢ # 0. Ainsi dans tout voisinage de (0,0,0) il y a des points ol
f prend une valeur positive, et d’autre points ou f est négative. Donc f
n’a pas d’extremum local en (0,0, 0).

3. Considérons la fonction f: R? — R donnée par

flz,y) = Va2 +y2.

La valeur f(z,y) est la distance du point (z,y) au point (0,0). Donc f
posséde le minimum £(0,0) = 0 et pas de maximum dans R2. Le point
(0,0) n’est pas un point critique, mais un point ou le gradient n’existe pas.

4. Trouver les maxima et minima de la fonction

flay)=ay—z—y+3
dans le triangle D C R? de sommets A = (0,0), B = (2,0) et C = (0,4).

Solution. Le gradient de f existe partout dans R?. Les candidats pour le
maximum et le minimum sont donc les points critiques intérieurs a D et
les points du bord de D. On trouve (1,1) comme seul point critique de f,
et la valeur correspondante est f(1,1) = 2. Examinons maintenant f sur
le bord du triangle, c¢’est-a-dire sur les segments AB, AC et BC.

e Le segment AB est ensemble AB = {(z,y) | 0 <z < 2ety=0}.
Pour la fonction f on obtient sur AB les valeurs f(z,0) = —z + 3
avec 0 < x < 2. Cette expression est maximale pour x = 0 avec
£(0,0) = 3 et minimale pour z = 2 avec f(2,0) = 1.
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e Le segment AC est I'ensemble AC' = {(z,y) | x = 0et 0 <y < 4}.
Pour la fonction f on obtient sur AC' les valeurs f(0,y) = —y+3 avec
0 <y < 4. Cette expression est maximale pour y = 0 avec f(0,0) = 3
et minimale pour y = 4 avec f(0,4) = —1.

e Le segment BC' se trouve sur la droite y = —2x + 4, en fait BC
est Pensemble BC' = {(z,y) | 0 < z < 2 et y = —2x + 4}. Pour la
fonction f on obtient sur BC' les valeurs

f(z,y) = f(x, -2 +4) = —22> + 50 — 1

avec 0 < x < 2. Par conséquent, le maximum de f restreint au
segment BC' est le maximum de la fonction g(z) = —222 45z — 1 sur
I'intervalle 0 < z < 2, et de méme pour le minimum. Cherchons donc
les extrema de g sur [0,2]. On a ¢'(x) = —4x + 5 qui s’annule pour
x =5/4, et on trouve g(0) = —1, g(2) =1 et g(5/4) = 17/8 = 2,125.
Le maximum de f sur BC est donc f(5/4, 3/2) = g(5/4) = 17/8 et
le minimum f(0,4) = ¢g(0) = —1.

Résumons les candidats pour le maximum et le minimum de f sur D :

f(171)22a £(0,0) =3, f(2,0)=1, f(0,4) = -1, f(§7g) — g

Résultat : le maximum de f est f(0,0) = 3, le minimum f(0,4) = —1.

Dérivées partielles d’ordres supérieurs

Pour une fonction partiellement différentiable dans D, c’est-a-dire en tout point
de D, les dérivées partielles 0f/0x) sont des fonctions sur D. Lorsque ces
fonctions sont partiellement différentiables, on définit les n? dérivées partielles

d’ordre 2,
0% f o (of
O, 0r O, () = 02,(0z, f) = 0j(Okf) -

ka
Pour j =k, on utilise la notation

2f  9f

T‘T% - 8xk (%ck
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En prenant les dérivées partielles de ces dérivées partielles, on obtient les dérivées
partielles d’ordre 3, 4, etc. La fonction est dite m-fois continiment différentiable
si toutes ses dérivées partielles d’ordre < m existent et sont continues.

Remarquons qu’il existe des fonctions f pour lesquelles l'ordre des dérivées
successives n’est pas indifférent : il arrive que 0, ,(0s,, f) # 0, (0z,; f). Mais en
pratique, c’est plutot une exception :

Théoréme de Schwarz. Si f : D — R est deux fois continiment différentiable,
c’est-a-dire si les dérivées partielles d’ordre deur existent et sont continues,
alors
o*f _ 0% f
8xj 8$k o ail'k 8x]— '

En appliquant ce théoréme plusieurs fois, on conclut que, si f est m-fois continfi-
ment différentiable, alors pour chaque dérivée partielle d’ordre < m de f 'ordre
des dérivées successives est indifférent.

Exemple

5. Vérifions le théoréme de Schwarz pour la fonction f(x,y) = sin(xy?) :

o sin(zy?) = 9 (cos(zy?) - 2zy)
ox dy ox

= —sin(zy?) - y? - 22y + cos(xy?) - 2y
= —2xy°sin(xy?) 4 2y cos(zy?)

i sin(myz) = 2 (cos(myQ) . y2)
Oy Ox oy

= — sin(ny) -2y - y2 + COS(ny) -2y
= —2xy° sin(xy?) 4 2y cos(zy?)
et on a bien
0% f B 0% f
Oxdy Oyor’

La formule de Taylor
Rappelons! la formule de Taylor pour une fonction ¢ : I — R d’une variable

réelle (m + 1)-fois différentiable (voir p. 35) :

1 1
O(0) 2+ ..+ — ™ (0)t™ + Rpr (11.2)

p(t) = ¢(0) + P (0) t + 5 ]

avec le reste de Lagrange

1
Run1 = | @D (9) gt (11.3)

m+1)!

pour un ¢ entre 0 et .

1Si vous trouvez cette section indigeste, continuez avec la version simplifiée (11.6) de la
section suivante.
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Considérons maintenant une fonction f : D — R de n variables qui soit (m+ 1)-
fois contintiment différentiable. Fixons un point £ € D et un vecteur he R"™, et
supposons que le segment entre & et T + E, donné par ¥ + th (0 <t <1),soit
contenu dans D. Alors la fonction ¢ : [0,1] = R

P(t) = f (T + th)

est (m + 1)-fois différentiable, et on peut appliquer la formule (11.2). Calculons
les dérivées de ¢ en utilisant la regle de la chaine plusieurs fois :

o(t) = f(Z+1th)
‘(t) = 0if (& + th)h

i=1

"(t) = > 9;0;f(& + th)hih;

ij=1

P() = D 0:0;0kf (T + th)hihjhy

i,j,k=1
et donc pour t=0
©(0) = f(2)
©'(0) = > 0if(@)hi
=1
©"(0) = > 0:0;f(&)hih;
i,j:l
o"( Z 8;0;0 f (Z)hihjhy .
i,5,k=1

Afin d’écrire le terme général, il est préférable de désigner les indices d’une

maniere systématique, par exemple ji,j2,j3... au lieu de 4, j,k,.... On arrive
alors &
X Lo
JiyeensJe=1

En substituant ces résultats dans (11.2) et en posant t=1 nous obtenons la
formule de Taylor pour les fonctions de n variables :

f(@+h) = +Zaf Vhi+ 'Zaaf Vhihj+ .. .4 Ry () (11.4)

i,j=1
A Taide de la formule (11.3), on trouve
Rm+l (E>

lim —=—-—= =0. 11.5
2" "

La valeur f(Z+h) s’écrit donc comme polyndéme de degré m dans les n variables

hi,...,hy, plus un reste R,,4+1. Notons que pour m =1 cette formule se réduit
a Pégalité (10.9).
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Le second terme du c6té droit de (11.4) nous est bien connu :

la différentielle de f en &, appliquée au vecteur A (voir (10.3)).
Le troisieme terme est un exemple d’une forme quadratique dans le sens de
I’algebre linéaire, c’est-a-dire une fonction de la forme

q(hy, ... hy) = Z aiihih; .
i,j=1

On appelle le systeme des n? coefficients aij, 1,7 = 1,...,n la matrice de la
forme quadratique. Dans notre cas c’est la matrice

_ o
B (“)xz aLL’j

9,0, f (%) (@)

des dérivées partielles d’ordre 2, appelée matrice hessienne de f en &, d’apres le
mathématicien Ludwig Otto Hesse (1811-1874). Elle est symétrique (a;; = a;;)
en raison du théoréme de Schwarz.

Formule de Taylor et extrema locaux

Pour simplifier la discussion, considérons maintenant des fonctions de deux va-
riables f(z1,22) = f(z,y) et la formule de Taylor (11.4) dans le cas particulier
m = 2. Cette formule s’écrit maintenant, avec la notation abrégée O, f = 0,0, f
et, en utilisant le théoreme de Schwarz, O,y f = 0,0y f = Oya f,

fla+hy+k) = f(z,y)

4 5 (B )2 200 £ )k + By f ()07
+ Rg(h, k?) .
avec
Ra(h k) _ (11.7)

(h,k)lgl(o,o) h? + k2

La derniere égalité dit que, pour (h, k) — (0,0), le reste R3(h, k) tend vers zéro
plus vite que h%+ k2. Donc aux points (z+ h, y+k) d'un voisinage suffisamment
petit de (z,y), la fonction f est bien approchée par un polynéme de degré < 2
dans les variables h, k.

On peut utiliser la formule de Taylor afin de décider si un point critique (z,y)
de f est un extremum local. Dans un tel point, on a

Ouf(2,y) =0
Oyf(z,y) =0

et la formule (11.6) se simplifie. Ecrivons pour le moment

a:asz(xay)7 bzaryf(xvy) et C:ayyf(m;y)v
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afin d’alléger la notation. Alors

fl@+hy+k) = flz,y) (11.8)
—I—%(ahQ + 2bhk + ck?) + R3(h, k) .

Si le terme
(ah® 4 2bhk + ck?) + Rs(h, k) (11.9)

= NI~

est positif pour tout (h, k) suffisamment proche de (0,0), alors on a

fle+hy+k) = fz,y)

pour de tels (h, k), et donc f possede un minimum local en (z, y). S’il est négatif,
f posséde un maximum local en (z,y). Et si dans tout voisinage de (0,0) il
existe des points (h, k) ol le terme prend une valeur strictement positive, et
d’autre points ou il est strictement négatif, alors f n’a pas d’extremum local en
(z,y). I faut donc comprendre le signe de 'expression (11.9) pour tout (h, k)
<suffisamment proche> de (0,0).

Comme R3 est <petit> pour (h, k) proche de (0,0), c’est le terme
q(h, k) := ah® + 2bhk + ck®

qui devrait déterminer le signe dans (11.9), sauf dans certains cas dégénérés
comme a = b = ¢ = 0. Supposons que a # 0. Alors

a(h,k) = a (h2 + P4 5k2>
a a
2 2
a <<h+ ék) + (5 - 1)2)1432)
a a a

—_p?
a <f2 + aca2 k2)

avec £ = h + gk. On voit qu’il y a plusieurs cas :

e siac—b*>>0eta>0,alors q(h, k) > 0 pour tout (h, k) # 0;
e siac—b> > 0eta<0,alors g(h, k) < 0 pour tout (h,k) #0;

o sia#0etac—b% <0, alors q(h, k) prend des valeurs positives et
des valeurs négatives dans tout voisinage de (0, 0).

On peut montrer que, sous la condition ac — b? # 0, le reste R3 n’a pas
d’influence sur le signe de 'expression (11.9) pour les (h, k) suffisamment
proches de (0,0). On obtient ainsi le théoreme suivant :

Théoréme. (Condition suffisante pour un extremum local.) Soit (z,y) € R?
un point critique de la fonction f, et soit f deux fois continiment différentiable
dans un voisinage de (x,y). Soit

A = 0py f Oy f — (Ony f)2. (11.10)

e si au point critique (z,y) on a A > 0 et Oy f > 0, alors f posséde un
minimum local en (z,y) ;
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e si au point critique (x,y) on a A > 0 et Oy f < 0, alors f posséde un
mazimum local en (x,y)

)

e si au point critique (z,y) on a A <0, alors f ne posséde pas d’extremum
local en (z,y).

Remarques

1. Le terme A = 9,5 f Oyy f — (Ouy f)? est le déterminant de la matrice hes-

sienne de f :
aﬂ?{lf x
Hessf := I Ouyf .
Oyaf Oyyf

2. Si A =0, alors le théoréme ne permet pas de conclusion sur la nature du
point critique.

3. On peut étendre le théoreme aux fonctions d’un nombre arbitraire n de
variables, donnant des conditions suffisantes pour un extremum (ou non-
extremum) en termes de la matrice hessienne de f.

Exemples

6. f(:my) =Y.

Le seul point critique est (0,0) avec A(0,0) = —1 < 0. Donc f ne possede
pas d’extremum local dans R2.

7. f(z,y) =sinz - siny.
Recherche des points critiques :
Ozf =cosz-siny =0
Oyf =sinx - cosy =0.

Il y a deux cas : si = est tel que sinx =0, alors cosx # 0 et donc siny =0.
Mais si = est tel que sinz #0, alors cosy =0, donc siny #0 et cosx =0.
Donc (z,y) est un point critique si et seulement si sinz = siny=0 ou
cosz = cosy = 0. Par conséquent, les points critiques sont les points

(mm, nm) et ((m + %)m (n+ %)w)

avec m,n € Z. On trouve

Opzf = —sinzx -siny

2 2 2

A(z,y) = sin® x - sin? y — cos? x - cos? y .
Considérons les points critiques :
A(mm,nm) = —1 <0,

donc il n’y a pas d’extremum local en (mm, nr);

A((m—i— %)ﬂ', (n+ %)ﬂ') =1>0

&m;f((m + %)w, (n+ %)70 = —(—1)m*n,
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donc en ((m + %)71', (n + %)ﬂ') il y a un maximum local si m et n ont la

méme parité, et un minimum dans le cas contraire.

Cflay) =2t R

Le seul point critique est lorigine (0,0), et on trouve que A(0,0) = 0.
Le théoréme ne permet pas de conclusion. Mais comme f(0,0) = 0 et
f(z,y) > 0 pour (x,y) # (0,0), il y a un minimum local (méme global) en
(0,0).

Cflxy) = (y — 222 (y — 2®) = y* — 3xPy + 22

Recherche des points critiques :

Opf =823 — 62y =0
3yf:2y73:c2:0.

On voit facilement que (0,0) est le seul point critique, et on trouve que
A(0,0) = 0. Le théoréme ne donne pas de conclusion.

La fonction est positive a I'intérieur de la parabole {y = 2} et & extérieur
de {y = 222}, et elle est négative entre les deux paraboles. Dans chaque
voisinage de (0, 0) on trouve donc des points ou la valeur de f est négative,
et d’autres ou elle est positive ; par conséquent f n’a pas d’extremum local
en (0,0). Mais si 'on restreint f & une droite passant par (0,0), on trouve
toujours un minimum local en (0,0). Il ne suffit donc en général pas de
controler f seulement sur les droites passant par un point critique.

Niveau de la mer en z =10

Multiplicateurs de Lagrange

Revenons aux fonctions de n variables f : D — R, D C R™. Souvent on est
amené a chercher un extremum de f parmi les points © € D satisfaisant a
une contrainte de la forme ¢g(Z) = 0 pour une autre fonction g : D — R. On
cherche donc le maximum ou le minimum de la restriction f|y, : No = R de f
a I’ensemble de niveau

No:={feD|g(@) =0}.

Supposons que f et g soient continiment différentiables dans D.
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Théoreme. Soit @ € Ny un point intérieur de D tel que f|n, posséde un extre-

mum local en d. Si grad g(@) # 0, alors le gradie
grad g(a@), c’est-a-dire il existe A € R tel que

grad f(@) = Agrad g(

nt grad f(a@) est un multiple de

a). (11.11)

Le nombre \ s’appelle multiplicateur de Lagrange.

Idée de la preuve. Nous avons vu (p. 122) que grad g(@) est orthogonal
a ’ensemble de niveau Nyp au point d@. Montrons que c’est aussi le cas
pour grad f(@). Soit 4 : I — Ny une courbe différentiable arbitraire dans
Ny avec v(0) = d. Alors la fonction (d’une variable réelle) t — f(7(t))
posséde un extremum local en t = 0, donc sa dérivée s’annule, et avec la

régle de la chaine (10.12) on obtient

d

0= al,,

N

FE(®) = (gradf(a@),5(0))-

Donc grad f(&@) est orthogonal au vecteur 5(0).

Comme les deux vecteurs grad f(d@) et grad g(@) sont orthogonaux a
lensemble Ny, ils doivent avoir la méme direction, et ainsi grad f(@) =

Agrad g(@) pour un certain A € R.

Le théoreme fournit une méthode pour trouver les extrema d’une fonction f

dans un domaine D sous la contrainte g(Z)=0.
pour n + 1 inconnues, les n coordonnées a, ..
multiplicateur de Lagrange A :

On a en tout n+ 1 equations
.,an, du point cherché d, et le

%(al’”"a”) —)\g—xgl(al,...,an) =0
(11.12)

%(al,...,an) —)\%(al,...,an) =0

glar,...,an) =0

Exemple
10. On cherche le maximum de la fonction
flze, ... xn) = Y21 Tp

pour 1 > 0, ..., z, > 0 sous la contrainte x1 + ... + x, = ¢, avec une

constante ¢ > 0.

Calculons d’abord

0 8(
— YT1... Ty = —(21...
8.%1 ! 81'1 !
1
_ﬁ(ml
o 1 /T
77’L X1
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Avec g(x1,...,2n) =21+ ... + T — ¢, le systéme (11.12) s’écrit

l"al. a"_/\:()
n a1
l”al. a"—/\:()
n an

a1 +...+a,—c=0.

On trouve une seule solution a; = ... = a, = ¢/n. Elle donne le maximum
de f,
c c c
f(iw"ai):i‘
n n n

Par conséquent, on a I'inégalité arithmético-géométrique

1+ ...+ x,

Vry...x, <
n

pour tout z1,...,x, > 0. Elle dit que la moyenne géométrique /x1... T,
de nombres positifs est plus petite ou égale a leur moyenne arithmétique

(x1+ ...+ xp)/n.
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Chapitre 12

Intégrales multiples

Il serait trop ambitieux de présenter ici une introduction rigoureuse au calcul
intégral de fonctions de plusieurs variables. Mais étudions de quoi 1’on parle et
comment on peut calculer certaines intégrales. Nous nous restreignons au cas
d’une fonction de deux variables f : D — R ou le domaine D a une forme

<simple>.

Intégration sur un rectangle
Commencgons avec le cas ou le domaine est un rectangle
R=la,b] x [c;d] = {(x,y) ER* |[a <2 <b, c <y < d}

dans R2. Pour une fonction f : R — R & valeurs positives, I'intégrale, dénotée

//R f(zy)dA  ou //R f(@,y) da dy,

doit représenter le volume du corps solide compris entre le domaine R dans le
plan z,y et le graphe de la fonction f. Afin de définir cette intégrale en général,
subdivisons R en sous-rectangles Ri,..., Ry et choisissons un point p; dans

chaque R;.

par

7= flx, y)

Comme dans le chapitre 5, appelons une telle subdivision du domaine R avec
des points p; € R; une subdivision décorée :

A= (Ry,...,RnN;p1,-..,DN) -
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Alors la somme
N

S(f,A) = Z f(pi) - aire(R;)

i=1

s’appelle somme de Riemann de f associée a la subdivision décorée A.

Le pas d’une subdivision (décorée), noté h(A), est défini comme le plus grand
diametre de toutes les sous-rectangles R;.

Définition. La fonction f : R — R est dit intégrable (sur R, au sens de Rie-
mann) si pour toute suite A1, Ag, As,... de subdivisions décorées A,, avec
h(A,,) — 0 pour m — oo, la limite des sommes de Riemann associées S(f, Ay,)
existe. Si c’est le cas, alors cette limite ne dépend pas de la suite (Ay,)men
choisie, et on définit I'intégrale de f comme limite des sommes de Riemann :

//R Ja.y)dA = lim S(f.A).

De maniere plutét symbolique, on écrit cette définition sous la forme

//R fepdd= T 3 fp)aire(R)

i
On peut montrer que toute fonction continue est intégrable sur R.

Intégrales doubles

On peut calculer I'intégrale d’une fonction intégrable f sur un rectangle R
comme une intégrale itérée :

//Rﬂx,ym_Ad<Lbf(x,y>dm>dy

Donc en premier lieu, on fixe y et on calcule 'intégrale de la fonction

x = f(x,y)
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sur x € [a,b]. Le résultat f; f(z,y) dx dépend de y. Ensuite on prend 'intégrale
de la fonction

b
yH/ f(z,y)dz

sur y € [¢,d]. On arrive au méme résultat si ’on prend les intégrales dans I'ordre
inverse, c’est-a-dire

//Rf(x,y)dA:/Cd</abf(x,y)dx>dy=/j(/cdf(x,y)dy)dx

ou, plus brievement,

//Rf(x,y)dA:/cd/abf(:c,y)dxdy:/ab/cdf(x,y)dydx. (12.1)

On peut comprendre ’égalité (12.1), comme suit. Considérons des subdi-
visions décorées pour les intervalles [a, b] et [c, d] dans le sens du chapitre
5 (p. 45) : nous avons donc

Zoy -y Tm; E1y.-.,&m pour [a,b]
y07~-~7yn; 1717"'77771 pour [C’d]

avec a =20 < 21 < ... < Tm = b, & € [x;—1,7;] et de maniere analogue
pour les yi et 1. Ces deux subdivisions nous donnent une subdivision du
rectangle R en m - n sous-rectangles (numérotés avec un double-indice)
Rir (j=1,...,m, k=1,...,n) définis par

Rji = [zj-1,25] X [Ye—1,Ys]-

Prenons les points pjr := (&5, n%) € Rjr comme < décoration> de cette
subdivision de R. Alors la somme de Riemann correspondante s’écrit

S(f,8) = DD f(&,me) aire(R;x)

= Z Z F&smw) (x5—25-1) (Yo —Yr—1)
= (Z F & mi) (fﬂjfﬂj—l)) (Yr—Yr—1)-

Fixons pour le moment la subdivision de l'intervalle [c, d], mais laissons le
pas de la subdivision de [a, b] tendre vers 0. Alors

m

> F(&omw) (wg—wj-1) —>/ f(@,me) dee

Jj=1

et par conséquent

n b
S(f,A) — Z(/ f(@, k) dm) (Ye—Yr—1)-
k=1 \/a
Mais cette derniéere expression est une somme de Riemann pour la fonction

b
yH/ f(z,y)dz,
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et si maintenant le pas de la subdivision de [c,d] tend vers 0, alors cette
somme de Riemann tend vers l'intégrale

/j(/abf(%y)dm)dy.
//Rf(x,y) dA=_ lm S(fA)= /cd (/abf(m’y) dx) iy

Dans ce calcul, on peut changer 'ordre d’intégration puisque on peut
changer 'ordre de sommation :

> (E f(&>me) (001—9511)) (Yr—Yr-1)
k=1 \j=1
=> <Z F(&smw) (%%—1)) (zj—xj-1)

j=1 \k=1

Donc

Domaines plus généraux

Comment définir I'intégrale d’une fonction f: D — R sur un domaine D C R?
qui n’est pas un rectangle ? Admettons que D soit borné. Alors on consideére un
rectangle R = [a,b] X [¢,d] qui contient D, et on étend la fonction f <«comme
z6éro> en une fonction f : R — R définie sur R, c’est-a-dire

; | f(z,y) si(xz,y)eD
f(”f’w"{ 0" si(ry)¢D.

La fonction f est dite intégrable sur D si la fonction étendue f est intégrable
sur le rectangle R, et dans ce cas on définit

//Df(l‘ay)dAZ//Rf(x,y)dA. (12.2)

Remarquons que en général la fonction f n’est pas continue méme si f
Pest : il y a un «saut> sur le bord de D. Cependant on peut montrer
que, sous des hypotheses assez faibles sur le domaine D (le bord de D doit
étre un ensemble < négligeable>), toute fonction f qui est continue sur
D est intégrable sur D. Pour une fonction f : D — R & valeurs positives,
Iintégrale représente le volume du corps solide compris entre le domaine
D dans le plan z,y et le graphe de la fonction f. Les points (z,y) € R a
Pextérieur de D ne contribuent pas de volume puisque f(x, y) =0.

Afin de calculer Uintégrale (12.2), supposons maintenant que le domaine D soit
de la forme

D= {(z,y) eR* | c <y <d, p(y) <z <9(y)}

avec deux fonctions continues ¢ et 1. (Dans cette description de D, les roles de
x et y peuvent étre interchangés.)
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Choisissons deux constantes a,b avec a < p(y) et ¥(y) < b pour tout y € [¢, d].
Alors D est contenu dans le rectangle R = [a, b] X [c, d].

Y

d+

x=yly)

x=¢(y)

Avec les formules (12.2) et (12.1) on obtient

2 _ [ f(z,y) pour z € [p(y),Y(y)]
f@’y)—{o pour = ¢ [p(y), ¥ (y

Par conséquent, f f(z,y)de = f vy f (x,y) dx et donc
d ¥(y)
) dA = ) dz | dy. 12.3
J[ remaa= [ (/m) f(x.0) x) y (123

Pour une fonction f positive, on peut interpréter le résultat (12.3) comme
suit : on coupe le corps solide entre le domaine D et le graphe de f en
< tranches> y=const. La tranche obtenue en fixant y a l'aire A(y) =
f;z)((yu)) f(z,y) dz et on obtient le volume du corps en intégrant cette aire
(< principe de Cavalieri>) :

e = [ st asa = [ awar= [*( [ e an

z=f(x,y)

~—

4

L[ AlY)

/ x=p(y) X=v(y)
C

140



Dans le raisonnement conduisant & (12.3), les roles de x et y peuvent étre inter-
changés. On arrive ainsi a la formule correspondante pour les domaines D de la
forme

D={(z,y) €ER* a<z <b, p(x) <y <¥(x)},

yj

//D f(z,y)dA = /ab </::) flz,y) dy) dz . (12.4)

Exemples

1. Soit D ={(z,y) e R2 |0<y<1,y? <z <y}et fz,y) =2+y. On
applique la formule (12.3) avec p(y) =y et ¥(y) =y :

Ya
1]

1 y 1 1 Yy
// f(:c,y)dxdy:/ (/ (x+y)dﬂc>dy—/ [:ﬂ2+xy] dy
D 0 \Jy2 0 2 Y2
1 1
_ 3o o3 L\, (ls 1, 15
/O(2y y 2y>dy[2y Y 1Y,
3
20

2. Soit le disque unité D = {(z,y) € R? | 22 +y?> < 1} et soit f: D = R
la fonction f(z,y) = 2. Alors D peut étre décrit par les inégalités —1 <

y<1let
—V1—y?2 <z <+4/1-—9y2
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Par conséquent,

flz,y)dedy = 1 +Mx2d:v dy = 1 lxs e dy
D —1\J-/1=¢? i\ 3 o i

1 2 4 1
= / Sy 2dy = 5/ (1—y*)*dy.
0

-1

Cette derniere intégrale est évaluée au moyen de la substitution y = sin ¢
pour 0 < ¢ < /2. A l'aide de 'identité

(cos(4¢p) + 4 cos(2¢) + 3)

1
4 —
cosTp =2

on obtient finalement

4 [T/ 0
// f(x,y)dxdy:f/ costpdp=...= —.
D 3 Jo 4

Le méme résultat est obtenu si 'on change I'ordre de I'intégration :

A 1
// f(a:,y)dxdy:/ (/ xQdy> da::4/ z2\/1 — 22dx.
D -1 —v/1—22 0

Un calcul utilisant de nouveau la substitution y = sin ¢ donne le résultat
/4.

Changement de variables

Pour certaines intégrales, un changement de coordonnées peut simplifier le cal-
cul. Le théoreme suivant donne la <regle de substitution> pour les fonctions de
deux variables.

Théoréme. Soit T : D — D une application bijective définie par deux fonctions
contintument différentiables :

T(u,v) = (T1(u,v), Ta(u,v)) =: (z(u,v), y(u,v)).

Alors, pour tout f: D — R continue,

//Df(x,y)dxdy//Bf(x(u,v),y(u,v))‘ggz:z; dudv. (12.5)
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Ici est le déterminant jacobien de f, défini par
I(u,v)
Ow,y) _ qoif u v | _ Oudy 0wy (12.6)
o(u,v) Qu By | udv  Ovou’ '

La preuve de ce théoréme n’est pas simple, mais la présence du facteur
(12.6) s’explique comme suit. Supposons que D soit un rectangle. Choisis-
sons une subdivision decorée (R1,..., Rn; p1,...,pNn) de D avec un pas
tres petit. Soit @; 'image du rectangle R; sous 'application T', c’est-a-dire
Qi = T(Ry), et soit ¢; = T(ps).

3

On peut montrer que, pour un rectangle R; suffisament petit, I'image Q;
est presque un parallélogramme avec

aire(Q:) ~ ' y ’ (ps) - aire(R;) .

Alors

//D f@,y)dedy = Zf(%) - aire(Q;)

SPICADIN L

~ Jlprre o[t

() aine()

(u,v) dudv .

Exemple : Coordonnées polaires

Considérons un cas particulier. Pour intégrer une fonction sur un disque D =
{(z,y) € R | 2% +y? < R}, l'utilisation de coordonnées polaires r,p est souvent
pratique :

T =rcosp

y=rsing.
Dans ce cas, 'application T : D — D du théoréme est donnée par

T(r,¢) = (2(r, 0), y(r, ) = (rcos o, 7sin o)

D={(re)eR2|0<r<R,0<¢<2r}.
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2n

o

Pour le déterminant jacobien on obtient

a(r, ) Oy

ox
ar

fekd o
) can(520 7)<
oy sing rcose

O

et, par conséquent, la formule (12.5) devient

27
/ flx,y)dedy = / f(rcosp,rsing) rdrde. (12.7)
D o Jo

Dans la dérivation de (12.7) nous avons d’ailleurs triché en appliquant le

théoréme : T n’est pas une application bijective de D sur D. (Par exemple,
on a T(r,0) = T'(r,2w) pour tout r € [0, R], donc T n’est pas injective.)
Pour rendre ’argument rigoreux, on remarque que I’application 7" devient
bijective quand on enléve les ensembles Ny C D et Ny C D suivants :

Nii={(rg) € D|r=0 ou ¢ —2r)
No:={(z,y)€D|y=0 et = >0}

On peut donc appliquer le théoreme & T : ﬁ\Nl — D\N2, ol f)\Nl
dénote l'ensemble D privé de Ni. Mais les ensembles N1 et N2 sont

< négligeables> pour I’ 1ntegrat10n car ils ont une aire égale a zéro. Donc

I'intégrale d’une fonction sur D ala méme valeur que l'intégrale sur D\Nl,

et de méme pour D et D\Na. Ainsi l'on arrive & (12.7).

On peut facilement adapter la formule (12.7) pour qu’elle s’applique & d’autres
domaines que des cercles centrés a l'origine. Par exemple, le domaine

D ={(x,y) €R* | Ry <a® +y” < Ry,y > 0}

correspond au rectangle Ry < r < Rs, 0 < ¢ < 7 en coordonnées polaires. Donc

// flz,y dazdy—// f(rcosp,rsin ) rdr de.

y
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Exemples

3.

Reprenons l'intégrale [, 2? dzdy, o D est le disque unité. En coor-
données polaires, cette intégrale se calcule comme suit :

20 1 orry 1 .
// 2?dz dy = / / (r cos p)*rdr dp = / [41“4] cos®p dp = T
D o Jo 0 0

. o a2 ) . (14 .
Il n’existe pas de primitive de e™® composée de fonctions élémentaires.

Voici cependant un calcul astucieux de 'intégrale fgoo e~ dz utilisant une
intégrale double. Soit le quadrant D = {(z,y) € R* | z > 0,y > 0}. Alors

o 2 oo %)
(/ e_f”zdx) = (/ e_zzdaj> </ e_dey)
0 0 0
:/ (/ e‘xzdx) e_y2dy
0 0
:/ </ e_g”ze_?ﬁda:) dy
0 0
= // e_(m2+y2)dxdy
D
w/2 poo )
/ / e " rdrdyp
0 0
1 2]
2% |,

N IE

L’intégrale cherchée est donc

o0 2
/ e ¥dx =
0

oI
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Chapitre 13

Séries de Fourier

Une fonction f : R — R est dite périodique de période T lorsque f(z +T) =
f(z) pour tout z € R. Les fonctions périodiques servent & la description des
phénomenes naturels périodiques, tels que les ondes mécaniques (comme le
son) ou électromagnétiques (comme la lumiere), les marées, les mouvements
de planetes, le rythme cardiaque et les ondes cérébrales.

Polynémes trigonométriques

Pour étudier des fonctions périodiques on peut se restreindre a la période 27 :
donnée une fonction périodique f de période T, la fonction g(z) := f (%x) est
de période 27. Les fonctions de période 27 les plus simples sont

sin(kx) pour k=1,2,3,...

cos(kx) pour k=0,1,2,3,...

et leurs combinaisons linéaires avec des coefficients constants ag, by € R, ap-
pelées polynomes trigonométriques :

p(z) = % + k; ay, cos(kx) + kz::l by sin(kz). (13.1)

(On verra plus tard pourquoi on écrit le terme constant sous la forme ag/2 au
lieu de ag.)

Produit scalaire

Le produit scalaire de deux fonctions 2r—périodiques (continues) est défini par

2m

{(fl9) f(@) g(x) dx. (13.2)

: T Jo

Comme dans la géométrie euclidienne on a une notion de norme et de distance
associée a ce produit scalaire : la norme d’une fonction est définie comme

1 27
1fll = VTFTT) = \/ = [ @y (18.3)
et la distance entre deux fonctions f, g est définie par

dist(f,g) == [|f — gll- (13.4)
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On dit qu'une suite (fy,)nen de fonctions converge en moyenne quadratique vers
une fonction f si la distance entre f,, et f tend vers zéro pour n — oo, c’est-a-
dire si

[lfn = fll =0 pourn— oco.

Il y a plusieurs maniéres de définir une distance entre des fonctions. La
norme et la distance que nous venons d’introduire (sans ou avec un fac-
teur 1/7 ou 1/(2m)) s’appellent la norme et la distance <de moyenne
quadratique> ou «L?s, d’aprés Henri Lebesgue (1875-1941) et & cause
de 'exposant 2 sous l'intégrale dans (13.3). Mais il existe aussi des normes
L? pour p # 2, entre autres. Chaque concept de distance donne lieu a sa
propre notion de convergence.

Relations d’orthogonalité. Pour £ = 1,2,3,... soient ¢, la fonction x —
cos(kz) et s la fonction x — sin(kz). Soit ¢y la fonction constante ¢y = %

Alors un calcul explicite des intégrales montre que
(cjlen) = (sjlsk) = 0jn et (cjlsk) =0 (13.5)

1sij=k

ol 61 est le symbole de Kronecker 61, := {0 sij 4k

Vérifions la premiere égalité de (13.5) pour j,k > 1 : avec 'identité

cosa cosf3 = %(cos(a — B) + cos(a+ B))

on obtient
1 27
(cjlex) = ;/ cos(jx) cos(kx) dx
0
1 27
= 5 | (cos((j = k)z) + cos((j + k)x)) da,
0
et comme

2m .
/ cos(mx)dx:{ 0 s%meZJn;éO
o 2r sim =0,

l'identité (c; | cx) = 0;% s’ensuit.

Remarquons que le facteur 1/7 est introduit dans la définition du produit
scalaire afin d’obtenir les relations (13.5). En termes d’algébre linéaire on
peut décrire la situation comme suit : soit V' ’espace vectoriel de toutes les
fonctions continues 2r—périodiques. Alors V muni du produit scalaire (- | -)
est un espace euclidien (ou préhilbertien). Les <relations d’orthogona-
lité> (13.5) signifient que le systéme de fonctions co,c1,c2,. .., S1,82,. ..
est un systéme orthonormal dans cet espace.

La série de Fourier d’une fonction

Une série trigonométrique est une série de la forme

ag

5 + Z ay cos(kx) + Z by, sin(kx). (13.6)

k=1 k=1

S(x)
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Les sommes partielles d’une telle série sont donc des polynémes trigonométriques
(13.1)

Sp(z) == % +Y apcos(ka) + > by sin(ka), (13.7)
k=1 =

et la série converge vers une fonction f en un point « € R si S, () — f(x) pour
n — co. Outre ce concept de convergence ponctuelle, aussi appelée convergence
simple, on a également la notion de convergence en moyenne quadratique vers

I

[|Sn — fIl = 0 pour n — co.

Il se trouve que toute fonction 27-périodique raisonnable est la limite d’une
certaine série trigonométrique, la série de Fourier de f.

Afin de motiver la définition de cette série, supposons que f soit la limite
f(z) = 5 JrZakCOS (kx) +kzlbksm kz),

c’est-a-dire que
f==+ Zakck + Zbk5k7

et déterminons les coefficients ax et bx par un calcul formel : si ’on prend
le produit scalaire avec la fonction ¢; on obtient pour j =1,2,... a 'aide
des relations (13.5)

Cj >

aO o0 oo
(flej) = <2+Zakck+2bk8k
*IC; +Zak (cklcj) Z bi(sk| ¢;)

=1

—
*
N

= O+aj+0—aj.

Donc les coefficients ay, satisfont

ar = (f|cx) = / f(t) cos(kt) d (%)

pour k = 1,2,.... Des calculs similaires donnent (f | s;) = b; et

1 27 1 27
_ ;/0 £t dt = ;/0 F(t) cos(0t) dt

si bien que la formule (xx) est juste aussi pour k = 0. (C’est la raison
pour laquelle on écrit le terme constant sous la forme ao/2 au lieu de ao.)
Remarquons qu’il faudrait justifier 'égalité marquée par (x), car il s’agit
des <sommes infinies>. Mais si I'on admet le résultat, on voit que les
coefficients ay et by sont uniquement déterminés par f. Ils s’appelent les
coefficients de Fourier de f.

Définition. Soit f : R — R une fonction 27-périodique dont la restriction a
Iintervalle [0, 27| soit intégrable. Alors les coefficients de Fourier de f sont les
nombres
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1 2m

ap = — f(t)cos(kt)dt pour k=0,1,2,...

71r 0 (13.8)
by = — f(#®)sin(kt)dt pour k=1,2,....

T Jo

La série de Fourier de f est la série trigonométrique
a o0 o0
50 + ; ay cos(kx) + ; by sin(kx)

dont les coefficients sont les coefficients de Fourier de f.

Le théoreme suivant dit que la série de Fourier converge vers f dans le sens de
la moyenne quadratique.

Théoréme. Soit f : R — R une fonction 2m-périodique dont la restriction a
Uintervalle [0, 27] est intégrable. Alors sa série de Fourier converge en moyenne
quadratique vers f, c¢’est-a-dire que ses sommes partielles S,, satisfont a ]S, —
fll = 0 pour n — cc.

Explicitement, on a donc
2

/2” (f(x) - (% + z": ay, cos(kx) + z”: by sin(k;x))) dr — 0
’ k=1 k=0

pour n — oo. Le théoréme implique en particulier que f peut étre approchée
aussi précisément que I’on veut dans le sens de la distance L? par des polynémes
trigonométriques.

La question de la convergence ponctuelle de la série de Fourier — i.e. pour tout
point z € R — est beaucoup plus délicate. Pour cela il faut ajouter des hypotheses
sur f :

Théoréme. Soit f : R — R une fonction 2m-périodique dont la restriction a
Uintervalle [0, 27| est contintiment différentiable par morceaux, c’est-a-dire telle
qu’il existe des points 0 = xg < 21 < ... < xn = 27 tels que f est continument
différentiable sur chacun des intervalles [z;,x;41] et que les limites a gauche et
& droite de f(x) et de f'(x) existent aux points xg,...,xn. Alors

e la série de Fourier converge vers f(x) pour tout point x différent de

Zoy..., TN
e aqux points xg,...,TN, la série converge vers la moyenne
1
—( lim f(z)+ lim f(x )
5 (Jlim @)+ lim f(2)

des limites de f a gauche et a droite.
Notons que, si f est continue au point xj, alors
lim f(z) = lim f(z)= f(z
Jim () = lim () = fla)
et par conséquent la série converge vers f(xy). En particulier, si f est continue

et continiment différentiable par morceaux, alors la série converge vers f(x)
pour tout z € R.
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Exemple

Pour le calcul pratique des coefficients de Fourier, remarquons que, pour une
fonction 2m-périodique, lintervalle d’intégration [0, 27] peut étre remplacé par
[a,a + 27] avec n’importe quel a € R. En effet,

/Ohf:/oaer ;ﬂf
a 27 a+2m a+2m
e L
:/aa "
a+2m

puisque foa f= )5, 7 [ silafonction f est 2m-périodique.

Soit maintenant f : R — R la fonction 27-périodique qui satisfait & f(z) = =
pour z € [—m,w[. Les valeurs f(x) pour x ¢ [—m, x| sont alors déterminées par
la condition de 27-périodicité f(xz + 27) = f(z).

.
05w
-3n 2w R T 2T 3n
—04 -
-
Pour les coefficients de Fourier a; on trouve
1 27 1 T
ap = — f(t) cos(kt) dt = — f () cos(kt) dt = 0,
™ 0 ™ -

puisque f(t) cos(kt) est une fonction impaire; et par intégration par parties on
obtient
1 2
bp=— [ f(t)sin(kt)dt = (—1)**!

™ Jo

o

La série de Fourier de f est donc Y ;7 (—1)*"12 sin(kz). D’apres le théoréme
elle converge vers f(x) pour tout x en lequel f est continue. Par conséquent,

Flr) = 3142 sin(ka)

2 2 2
sin(z) — 3 sin(2x) + 3 sin(3x) — i sin(4x) £ ...

pour tout = ¢ {4, £3m,+5x,...}. Si on divise cette identité par 2 et pose
x = 7/2, on obtient une formule de Leibniz (1682) (qui apparait cependant déja
vers 1400 chez le mathématicien indien Madhava) :

P 1111
1- T3 5 7T 9T
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- 12
Voici les graphes des sommes partielles S, (z) = Z(—l)kﬂg sin(kx)

n=123,4,7and n=20:

k=1

-
n=1 0.5 x- /<
{’,>/én - 7>/n In
—
-
n=2 0.5 1t A
-3\n 2w - 2rn 3n
—ob -
—
-
n=3 0.5 77 /K
-An 2z - T 3w
5 m
.
T
n=4 0.57 /K
-3 2w - 2m 3w
-5 m
.
-
n=7 0.5 -

n 3n

AN
AN
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Notation complexe

En admettant des coefficients complexes, on peut écrire les séries trigonométriques
oo oo
S(x) = % + kz;: ay, cos(kz) + kz::l by sin(kz)
et leurs sommes partielles

B @ n n )
Sp(x) = 5 + ; ay, cos(kz) + ,; by, sin(kx)

sous une forme plus simple : & l'aide de

cos(kz) = = (e + e~ h7)

2] o =

sin(kx) = (e“” - e*ikx)

on obtient

1 X 1 )
ay, cos(kx) + by sin(kz) = i(ak —iby,) e*T 4 i(ak + iby) etk

_ Ckeikm + C_kefikz
avec
1 . 1 .
Cp 1= §<ak — Zbk) C_f = §(ak + Zbk)

a
pour k =1,2,.... Si on définit encore ¢y := ?O, alors

S(z) = i cpett®

k=—o0

Snp(x) = z": cpet

k=—n

C’est la notation complexe pour les séries trigonométriques. Inversément, on
peut revenir & la forme réelle en remplacant e’** par cos(kz) + i sin(kz).
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