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Préface

Ce cours a surtout deux buts : on va revoir et compléter l’enseignement mathé-
matique reçu au gymnase et vous fournir ainsi un certain arsenal de techniques
mathématiques utiles pour vos études et vos futures activités dans la vie profes-
sionnelle. Et vous allez vous familiariser avec des raisonnements mathématiques,
afin de comprendre des écrits scientifiques qui font appel à des connaissances
mathématiques. La connaissance du langage et de la pensée mathématiques vous
permettra aussi de parler avec un mathématicien si, plus tard, vous avez besoin
d’outils mathématiques plus développés que ceux que vous verrez dans ce cours.
Afin d’atteindre ces buts, un certain effort de votre part est indispensable.

Travail individuel. La durée du cours étant très limitée, il n’est guère possible
d’en assimiler la matière sans la revoir à la maison. Pour ce travail individuel,
la devise doit être : Comprendre avant d’apprendre ! Plus précisément : il ne
sert à rien d’apprendre par cœur des définitions ou des formules sans en avoir
vraiment compris le sens. Ainsi il est recommandé de compléter la liste des
exemples présentés dans le cours, car en en construisant soi-même, on comprend
mieux la signification d’une définition ou d’un théorème. Il est aussi vivement
recommandé de voir comment d’autres auteurs expliquent la même matière, car
un autre point de vue peut aider à la compréhension.

Exercices. La pratique d’un sport ou d’un instrument de musique ne s’apprend
pas en regardant les sportifs d’élite à la télévision ou en écoutant des enregis-
trements d’une virtuose : il faut l’essayer soi-même et il faut l’exercer. Le même
principe est valable pour les mathématiques, où les exercices vous donnent l’oc-
casion d’entrâıner vos talents. Afin de développer la faculté de communiquer ses
raisonnements à d’autres gens, il est vivement recommandé de travailler à deux.
Cette façon de travailler en (petits !) groupes vous donne aussi un contrôle de
votre travail, car c’est en l’expliquant à une autre personne que l’on voit si on
a vraiment compris quelque-chose.

Dass dieses Skript zu einer auf Deutsch gehaltenen Vorlesung auf Französisch
geschrieben ist, ist eine Art Selbsthilfe: Die französischsprachige Literatur auf
diesem Gebiet entspricht weniger gut unseren Vorlesungen als die deutschspra-
chige, so dass eher der Bedarf nach einem französischen Skript besteht. Ich hoffe
aber, dass auch deutschsprachige Hörer von diesem Skript profitieren.

Fribourg, septembre 2004

Hansklaus Rummler

Diese Vorlesungsnotizen sind aus einem Manuskript entstanden, das Hansklaus
Rummler für das akademische Jahr 2004–2005 angefertigt hat. Ich danke Gau-
tier Berck, Matthieu Gendulphe, Geneviève Perren und Florence Yerly für ihre
Hilfe bei der Korrektur früherer Versionen des französischen Textes. Jean-Paul
Berrut hat die Vorlesung im Jahr 2013–2014 gehalten und zahlreiche Korrektu-
ren und Verbesserungen beigetragen.

Fribourg, August 2014

Patrick Ghanaat
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7 Equations différentielles : introduction 69
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Chapitre 1

Fonctions

Ensembles

Nous utilisons le langage des ensembles. Pour un ensemble A et une propriété
P qui concerne les éléments de A,

{x ∈ A | P (x)} = {x | x ∈ A et P (x)} = {x | x ∈ A, P (x)}

est un sous-ensemble de A : c’est l’ensemble de tous les x qui sont éléments de
A et satisfont à la propriété P . Par exemple, à partir des nombres naturels N
on peut expliciter l’ensemble des nombres naturels pairs par{

n ∈ N
∣∣ n

2
∈ N

}
= {2n | n ∈ N} = {0, 2, 4, 6, . . .} .

Vous connaissez vraisemblablement les notations suivantes :

N = {0, 1, 2, 3, ...} l’ensemble des entiers naturels

Z = {0, 1,−1, 2,−2, 3,−3, ...} l’ensemble des entiers relatifs

Q =

{
p

q

∣∣∣ p, q ∈ Z, q 6= 0

}
l’ensemble des nombres rationnels

R = l’ensemble des nombres réels

[a, b] = {x ∈ R | a ≤ x ≤ b} intervalle fermé

]a, b[ = {x ∈ R | a < x < b} intervalle ouvert

[a, b[ = {x ∈ R | a ≤ x < b} intervalle fermé à gauche et ouvert à droite

[a,∞[ = {x ∈ R | a ≤ x}
]−∞, b[ = {x ∈ R | x < b}
]−∞,∞[ = R

R+ = ]0,∞[ = {x ∈ R | x > 0}

A \B = {a ∈ A | a /∈ B} l’ensemble A privé de B, A sans B

A×B = {(a, b) | a ∈ A, b ∈ B} produit cartésien de deux ensembles

= l’ensemble des couples (ordonnés) (a, b) avec a ∈ A et b ∈ B
A×B × C = {(a, b, c) | a ∈ A, b ∈ B, c ∈ C}
R2 = R× R = {(x, y) | x, y ∈ R}
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Fonctions

Souvent on entend par fonction une �formule� ou une �expression� mathéma-
tique, mais cette notion de fonction est trop restrictive, et suivant l’usage général
d’aujourd’hui, nous appelons fonction ou application

f : X → Y

entre des ensembles X et Y une �prescription� ou �règle� qui associe à chaque
argument x ∈ X une valeur f(x) ∈ Y . Dans ce cas, X s’appelle l’ensemble de
départ (ou le domaine de définition) de f et Y son ensemble d’arrivée. L’image
de f est l’ensemble {f(x) | x ∈ X}, c’est-à-dire l’ensemble des f(x) pour x
parcourant X. C’est donc un sous-ensemble de Y .

Nous considérons surtout le cas f : I → R où le domaine de définition X est
un intervalle I ⊆ R, et Y = R. Dans beaucoup de cas, f(x) sera effectivement
exprimée par une formule contenant x, mais ce n’est pas toujours le cas. Pour
toute fonction f : I → R, son graphe1 Gf ⊆ R2 est défini par

Gf :=
{

(x, f(x)) | x ∈ I
}

=
{

(x, y) ∈ R2 | x ∈ I, y = f(x)
}

Gf

xx

f(x)

I

Remarquons que pour une application f : X → Y entre deux ensembles

arbitraires X et Y on appelle graphe de f le sous-ensemble du produit

cartésien Gf ⊆ X × Y défini par Gf = {(x, f(x)) | x ∈ X}. Dans le cas

général c’est un objet sans représentation �graphique� dans le plan.

Voici quelques exemples de fonctions avec leurs graphes :

1. I = [−10000, 2000], N(t) = nombre d’habitants de la terre au temps t ;

2. I = [−20, 100], R(T ) = résistance électrique d’un fil de cuivre d’une
longueur de 1 m et d’une section de 1 mm2 à une température de T ◦C ;

3. I = R, f(x) = sinx.

1La notation A := B signifie que A est défini comme étant égal à B.
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Ces exemples montrent quelques types de fonctions que l’on rencontre dans les
sciences. Dans le premier exemple, la variable indépendante est le temps t. Bien
des lois naturelles décrivent l’évolution d’une grandeur dans le temps. Dans
l’exemple 2, la fonction R(T ) décrit la dépendance d’une grandeur physique (la
résistance électrique) d’une autre grandeur (la température). Cette résistance
dépend encore d’autres paramètres, par exemple du matériau du conducteur,
de sa longueur, etc. ; mais en définissant la fonction R(T ), nous avons précisé
que ces autres grandeurs restent constantes. Plus tard nous étudierons aussi
des fonctions de plusieurs variables. La fonction de l’exemple 3 est une fonc-
tion trigonométrique que l’on rencontre dans divers contextes ; c’est pourquoi
nous appelons la variable indépendante simplement x, sans en indiquer une
interprétation.

Il peut être pratique de modifier une fonction f : [a, b] → R en changeant
l’origine ou l’échelle des arguments ou des valeurs ; on obtient ainsi les fonctions
fk : Ik → R suivantes :

f1(x) := f(x− c) I1 = [a+ c, b+ c]

f2(x) := f(x) + c I2 = [a, b]

f3(x) := f(c · x) I3 =
[
a
c ,

b
c

]
si c > 0 (resp.

[
b
c ,
a
c

]
si c < 0)

f4(x) := c · f(x) I4 = [a, b]

Fonctions réciproques

Etant donné une fonction f : X → Y entre deux ensemblesX et Y , on s’intéresse
souvent aux équations de la forme

f(x) = y0,

avec un y0 ∈ Y donné ; c’est-à-dire qu’on cherche, pour un y0 ∈ Y donné, les
éléments x ∈ X tel que f(x) = y0. Dans ce contexte, on utilise la terminologie
suivante : la fonction f : X → Y est dite

injective ⇐⇒ f(x1) 6= f(x2) pour tous x1 6= x2

surjective ⇐⇒ pour tout y ∈ Y il existe x ∈ X tel que f(x) = y

bijective ⇐⇒ elle est injective et surjective.

La fonction f : X → Y est donc surjective si l’image de f est tout Y . Elle
est bijective si pour tout y ∈ Y il existe exactement un élément x ∈ X avec
f(x) = y. Une fonction bijective f : X → Y admet une fonction réciproque
g : Y → X qui est caractérisée par les propriétés suivantes :

g
(
f(x)

)
= x pour tout x ∈ X

f
(
g(y)

)
= y pour tout y ∈ Y.

La réciproque g de f est souvent notée f−1, à ne pas confondre avec la fonction
1/f qui est bien définie lorsque f ne s’annule pas. On a donc

f(x) = y ⇐⇒ x = f−1(y).

Pour une fonction bijective f : I → J entre des intervalles I, J ⊆ R, les graphes
de f et de f−1 sont symétriques par rapport à la diagonale y = x dans R2, si l’on
représente pour chacune des deux fonctions les arguments sur l’axe horizontal
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et les valeurs sur l’axe vertical ; mais en principe, le graphe de f s’interprète
aussi comme graphe de f−1, si l’on admet l’axe vertical pour la représentation
des arguments de f−1 et l’axe horizontal pour ses valeurs.

On écrit souvent x 7→ f(x) pour exprimer le fait que f(x) est la valeur

associée à x par la fonction f . En utilisant cette notation, il n’est pas tou-

jours nécessaire d’introduire un nom comme f , g etc. quand on considère

une fonction. Par exemple, on peut parler de la fonction (sans nom) R→ R
définie par x 7→ x2−3. C’est donc la fonction avec l’ensemble de départ R
et l’ensemble d’arrivée R qui à tout élément x ∈ R associe la valeur x2−3.

Exemple. La fonction R→ R, x 7→ x2 − 3 n’est pas injective car (−x)2 − 3 =
x2 − 3. Elle n’est pas surjective parce que son image [−3,∞[ ne cöıncide pas
avec son ensemble d’arrivée R. Mais la fonction [0,∞[→ [−3,∞[ donnée par
la même règle x 7→ x2 − 3 est bijective, et sa fonction inverse est la fonction
[−3,∞[→ [0,∞[, x 7→

√
x+ 3.

Polynômes

Un polynôme est une fonction P : R→ R qui peut être écrit sous la forme

P (x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 =

n∑
k=0

akx
k

avec des constantes a0, . . . , an ∈ R. On appelle les ak les coefficients du po-
lynôme. Si an 6= 0, alors n s’appelle le degré de P , noté deg(P ). Plus précisement,
si le polynôme est non nul (c’est-à-dire si ses coefficients ne sont pas tous nuls),
son degré est défini comme le plus grand exposant de x devant lequel le coefficient
n’est pas nul. Par convention, le degré du polynôme nul vaut −∞. Considérons
les polynômes de bas degrés :

degré −∞ : la fonction constante nulle.

degré 0 : les fonctions constantes non nulles, f(x) = c pour tout
x ∈ I, avec c 6= 0. On écrit aussi f ≡ c ou simplement f = c.

degré 1 : les fonctions affines f(x) = ax+ b avec a, b ∈ R, a 6= 0. Le
graphe d’une telle fonction est une (ligne) droite, ce qui explique l’ap-
pellation � linéaire�. La fonction f est déterminée de façon unique
par ses valeurs f(x1), f(x2) en deux points distincts x1, x2.

degré 2 : les fonctions quadratiques de la forme f(x) = ax2 + bx+ c
avec a, b, c ∈ R et a 6= 0. Le graphe de f est une parabole. La fonction
f peut être reconstruite à partir de ses valeurs f(x1), f(x2) et f(x3)
en trois points distincts x1, x2, x3.

Exemple. La fonction P (x) = (1 + x)5 est un polynôme de degré 5. Afin de
ramener P à la forme standard, utilisons la formule du binôme de Newton

(a+ b)n =

n∑
k=0

(
n

k

)
akbn−k
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avec les coefficients binomiaux(
n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
=

n!

k! (n− k)!

lus �k parmi n� et parfois aussi notés Ckn. On obtient ces coefficients facilement
à l’aide du triangle de Pascal :

n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

n = 4 1 4 6 4 1

n = 5 1 5 10 10 5 1

n = 6 1 6 15 20 15 6 1

La ligne n = 5 contient les coefficients
(

5
k

)
pour k = 0, . . . , 5. Par conséquent,

(1 + x)5 =

5∑
k=0

(
5

k

)
1kxn−k = x5 + 5x4 + 10x3 + 10x2 + 5x+ 1 .

Racines d’un polynôme

Un zéro (en allemand Nullstelle) d’une fonction f : I → R est un point a ∈ I
où f s’annule, c’est-à-dire une solution a de l’équation

f(a) = 0.

Les zéros sont les points d’intersection du graphe de f avec l’axe des x. Les
zéros d’un polynôme s’appellent aussi ses racines. Par exemple, les racines du
polynôme P (x) = ax2 + bx+ c avec a 6= 0 sont

−b±
√
b2 − 4ac

2a
.

Proposition.2 Si a est un zéro du polynôme P de degré n ≥ 1, alors P s’écrit
de manière unique sous la forme P (x) = (x − a)Q(x) avec Q un polynôme de
degré n− 1.

En pratique, on obtient Q(x) par la division de polynômes P (x) ÷ (x − a).
On peut formaliser et analyser cette méthode afin d’obtenir une preuve de la
proposition.

Remarquons cependant que cette proposition est une conséquence immé-
diate du théorème de Taylor que nous verrons au chapitre 4. La dérivée
d’ordre n+ 1 d’un polynôme de degré n est le polynôme (identiquement)
nul. Donc la formule de Taylor s’écrit

P (x) = P (a) + P ′(a)(x− a) +
P ′′(a)

2!
(x− a)2 + . . .+

P (n)(a)

n!
(x− a)n,

2Dans les textes mathématiques, une proposition est un résultat relativement simple mais
d’un intérêt indépendant, c’est-à-dire un théorème simple. Un lemme est un résultat servant
d’intermédiaire pour démontrer un théorème ou une proposition. Un corollaire est un résultat
qui découle directement d’un théorème ou d’une proposition qui le précède.
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et, comme P (a) = 0, on arrive à

P (x) = (x− a)

(
P ′(a) +

P ′′(a)

2!
(x− a)2 + . . .+

P (n)(a)

n!
(x− a)n−1

)
.

Ainsi P (x) = (x− a)Q(x) avec Q un polynôme de degré n− 1.

Corollaire. Un polynôme P de degré n ≥ 0 admet au plus n zéros distincts.

Preuve. Soient x1, . . . , xm des zéros distincts de P . Il faut montrer que m ≤ n. La
proposition donne P (x) = (x−x1)Q1(x) pour tout x avec un certain polynôme
Q1 de degré n− 1. En particulier, pour x = x2 nous avons

0 = P (x2) = (x2 − x1)Q1(x2)

et par conséquent Q1(x2) = 0, car x2 − x1 6= 0. Appliquons maintenant la
proposition au polynômeQ1 et à son zéro x2 pour obtenirQ1(x) = (x−x2)Q2(x)
avec un polynôme Q2 de degré n − 2. Comme auparavant, Q2(x3) = 0. En
continuant de cette façon, on obtient successivement

P (x) = (x− x1)Q1(x)

= (x− x1)(x− x2)Q2(x)

= . . .

= (x− x1)(x− x2) . . . (x− xm)Qm(x)

avec des polynômes Qk de degré n− k. En comparant les degrés on obtient

n = deg(P ) = m+ deg(Qm) ≥ m.

Corollaire. Si un polynôme P de degré ≤ n admet plus de n zéros distincts,
alors P ≡ 0.

Interpolation polynomiale

Théorème. Pour n + 1 arguments distincts x0, x1, . . . , xn et n + 1 valeurs
y0, y1, . . . , yn données, il existe un polynôme unique P de degré ≤ n qui vérifie
P (xk) = yk pour k = 0, . . . , n.

Le polynôme P s’appelle le polynôme d’interpolation (de Lagrange) pour les
données x0, . . . , xn et y0, . . . , yn.

Preuve. Il y a deux affirmations à confirmer : l’existence d’un tel polynôme P et
son unicité. Montrons d’abord que le polynôme P est unique : si Q a les mêmes
propriétés, alors la différence D = P − Q est un polynôme de degré ≤ n qui
admet les n+1 zéros distincts x0, . . . , xn. Du corollaire précédent on tire D ≡ 0.
Donc Q = P , c’est-à-dire que P est unique.

Pour démontrer l’existence de P , nous présentons une méthode pour trouver le
polynôme d’interpolation : la formule d’interpolation de Newton. Etant donnés
x0, . . . , xn et y0, . . . , yn, on fait l’ansatz (c’est-à-dire on cherche P sous la forme)

P (x) = c0

+c1(x− x0)

+c2(x− x0)(x− x1)

+ . . .

+cn(x− x0)(x− x1) . . . (x− xn−1)
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avec des constantes c0, c1, c2, . . . , cn. C’est certainement un polynôme de degré
≤ n. Ensuite on utilise les n + 1 conditions P (xk) = yk pour k = 0, 1, 2, . . . , n
afin de déterminer successivement les n + 1 constantes c0, c1, c2, . . . , cn comme
suit :

Posant x = x0 dans l’ansatz, la condition P (x0) = y0 donne c0 = y0. Ensuite,
avec x = x1 dans l’ansatz et avec P (x1) = y1, il vient c0 + c1(x1 − x0) = y1,
c’est-à-dire

c1 =
y1 − c0
x1 − x0

.

Les constantes c0, c1 déjà connues, on pose alors x = x2 et utilise que P (x2) = y2

pour obtenir
c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1) = y2

et donc

c2 =
y2 − c0 − c1(x2 − x0)

(x2 − x0)(x2 − x1)
.

En continuant dans cette façon, on trouve c3, . . . , cn.

Remarques. 1. On peut reformuler la méthode de Newton de manière
algorithmique, utile pour la programmation :

• P0 := y0

• Pour k = 1, 2, . . . , n,

Pk(x) := Pk−1(x) + ck(x− x0)(x− x1) . . . (x− xk−1),

où la constante ck est telle que Pk(xk) = yk.

• P := Pn.

2. Une formule explicite pour le polynôme d’interpolation est la formule
de Lagrange :

P (x) =

n∑
k=0

yk `k(x)

avec les polynômes de Lagrange

`k(x) =

n∏
j=0
j 6=k

x− xj
xk − xj

=
x− x0

xk − x0
. . .

x− xk−1

xk − xk−1

x− xk+1

xk − xk+1
. . .

x− xn
xk − xn

.

On voit que, pour tout k, `k est un polynôme de degré n qui satisfait

`k(xj) = δjk :=

{
1 si j = k
0 si j 6= k.

(Le symbole δjk s’appelle le symbole de Kronecker.) Par conséquent, P est
un polynôme de degré ≤ n avec

P (xj) =

n∑
k=0

yk `k(xj) =

n∑
k=0

yk δjk = yj .
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Fonctions trigonométriques

D’habitude, on mesure les angles en degrés ou en radians : la grandeur d’un
angle en radians est la longeur de l’arc correspondant sur le cercle de rayon 1.
Comme 360◦ correspond à 2π, la circonférence du cercle, on a

1◦ =
2π

360
.

Pour les calculs impliquant des fonctions trigonométriques, on préfère en général
la mesure en radians.

Rappelons la définition géométrique des
fonctions trigonométriques sinus, cosi-
nus et tangente : soit ϕ ∈ R, et soit
P = (x, y) le point sur le cercle unité
qui correspond à l’angle ϕ. Alors

cosϕ = x

sinϕ = y

tanϕ =
y

x
.

Puisque les angles ϕ et ϕ + 2π correspondent au même point P , les fonctions
sinus et cosinus sont périodiques de période 2π, c’est-à-dire que

sin(x+ 2π) = sinx

cos(x+ 2π) = cosx

pour tout x ∈ R. La fonction tangente est périodique de période π. De plus, on
a les relations :

sin(−x) = − sinx

cos(−x) = cosx

tan(−x) = − tanx

tanx =
sinx

cosx

sin
(
x+

π

2

)
= cosx

sin(x+ y) = sinx cos y + cosx sin y

cos(x+ y) = cosx cos y − sinx sin y

sin2 x+ cos2 x = 1

Dans la dernière formule, nous avons utilisé la convention d’écrire sin2x et cos2 x
au lieu de (sinx)2 et (cosx)2. Pour les zéros des fonctions trigonométriques on
trouve

sinx = 0 ⇐⇒ x = kπ pour un k ∈ Z,

cosx = 0 ⇐⇒ x = kπ +
π

2
=

(2k + 1)π

2
pour un k ∈ Z,

tanx = 0 ⇐⇒ x = kπ pour un k ∈ Z.
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Voici les graphes des fonctions sin, cos et tan :

- �������
5 Π

2
-2 Π - �������

3 Π

2
-Π - ���

Π

2
���
Π

2
Π �������

3 Π

2
2 Π �������

5 Π

2

x

-1

1

sin x

- �������
5 Π

2
-2 Π - �������

3 Π

2
-Π - ���

Π

2
���
Π

2
Π �������

3 Π

2
2 Π �������

5 Π

2

x

-1

1

cos x

- �������
5 Π

2
-2 Π - �������

3 Π

2
-Π - ���

Π

2
���
Π

2
Π �������

3 Π

2
2 Π �������

5 Π

2

x

-1

1

tan x

En restreignant le sinus à l’intervalle [−π2 ,
π
2 ], le cosinus à [0, π] et la tangente à

]− π
2 ,

π
2 [, on obtient des fonctions bijectives admettant les fonctions réciproques

arcsin : [−1, 1]→ [−π
2
,
π

2
]

arccos : [−1, 1]→ [0, π]

arctan : R→ [−π
2
,
π

2
].
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x
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1
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arcsin x

-1 1

x

1

���
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2
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3

Π

arccos x

-6 -5 -4 -3 -2 -1 11 2 3 4 5 6

x

- ���
Π

2

���
Π

2

arctan x

Exemple. Par définition, la fonction arcsinx : [−1, 1]→ [−π2 ,
π
2 ] est la fonction

inverse de la restriction3

sin
∣∣
[−π2 ,

π
2 ] : [−π

2

π

2
]→ [−1, 1].

Par conséquent, on a arcsin(sinx) = x pour tout x ∈ [−π2 ,
π
2 ]. Mais en fait

la fonction f(x) = arcsin(sinx) est définie pour tout x ∈ R. Quelles sont ses
valeurs pour les x en dehors de [−π2 ,

π
2 ] ?

Réponse : la fonction f est 2π-périodique, puisque le sinus l’est :

f(x+ 2π) = arcsin(sin(x+ 2π)) = arcsin(sinx) = f(x) .

Notons aussi que

f(x+ π) = arcsin(sin(x+ π)) = arcsin(− sinx) = − arcsin(sinx) = −f(x),

3Pour une fonction f : X → Y et un sous-ensemble A ⊆ X, la restriction f |A est la fonction
A→ Y qui à tout élément a ∈ A associe l’élément f(a) ∈ Y .
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et donc f(x + π) = −f(x) pour tout x ∈ R. Quand x parcourt l’intervalle
[−π2 ,

π
2 ], cette dernière identité fournit les valeurs de f sur [π2 ,

3π
2 ] ; et pour les

x ∈ R qui restent, on utilise la 2π-périodicité.

-2 Π - �������
3 Π

2
-Π - ���

Π

2
���
Π

2
Π �������

3 Π

2
2 Π

- ���
Π

2

���
Π

2

La fonction f(x) = arcsin(sinx)
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Chapitre 2

Limites et continuité

Limites de suites

Une suite de nombres réels (on dit aussi : une suite �dans R�) est une appli-
cation x : N→ R. A la place de x(n) on écrit en général xn, et on note la suite
sous la forme

(x0, x1, x2, . . .) = (xn)n∈N

ou simplement x0, x1, x2, . . . sans parenthèses. 1 On dit que la suite converge
vers a ∈ R si, pour n tendant vers∞, le point xn s’approche de a aussi près que
l’on veut. Plus précisement :

Définition. Une suite (xn)n∈N converge vers a ∈ R si pour tout réel ε > 0 il
existe un n0 ∈ N tel que pour tout n ≥ n0 on a

dist(xn, a) < ε .

Ici dist(xn, a) := |xn − a| est la distance entre xn et a. Si c’est le cas, on écrit

lim
n→∞

xn = a ou xn → a (n→∞) .

La suite (xn)n∈N diverge si elle ne converge vers aucun a ∈ R.

Remarques. 1. On peut interpréter la situation comme suit : considérons
les membres xn de la suite comme approximations de la valeur a, et ε
comme une tolérance, une marge d’erreur acceptable. Les xn à partir de
xn0 , c’est-à-dire avec indice n ≥ n0, sont des approximations suffisamment
précises de a : ils peuvent remplacer a avec une erreur ne dépassant pas
la tolérance ε.

2. Il est souvent utile de considérer la convergence de suites d’objets autres

que des nombres : suites de points dans le plan ou dans l’espace, de fonc-

tions, de figures dans l’espace (vues comme sous-ensembles de R3), d’états

d’un système (décrit par un modèle mathématique) etc. En général, une

suite d’éléments (xn)n∈N d’un ensemble X est une application x : N→ X,

et notre définition de la convergence vers un a ∈ X garde son sens pourvu

qu’on ait une notion de distance entre les éléments de X.

1On admet aussi des suites x1, x2, . . . numérotées avec les entiers strictement positifs, ou
avec un autre sous-ensemble de N.
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De certaines suites divergentes dans R on dit aussi qu’elles �convergent vers
+∞ ou −∞� : on dit que la suite de nombres réels (xn)n∈N converge vers ∞,
et l’on écrit

lim
n→∞

xn =∞

si, pour n tendant vers ∞, le nombre xn devient aussi grand que l’on veut,
c’est-à-dire que pour tout C > 0 il existe un n0 ∈ N tel que xn > C pour tout
n ≥ n0. La convergence vers −∞ est définie de manière analogue.

Exemples

1. lim
n→∞

1

n
= 0

2. Pour q ∈ R on a lim
n→∞

qn =

 0 si − 1 < q < 1
1 si q = 1
∞ si q > 1,

et la suite diverge si q < −1. En fait, considérons par exemple le cas
q > 1. Alors q = 1 + r avec un r > 0, et à l’aide de la formule du binôme
de Newton

qn = (1 + r)n > 1 +

(
n

1

)
r = 1 + nr →∞

pour n → ∞. Donc qn → ∞ pour q > 1. Dans le cas 0 < q < 1 on a
1/q > 1 et donc, comme nous venons de voir, (1/q)n →∞. Par suite,

qn =
1(
1
q

)n → 0.

Dans le cas q < −1 la suite est composée de deux sous-suites dont l’une
tend vers +∞, l’autre vers −∞. Par exemple, pour q = −2 la suite est

20,−21,+22,−23,+24,−25,+26, . . .

3. Certains nombres sont définis comme limites d’une suite, tel par exemple
le nombre e (d’Euler) (voir chapitre 6) :

e := lim
n→∞

(
1 +

1

n

)n
= 2.71828 . . . .

On peut interpréter cette limite comme étant le capital après une année,
si l’on place 1 Franc à 100% d’intérêt annuel avec paiement �continu� :
en effet, si l’on obtient l’intérêt en n tranches, le capital après une année
s’élève à (1 + 1/n)n.

Règles de calcul avec les limites

lim
n→∞

(xn ± yn) = lim
n→∞

xn ± lim
n→∞

yn

lim
n→∞

(xn · yn) = lim
n→∞

xn · lim
n→∞

yn

Plus précisément : si les deux limites de droite existent, alors celles de gauche
aussi, et on a l’égalité indiquée. Pour la division, la situation est un peu plus
subtile : supposons que lim

n→∞
yn existe et ne soit pas égale à zéro. Alors on peut
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avoir yn = 0 pour quelques n, mais à partir d’un certain indice n0 on a yn 6= 0
et ainsi la fraction xn/yn est bien-définie. La règle dit que

lim
n→∞

xn
yn

=
lim
n→∞

xn

lim
n→∞

yn

si les deux limites de droite existent et si lim
n→∞

yn 6= 0.

Exemples

4. Si P et Q sont des polynômes avec deg(P ) < deg(Q), alors lim
n→∞

P (n)

Q(n)
= 0.

Par exemple,

n3 − 4n2 + 1

2n4 − n3 + 2
=

1
n −

4
n2 + 1

n4

2− 1
n + 2

n4

n→∞−→ 0− 0 + 0

2− 0 + 0
= 0 .

5. xn =
(n+ 2)3 − n3

n2

Pour n → ∞ cette expression prend la forme indéterminée ∞−∞∞ . Il faut
la simplifier pour comprendre son comportement. En utilisant la formule
du binôme de Newton, on obtient

(n+ 2)3 − n3

n2
=
n3
/

+ 3 · 21n2 + 3 · 22n1 + 23n0 − n3
/

n2
= 6 +

P (n)

n2

avec un polynôme P de degré < 2. Par conséquent,

lim
n→∞

(n+ 2)3 − n3

n2
= lim
n→∞

(
6 +

P (n)

n2

)
= 6 + 0 = 6 .

6. xn = −n+
√
n2 + n

Pour n → ∞ on obtient la forme indéterminée −∞ +∞. Nous utilisons
l’identité (a+ b)(−a+ b) = −a2 + b2 comme suit :

−n+
√
n2 + n =

(n+
√
n2 + n)(−n+

√
n2 + n)

n+
√
n2 + n

=
−n2
/

+ n2
/

+ n

n+
√
n2 + n

=
1

1 +
√

1 + 1
n

n→∞−→ 1

1 +
√

1 + 0
=

1

2
.

Donc

lim
n→∞

(−n+
√
n2 + n) =

1

2
.

7. Considérons la suite définie par la relation de récurrence

xn+1 =
1

2

(
xn +

2

xn

)
pour n = 0, 1, 2, 3, . . ., avec terme initial x0 = 2. Avec la formule de
récurrence on calcule successivement les termes x1, x2, x3 etc. :
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n xn
0 2
1 1,5
2 1,416666666. . .
3 1,414215686. . .
4 1,414213563. . .
5 1,414213563. . .

Il semble que la limite x := lim
n→∞

xn existe. Sous l’hypothèse qu’elle existe

vraiment, nous pouvons la déterminer comme suit :

x = lim
n→∞

xn+1 = lim
n→∞

1

2

(
xn +

2

xn

)
=

1

2

(
lim
n→∞

xn +
2

lim
n→∞

xn

)
=

1

2

(
x+

2

x

)
,

donc 2x = x+
2

x
, d’où x2 = 2, c’est-à-dire que x =

√
2.

Nous voyons que si la suite converge vers un x ∈ R alors x =
√

2. Donc
a =

√
2 est le seul candidat possible pour la limite, mais il resterait à

vérifier que la condition définissant la convergence soit remplie : étant
donné ε > 0 il faudrait trouver n0 tel que |xn −

√
2| ≤ ε dès que n ≥ n0.

Il est cependant plus facile d’obtenir la convergence à l’aide d’un critère
général concernant les suites monotones :

Une suite (xn)n∈N est dite croissante si on a xn ≤ xn+1 pour tout n ∈ N. Elle
est dite bornée supérieurement s’il existe un nombre M ∈ R tel que xn ≤ M
pour tout n ∈ N.

Théorème. Tout suite croissante bornée supérieurement est convergente : il
existe x ∈ R tel que xn → x (n→∞).

En considérant la suite −xn au lieu de xn, on déduit le théorème analogue pour
les suites décroissantes bornées inférieurement. Une suite est dite monotone si
elle est croissante ou décroissante.

Retournons à l’exemple 7. La suite est bornée inférieurement par M = 0,
parce que x0 = 2 ≥ 0, et si xn > 0, alors xn+1 = 1

2

(
xn+ 1

xn

)
> 0. D’après la

liste de x1, . . . , x5 il semble que la suite soit décroissante. Nous omettons2

la preuve. Le théorème (version décroissante) s’applique et garantit que la
suite converge vers un x ∈ R.

Séries

Partant d’une suite de nombres réels (an)n∈N on peut former les sommes suc-
cessives

2En utilisant l’inégalité (x−1)2 > 0 on montre d’abord que 1
2

(x+ 1
x

) > 1 pour tout x > 1.

Donc xn > 1 pour tout n. Ensuite, on vérifie l’inégalité 1
2

(x+ 1
x

) < x pour tout x > 1, et en
déduit que xn+1 < xn.
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s0 = a0,

s1 = a0 + a1,

s2 = a0 + a1 + a2,

...

sn = a0 + . . .+ an =

n∑
k=0

ak.

Si la suite de ces sommes partielles converge, on écrit pour sa limite

∞∑
k=0

ak := lim
n→∞

sn = lim
n→∞

n∑
k=0

ak

et on dit que la série
∑∞
k=0 ak converge. On appelle alors cette limite la somme

ou la limite de la série. Donc la somme d’une série est la limite de la suite des
sommes partielles. Notons que, par abus de langage, on utilise la même notation∑∞
k=0 ak pour la série de terme général ak – c’est la suite (sn)n∈N des sommes

partielles – et pour la somme, si elle existe.

Attention : ne pas confondre la suite de termes ak de la série
∑∞
k=0 ak avec sa

suite des sommes partielles sn.

Exemples

8. La série géométrique

∞∑
k=0

qk converge pour |q| < 1 : on a pour tout q ∈ R

sn = 1 + q + q2 + . . .+ qn

q · sn = q + q2 + . . .+ qn + qn+1

=⇒ (1− q) · sn = 1− qn+1 ou sn =
1− qn+1

1− q
.

Cette dernière expression converge vers
1

1− q
pour n → ∞, si |q| < 1.

Donc
∞∑
k=0

qk =
1

1− q
pour |q| < 1.

9. La série harmonique diverge :

∞∑
k=1

1

k
= lim
n→∞

n∑
k=1

1

k
=∞.

En effet,

1 +
1

2
+

1

3
+

1

4︸ ︷︷ ︸
> 2

4 = 1
2

+
1

5
+ . . .+

1

8︸ ︷︷ ︸
> 4

8 = 1
2

+
1

9
+ . . .+

1

16︸ ︷︷ ︸
> 8

16 = 1
2

+ . . .

> 1 +
1

2
+

1

2
+

1

2
+ . . . =∞.

10. La série harmonique alternée (Newton 1667) :

∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ +

1

5
− 1

6
+− . . . = ln 2
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11. La série de Leibniz (1682) : 1− 1

3
+

1

5
− 1

7
+− . . . =

π

4

12.

∞∑
k=1

1

k2
=
π2

6

Trouver la somme de cette série était un problème célèbre, le �problème
de Bâle�, résolu par Euler en 1735.

13. Plus généralement, on peut montrer (facilement) que la série

∞∑
k=1

1

ks
con-

verge si s > 1 et diverge si s ≤ 1.

La fonction ainsi définie

ζ(s) =

∞∑
k=1

1

ks

s’appelle la fonction zeta de Riemann. Le résultat d’Euler dit que

ζ(2) = π2/6, et il a trouvé des formules similaires exprimant ζ(n)

pour tout entier positif pair. Ce n’est qu’en 1973 qu’on a pu prouver

que ζ(3) est un nombre irrationnel.

14. Une série entière est une série de la forme

∞∑
k=0

akx
k = a0 + a1x+ a2x

2 + . . .

avec une variable x et des coefficients ak ∈ R. On peut la considérer comme
un �polynôme avec un nombre infini de termes�. Voir le chapitre 4 pour
les détails.

Règles de calcul avec les séries

• Si la série
∑∞
k=0 ak converge, alors pour tout λ ∈ R la série

∑∞
k=0(λak)

converge et ∞∑
k=0

(λak) = λ

∞∑
k=0

ak.

• Si les séries
∑∞
k=0 ak et

∑∞
k=0 bk convergent, alors la série

∑∞
k=0(ak + bk)

converge et ∞∑
k=0

(ak + bk) =

∞∑
k=0

ak +

∞∑
k=0

bk.

Définition. On dit que la série
∑∞
k=0 ak converge absolument si la série des

valeurs absolues
∑∞
k=0 |ak| converge.

• La convergence absolue entrâıne la convergence : si la série
∑∞
k=0 |ak|

converge, alors la série
∑∞
k=0 ak converge, et on a∣∣∣∣∣
∞∑
k=0

ak

∣∣∣∣∣ ≤
∞∑
k=0

|ak|.

• Si l’on change l’ordre des termes ak dans une série absolument convergente,
alors la nouvelle série converge vers la même somme.
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• Si les séries
∑∞
k=0 ak et

∑∞
k=0 bk convergent absolument, alors( ∞∑

k=0

ak

)
·
( ∞∑
k=0

bk

)
=

∞∑
k=0

( ∑
i+j=k

aibj

)
=

∞∑
k=0

( k∑
j=0

ajbk−j

)
,

c’est-à-dire

(a0 + a1 + a2 + . . .)(b0 + b1 + b2 + . . .) = a0b0 +

a0b1 + a1b0 +

a0b2 + a1b1 + a2b0 + . . . ,

et cette dernière série converge absolument. Elle s’appelle le produit de
Cauchy selon Augustin Louis Cauchy (1789–1857). D’après la règle précé-
dente, on peut changer l’ordre de termes sans affecter la somme ; mais le
produit de Cauchy est une manière systématique d’arranger la série.

Critères de convergence

On ne change pas la propriété de convergence ou divergence d’une série en
modifiant un nombre fini de termes. En fait, si à partir d’un certain indice n0

tous les termes an restent inchangés, alors la modification revient à augmenter ou
à diminuer toutes les sommes partielles sn avec n ≥ n0 d’une quantité constante,
et donc la convergence ou la divergence de la suite (sn)n∈N ne change pas. Par
conséquent, dans l’étude de la convergence d’une série on peut supprimer un
nombre fini de termes.

Condition nécessaire. Si la série
∑∞
k=0 ak converge, alors la suite des termes

ak tend vers zéro : lim
k→∞

ak = 0.

En effet, si s ∈ R est la somme de la série, on obtient an = sn − sn−1 →
s− s = 0 pour n→∞.

Critère de comparaison. Soient
∑∞
k=0 ak et

∑∞
k=0 bk deux séries avec

0 ≤ ak ≤ bk

pour tout k. Si
∑∞
k=0 bk converge, alors

∑∞
k=0 ak converge.

Si 0 ≤ ak ≤ bk, on dit que la série
∑
bk est une majorante de

∑
ak, et que∑

ak est une minorante de
∑
bk. Donc toute série de termes positifs avec une

majorante qui converge est également convergente. Par suite, une série à termes
positifs diverge lorsqu’elle admet une minorante divergente.

Pour la preuve du critère, rappelons (voir p. 15) que toute suite crois-

sante et bornée supérieurement converge. La suite des sommes partielles

sn =
∑n
k=0 ak est croissante car les ak sont positifs. Elle est bornée

supérieurement par la somme
∑∞
k=0 bk. Donc elle converge.

Critère de Leibniz. Soit
∑∞
k=0 ak une série alternée, c’est-à-dire avec ak ≥ 0

pour k pair et ak ≤ 0 pour k impair (ou vice versa), et telle que

|a0| ≥ |a1| ≥ |a2| ≥ . . .→ 0 (k →∞).

Alors la série converge.
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Exemples

15. La série harmonique alternée (exemple 10) converge selon le critère de
Leibniz ; mais elle ne converge pas absolument, puisque la série harmonique
diverge.

16. La série
∑∞
k=1

1√
k

est divergente, puisque la série harmonique est une

minorante qui diverge : on a 1√
k
≥ 1

k pour tout k ≥ 1.

17. La série
∑∞
k=1

1
100+

√
k

est divergente, car 1
100+

√
k
≥ 1

2
√
k

pour tout k ≥
1002 et la série

∑∞
k=1

1
2
√
k

= 1
2

∑∞
k=1

1√
k

diverge.

18. La série
∑∞
k=2

1
k2−k converge, car 1

k2−k ≤
2
k2 pour k ≥ 2 (preuve ?) et la

série
∑∞
k=1

1
k2 converge (exemple 12). Alternativement, notez que 1

k(k−1) =
1

k−1 −
1
k . Pour la somme partielle on obtient une �somme télescopique� :

sn =

n∑
k=2

( 1

k− 1
− 1

k

)
= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ . . .+

1

n− 1
− 1

n

= 1− 1

n
→ 1 (n→∞).

Par conséquent, ∞∑
k=2

1

k2− k
= 1.

19. Le développement décimal d’un nombre réel s est une série qui converge
vers s : pour s > 0,

s = a0, a1a2a3 . . . =

∞∑
k=0

ak

( 1

10

)k
avec a0 ∈ N et avec ak ∈ {0, 1, . . . , 9} pour k ≥ 1. Cette série converge, car
lorsqu’on supprime le premier terme a0, elle admet la série géométrique

∞∑
k=1

9
( 1

10

)k
= 9

∞∑
k=1

( 1

10

)k
comme majorante qui converge, selon l’exemple 8.

Limites de fonctions

Soit I ⊂ R un intervalle, a ∈ I, et soit f : I \ {a} → R une fonction non
nécessairement définie en a. On dit que f admet la limite L ∈ R au point a, et
on note

lim
x→a

f(x) = L,

si pour x 6= a tendant vers a, le nombre f(x) s’approche de L aussi près que
l’on veut. Plus précisément : pour tout ε > 0 il existe un δ > 0 tel que

x 6= a et dist(x, a) < δ impliquent dist(f(x), L) < ε.

Rappelons que dist(a, b) := |a− b| est la distance entre deux points a, b ∈ R sur
la droite réelle. Comme pour les limites de suites, on peut interpréter ε comme
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une tolérance : la valeur f(x) cöıncide avec L à une erreur < ε près quand x est
suffisamment proche de (mais pas égal à) a.

D’une manière analogue on définit les limites unilatérales

lim
x↗a

f(x) et lim
x↘a

f(x)

pour lesquelles on considère seulement les arguments x avec x < a respec-

tivement x > a. Il y a aussi des limites limx→−∞ f(x) et limx→+∞ f(x)

ainsi que des limites � impropres� comme limx→a f(x) =∞.

Exemples
lim
x↘0

1

x
=∞, lim

x↗0

1

x
= −∞, lim

x→0

1

x
n’existe pas

lim
x→∞

5x2

2x+ 3x2 − 1
=

5

3
lim
x→0

sinx

x
= 1

lim
x→−∞

f(x) = 1

lim
x→0

f(x) = 1

f(0) = 2

lim
x↗3

f(x) = 3

lim
x↘3

f(x) = +∞

lim
x→∞

f(x) = 0

La proposition suivante montre que la notion de limite d’une fonction se laisse
réduire à celle de la convergence des suites :

Proposition. limx→a f(x) = L si et seulement si pour toute suite xn dans
I \ {a} qui converge vers a, la suite des images f(xn) converge vers L.

Donc limx→a f(x) = L équivaut à dire que f transforme toute suite xn 6= a
convergente vers a en une suite f(xn) convergente vers L. A l’aide de cette
proposition on peut transférer les lois de calcul avec les limites de suites en des
règles analogues pour les limites de fonctions : par exemple,

lim
x→a

(f(x)± g(x)) = lim
x→a

f(x)± lim
x→a

g(x);

si les deux limites de droite existent, alors celle de gauche aussi, et on a l’égalité
indiquée.

Continuité

Définition. Considérons une fonction f : I → R définie sur un intervalle I ⊂ R.
Soit a ∈ I. Alors f est dite continue au point a (ou en a) si

lim
x→a

f(x) = f(a).

Il y a donc deux conditions : que la limite limx→a f(x) existe, et qu’elle soit égale
à f(a). La fonction est dite continue sur un ensemble A ⊆ I si elle est continue
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en tout a ∈ A. Elle est dite continue, si elle est continue sur son domaine de
définition (qui doit être précisé si l’on utilise cette terminologie).

Comme conséquence des règles de calcul avec les limites, on obtient :

Si f, g : I → R sont des fonctions continues en a, alors la somme f + g, la
différence f −g et le produit f ·g sont continus en a ; si, de plus, g(a) 6= 0, alors
le quotient f/g est également continu en a.

Exemples

• La fonction f : R→ R définie par f(x) =

{
0 si x < 0
1 si x ≥ 0

n’est pas conti-
nue en x = 0.

• La fonction valeur absolue |x| :=
{

x si x ≥ 0
−x si x < 0

est continue sur R.

• Tout polynôme P (x) =
∑n
k=1 akx

k est continu sur R. En effet, la fonction
identité x 7→ x est continue, tout comme les fonctions constantes. Donc
les produits x · x = x2, x · x2 = x3 etc. sont continus, de même que les
produits ak · xk, et finalement leur somme P (x).

• Les fonctions sinx et cosx sont continues sur tout R ; la fonction tanx =
sin x
cos x est continue en tous les points où cosx ne s’annule pas, c’est-à-dire
sur les intervalles (2k − 1)π/2 < x < (2k + 1)π/2 pour k ∈ Z.

Théorème des valeurs intermédiaires.3 Soit f : [a, b] → R une fonction
continue. Alors pour tout y réel compris entre f(a) et f(b), il existe (au moins)
un c ∈]a, b[ tel que f(c) = y.

La démonstration de ce théorème est constructive dans le sens qu’elle donne une
méthode pour la construction de c : la méthode de la bissection. En considérant
la fonction x 7→ f(x) − y à la place de f , on peut se ramener au cas y = 0.
Supposons de plus que f(a) < 0 < f(b). Pour trouver un c avec f(c) = 0, nous
procédons comme suit :

3en allemand : Zwischenwertsatz
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1er pas : Posons c1 := (a + b)/2 et calculons f(c1). Trois cas sont pos-
sibles.

1. f(c1) = 0 : on arrête la procédure avec c := c1.

2. f(c1) < 0 : on continue la recherche dans la moitié droite
de [a, b], posant a1 := c1 et b1 := b ;

3. f(c1) > 0 : on continue la recherche dans la moitié gauche
de [a, b], posant a1 := a, b1 := c1.

Dans les deux derniers cas on a f(a1)f(b1) < 0, et on continue
la recherche entre a1 et b1, c’est-à-dire qu’on passe au

2ème pas : On répète les mêmes calculs que dans le premier pas avec a1 et
b1 à la place de a et b, c’est-à-dire qu’on pose c2 := (a1 + b1)/2,
on calcule f(c2) etc.

En continuant ainsi, on obtient soit après un nombre fini de pas un c avec
f(c) = 0, soit deux suites monotones

a1 ≤ a2 ≤ a3 ≤ . . . . . . ≤ b3 ≤ b2 ≤ b1

avec f(an)f(bn) < 0 et avec |an− bn| = (1/2)n|a − b|. Comme les suites sont
monotones et bornées, elles convergent, et la dernière égalite montre qu’elles ont
la même limite

c := lim
n→∞

an = lim
n→∞

bn.

Montrons que f(c) = 0 : en prenant la limite n→∞ dans l’inégalité

f(an)f(bn) < 0

on obtient f(c)2 ≤ 0, et donc f(c) = 0. Remarquons que la continuité de f est
utilisée dans ce dernier argument : il faut que lim f(an) = f(c) = lim f(bn).

Exemple. Calculons encore une fois
√

2 en cherchant un zéro c > 0 de f(x) :=
x2 − 2. Nous commençons par a := 1 et b := 2. Alors f(a) < 0 < f(b). Avec ces
valeurs nous obtenons les approximations suivantes de

√
2 :

n cn
1 1.5
2 1.25
3 1.375
4 1.4375
5 1.40625
6 1.42188

n cn
7 1.41406
8 1.41797
9 1.41602

10 1.41504
11 1.41455
12 1.41431

n cn
13 1.41418
14 1.41425
15 1.41422
16 1.41420
17 1.41421
18 1.41421

On voit que la suite converge moins vite que celle que nous avons déjà vue
comme approximation de

√
2 dans l’exemple 7. Par contre, il est facile d’estimer

l’erreur après un certain nombre de pas :

Comme b16−a16 = (b−a)/216 < 0.0000153,
et comme la limite

√
2 et c17 sont com-

pris dans l’intervalle [a16, b16], on sait que
|
√

2 − c17| < 0.0000153. En réalité, on a
même

√
2− 1.41421 ≈ 0.000004.
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Exemple. Considérons un grand cercle C tracé sur le globe terrestre, par
exemple l’équateur. Montrons que, à chaque instant, il y a deux points anti-
podaux sur C où la température est la même.

Soit en effet f : [0, 2π] → R la fonction
suivante : décrivons les points du cercle par
l’angle ϕ avec une direction fixe dans le plan
du cercle. Si P est le point qui correspond
à ϕ, et si P ′ est son antipode, f(ϕ) :=
T (P ) − T (P ′), la différence de températures
entre P et P ′. Alors f est continue, et f(0) =
−f(π), donc f change le signe dans [0, π].
Le théorème nous dit qu’il y a un ϕ0 avec
f(ϕ0) = 0. Pour le point P0 correspondant
on obtient T (P0)− T (P ′0) = 0.

23



Chapitre 3

Calcul différentiel

La dérivée d’une fonction

Considérons une fonction f : I → R définie sur un intervalle I ⊆ R. Le prin-
cipe du calcul différentiel est la simplification de l’étude de f dans le voisinage
d’un point x0 ∈ I en approchant f par une fonction très simple : une fonction
affine ou linéaire inhomogène g(x) = ax + b, c’est-à-dire une fonction dont le
graphe est une droite. (Par abus de langage, nous parlons aussi simplement de
la �droite� g.) Nous demandons que, près du point x0, la fonction g soit une
bonne approximation de f dans le sens suivant :

1. g(x0) = f(x0)

2. Pour x 6= x0, l’�erreur relative�
f(x)− g(x)

x− x0
tend vers 0 pour x→ x0.

La première condition équivaut à b = −ax0 + f(x0), donc à

g(x) = f(x0) + a(x− x0).

Par conséquent, la deuxième condition signifie que

lim
x→x0

f(x)− f(x0)− a(x− x0)

x− x0
= 0,

c’est-à-dire que
a = lim

x→x0

f(x)− f(x0)

x− x0
.

En conséquence, une telle droite g existe si et seulement si cette dernière limite
existe, et dans ce cas elle est uniquement déterminée par les deux conditions.

Definition. La fonction f est dite différentiable ou dérivable au point x0 si la
limite

f ′(x0) := lim
x→x0

f(x)− f(x0)

x− x0
= lim
h→0

f(x0 + h)− f(x0)

h

existe. Cette limite s’appelle alors la dérivée de f en x0. La fonction f est dite
différentiable sur I si elle est différentiable en tout point de I.

Si f est dérivable en x0, alors en particulier f(x0 + h) → f(x0) quand h tend
vers 0, c’est-à-dire que limx→x0

f(x) = f(x0). Donc toute fonction dérivable au
point x0 est continue en x0.
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Interprétation géométrique. Fixons un deuxième point x1 6= x0. Alors le
quotient

a1 :=
f(x1)− f(x0)

x1 − x0

est la pente de la sécante qui coupe le graphe de f aux points
(
x0, f(x0)

)
et(

x1, f(x1)
)
. Cette sécante est le graphe de la fonction

g1(x) := f(x0) + a1(x− x0).

Lorsque x1 tend vers x0, la pente a1 converge vers f ′(x0) et les sécantes g1

convergent vers la tangente

g(x) = f(x0) + f ′(x0)(x− x0)

au graphe de f en
(
x0, f(x0)

)
.

Interprétation cinématique. Lorsque la variable x représente le temps, on
écrit d’habitude t à la place de x, et on écrit souvent ḟ(t0) au lieu de f ′(t0) pour
la dérivée. Cette notation a été introduite par Newton. Pour t1 6= t0,

f(t1)− f(t0)

t1 − t0
est la vitesse moyenne avec laquelle la grandeur f varie entre t0 et t1. Il est
donc raisonnable d’appeler ḟ(t0) la vitesse instantanée au temps t0, lorsque
cette dérivée existe.

Vecteur vitesse. En utilisant la géométrie vectorielle, ces notions de
vitesse moyenne et instantanée s’étendent à la situation suivante : par
une courbe dans Rn nous entendons une application

~ϕ : I → Rn,

c’est-à-dire un n-uple ~ϕ = (ϕ1, . . . , ϕn) de fonctions

ϕ1 : I → R, . . . , ϕn : I → R.

Si nous interprétons la variable t comme le temps, ~ϕ(t) est donc un point se
déplaçant dans Rn et ayant au temps t les coordonnées ϕj(t), j = 1, . . . , n.
Supposons que ces fonctions soient différentiables. Le vecteur de vitesse
moyenne entre les temps t0 et t1 6= t0 est alors le vecteur

~ϕ(t1)− ~ϕ(t0)

t1 − t0
,

et le vecteur vitesse (instantanée) au temps t0 est

~v(t0) := ~̇ϕ(t0) := lim
t1→t0

~ϕ(t1)− ~ϕ(t0)

t1 − t0
= (ϕ̇1(t0), . . . , ϕ̇n(t0)).
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Si ~̇ϕ(t0) n’est pas le vecteur nul, la tangente à la courbe en t0 existe : c’est
la droite

t 7→ ~ϕ(t0) + t ~̇ϕ(t0)

passant par ~ϕ(t0) et ayant ~̇ϕ(t0) comme vecteur directeur.

Différentielles. Leibniz a introduit l’écriture bien connue

df

dx
=
dy

dx

pour la dérivée f ′, et il la regardait comme le quotient de deux quantités
�infiniment petites� ou �infinitésimales� dy et dx. Il avait donc l’identité
dy = f ′(x)dx entre ces � différentielles �. Mais la notion de grandeur
infinitésimale restait floue et engendrait des erreurs. Aujourd’hui on évite
les difficultés en utilisant la notion de limite : f ′(x0) n’est pas un quotient,
mais la limite du quotient de deux quantités (non-infinitésimales) ∆y =
f(x)−f(x0) et ∆x = x−x0 quand x tend vers x0. La notation de Leibniz
garde un sens intuitif : pour ∆x très petit, la dérivée est presque égale
au quotient ∆y/∆x, et on a ∆y ≈ f ′(x)∆x. De plus, nous verrons que le
formalisme de Leibniz est utile dans le calcul intégral et pour la résolution
des équations différentielles.

Voici la définition moderne de la différentielle1 d’une fonction f au point
x0 : c’est une autre fonction, la fonction linéaire dfx0 : R→ R donnée par

h 7→ dfx0(h) := f ′(x0) · h.

On peut regarder df comme fonction de deux variables : (x, h) 7→ dfx(h).

Liste de dérivées

(xa)′ = axa−1 sin′(x) = cos(x) (ex)′ = ex

cos′(x) = − sin(x) ln′(x) = 1
x

Voir le chapitre 6 pour la fonction exponentielle exp(x) = ex et le logarithme
naturel lnx.

Règles de calcul pour les dérivées

• linéarité : (f + g)′ = f ′ + g′, (λf)′ = λf ′ pour λ ∈ R

• règle du produit : (f · g)′ = f ′g + fg′

1Remarquons qu’avec cette définition de la différentielle on obtient une interprétation de
l’identité df = f ′dx de Leibniz. En effet, pour la fonction identité ι(x) =x on a ι′(x0) = 1 et
ainsi dιx0 (h) =h. Dès lors, la définition de la différentielle s’écrit dfx0 (h) = f ′(x0) · dιx0 (h)
pour tout x0 et h, ou brièvement df = f ′dι. Si enfin on écrit x pour la fonction identité ι, on
arrive à df = f ′dx.
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• règle du quotient :

(
f

g

)′
=
f ′g − fg′

g2
(aux points x où g(x) 6= 0)

• dérivée d’une fonction composée, �règle de la châıne� :

(f ◦ g)′(x) = f ′
(
g(x)

)
· g′(x)

• fonction réciproque :
(
f−1

)′
(y) =

1

f ′
(
f−1(y)

)
Considérons par exemple la règle du produit, et rappelons que f · g est la
fonction x 7→ f(x)g(x). Il faut montrer que, si f et g sont dérivables en
x0, alors la limite

lim
x→x0

f(x)g(x)− f(x0)g(x0)

x− x0

existe et cöıncide avec f ′(x0)g(x0) + f(x0)g′(x0). En fait,

f(x)g(x)− f(x0)g(x0)

x− x0
=

f(x)g(x)− f(x0)g(x) + f(x0)g(x)− f(x0)g(x0)

x− x0

=
f(x)− f(x0)

x− x0
g(x) + f(x0)

g(x)− g(x0)

x− x0

x→x0−→ f ′(x0)g(x0) + f(x0)g′(x0)

Pour simplifier la preuve de la règle de la châıne, supposons que g(x) 6=
g(x0) pour tout x 6= x0. (Le cas général demande un autre argument.)
Alors

(f ◦ g)(x)− (f ◦ g)(x0)

x− x0
=

f(g(x))− f(g(x0))

x− x0

=
f(g(x))− f(g(x0))

g(x)− g(x0)

g(x)− g(x0)

x− x0

x→x0−→ f ′(g(x0)) g′(x0)

puisque g(x) → g(x0) quand x → x0. La formule pour la dérivée d’une
fonction réciproque résulte de la règle de la châıne : on dérive l’identité
f(f−1(y)) = y afin d’obtenir

f ′(f−1(y)) (f−1)′(y) = 1.

Exemples

1. tan′ =
( sin

cos

)′
=

sin′ cos− sin cos′

cos2
=

cos2 + sin2

cos2
=

1

cos2

2. arctan′(y) =
1

tan′(arctan y)
= cos2(arctan y)

Afin de simplifier ce résultat, observons que tan2 =
sin2

cos2
=

1− cos2

cos2
,

donc que tan2 cos2 = 1− cos2 et ainsi cos2 =
1

1 + tan2 . Par conséquent,

cos2(arctan y) =
1

1 + y2
. En renommant la variable, nous avons le résultat :

arctan′(x) =
1

1 + x2
.
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Dérivées d’ordres supérieurs

Si f : I → R est dérivable dans I, la dérivée est une fonction f ′ : I → R. Si f ′

est de nouveau dérivable, la dérivée (f ′)′ de f ′ s’appelle la dérivée seconde de
f , et on écrit

f (2) =
d2f

dx2
= f ′′ := (f ′)′.

Plus généralement,
f (n) =

dnf

dxn

dénote la n-ième dérivée (ou dérivée d’ordre n) de f , si elle existe. On pose
encore f (0) := f . La fonction f est dite n fois continûment différentiable si la
n-ième dérivée f (n) existe et est continue. Elle est dit indéfiniment différentiable
si les dérivées f (n) de tous ordres n ∈ N existent.

Application : méthode de Newton

La méthode de Newton (ou de Newton-Raphson) est une procédure efficace
pour calculer des solutions de l’équation f(x) = 0 si la fonction f : [a, b] → R
est dérivable. Supposons que f(a)f(b) < 0. Comme toute fonction dérivable est
continue, le théorème des valeurs intermédiaires dit qu’il existe (au moins) un
zéro ξ de f dans [a, b]. La méthode de bissection nous donne une procédure fiable,
mais lente, pour le calculer. Par contre, la méthode de Newton ne fonctionne
pas toujours, mais sous des conditions favorables elle converge beaucoup plus
rapidement.

Pour calculer ξ selon Newton, on choisit un point x0 qui se trouve près de ξ, c’est-
à-dire une valeur approximative raisonnable pour ξ. Dans un petit voisinage de
x0, on peut remplacer f(x) par son approximation affine (la �tangente�)

f(x) ≈ f(x0) + f ′(x0)(x− x0)

et on résout l’équation

f(x0) + f ′(x0)(x− x0) = 0

au lieu de f(x) = 0. Soit x1 la solution, c’est-à-dire

x1 := x0 −
f(x0)

f ′(x0)
.

Ce zéro x1 de la tangente sera généralement plus proche du zéro ξ de la fonction
que x0. On répète l’opération avec x1 à la place de x0, etc. On peut donc espérer
améliorer l’approximation par des itérations successives :

xn+1 := xn −
f(xn)

f ′(xn)
(n = 0, 1, 2, . . .) (méthode de Newton)

Théorème. Soit f :]a, b[→ R continûment différentiable, et soit ξ ∈]a, b[ un
zéro de f avec f ′(ξ) 6= 0. Alors il existe un δ > 0 avec [ξ − δ, ξ + δ] ⊆]a, b[ tel
que, pour tout point x0 ∈ [ξ − δ, ξ + δ], la méthode de Newton définit une suite
(xn)n∈N qui converge vers ξ.

Rappelons que f est dite (une fois) continûment différentiable si f est différen-
tiable et si sa dérivée f ′ est une fonction continue. Géométriquement, on peut
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décrire la méthode comme suit : on part d’un point x0 qui se trouve près de
l’intersection ξ du graphe de f avec l’axe des x. Pour trouver une meilleure
approximation de ξ, on remplace le graphe de f par sa tangente en

(
x0, f(x0)

)
,

et on prend comme x1 l’intersection de cette dernière avec l’axe des x. De la
même façon, on passe de x1 à x2, et ainsi de suite :

Le point xn+1 est l’intersection
de l’axe des x avec la tangente
au graphe de f en

(
xn, f(xn)

)
.

Nous ne donnons pas la preuve du théorème, mais il est facile de voir que si la
limite x∗ := limn→∞ xn existe et si f ′(x∗) 6= 0, alors x∗ est un zéro de f : en
prenant la limite limn→∞ dans la formule de récursion

xn+1 = xn −
f(xn)

f ′(xn)

on obtient

lim
n→∞

xn+1 = lim
n→∞

xn −
limn→∞ f(xn)

limn→∞ f ′(xn)

et donc, puisque f et f ′ sont des fonctions continues,

x∗ = x∗ −
f(x∗)

f ′(x∗)
,

ce qui implique que f(x∗) = 0.

Exemple. Pour calculer p
√
c pour c > 0, on applique la méthode de Newton à

la fonction
f(x) := xp − c.

Sa dérivée est f ′(x) = pxp−1, et nous obtenons la formule de récurrence

xn+1 = xn −
xn

p − c
pxnp−1

=
p− 1

p
xn +

1

p

c

xnp−1
.

Pour p = 2, c = 2 et x0 = 2 on retrouve la suite déjà vue au chapitre précédent.

Maxima et minima

On dit que la fonction f : I → R possède un maximum (global) au point x0 ∈ I
si f(x0) ≥ f(x) pour tout x ∈ I. Alors la valeur f(x0) est appelée maximum
de la fonction f . Un minimum de f est une valeur avec f(x0) ≤ f(x) pour tout
x ∈ I, et un extremum est un maximum ou un minimum.

Evidemment la fonction f(x) = x ne possède pas d’extremum dans l’intervalle
ouvert ]0, 1[. Cependant, on peut montrer :

Théorème. (Existence du maximum et du minimum.) Toute fonction conti-
nue sur un intervalle borné fermé [a, b] possède (au moins) un maximum et un
minimum dans cet intervalle.
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Ainsi, il existe des points xmin et xmax dans [a, b] tels que

f(xmin) ≤ f(x) ≤ f(xmax)

pout tout x ∈ [a, b].

Proposition. Si f atteint un extremum en un point x0 intérieur 2 de I, et si f
est dérivable en x0, alors f ′(x0) = 0.

Pour le maximum (ou minimum) d’une fonction continue f dans [a, b], il y a
donc trois sortes de candidats :

• les points x avec f ′(x) = 0 ;

• les points où f ′(x) n’existe pas ;

• les points x = a et x = b.

Cette remarque implique une méthode pratique pour trouver les extrema : on
trouve les candidats x et on établit la liste des valeurs correspondantes f(x).
Dans les applications typiques c’est une liste finie. La plus grande des valeurs
ainsi trouvée est le maximum, la plus petite le minimum.

Pour la preuve de la proposition, considérons le cas d’un maximum. Com-
me x0 est un point intérieur de I, les points x0 +h appartiennent à I pour
tout h suffisamment proche de 0. Puisque f atteint son maximum en x0,
on a f(x0 + h)− f(x0) ≤ 0 pour de tels h, et donc

f(x0 + h)− f(x0)

h
=

{
≥ 0 si h < 0

≤ 0 si h > 0.

Calculons f ′(x0) de deux façons :

f ′(x0) = lim
h↗0

f(x0 + h)− f(x0)

h
≥ 0

f ′(x0) = lim
h↘0

f(x0 + h)− f(x0)

h
≤ 0.

Il s’ensuit que f ′(x0) = 0. Le cas d’un minimum se traite de manière

analogue.

Accroissements finis

Théorème des accroissements finis (Mittelwertsatz). Soit f : [a, b] → R
continue sur [a, b] et dérivable à l’intérieur de l’intervalle, c’est-à-dire dans ]a, b[.
Alors, il existe un x0 ∈]a, b[ avec

f ′(x0) =
f(b)− f(a)

b− a
. (∗)

Il est souvent plus utile d’écrire cette identité sous la forme

f(b)− f(a) = f ′(x0) (b− a).

2c’est-à-dire qui ne soit pas une borne de l’intervalle I
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Comme cas particulier, on obtient le théorème de Rolle : Si f(a) = f(b), alors
il existe un x0 ∈]a, b[ avec f ′(x0) = 0.

Interprétation analytique. A l’accroissement ∆x = b − a de la variable x
correspond l’accroissement ∆f = f(b) − f(a) = f ′(x0) · (b − a) de la fonction
f . Donc f ′(x0) est le taux de change moyen de f sur l’intervalle [a, b], d’où
l’appellation �Mittelwertsatz� en allemand. Remarquons que la qualification
de l’accroissement comme �fini� a perdu son objet - elle provient de l’époque
des quantités � infiniment petites�.

Interprétation géométrique. Il
existe (au moins) un x0 ∈]a, b[ tel
que la tangente au graphe de f en(
x0, f(x0)

)
est parallèle à la sécante

passant par les deux points
(
a, f(a)

)
et(

b, f(b)
)
.

Pour la preuve du théorème des accroissements finis, considérons la fonc-
tion

F (x) := f(x)− f(a)− f(b)− f(a)

b− a (x− a),

continue dans [a, b] et dérivable dans ]a, b[. Géométriquement, c’est la
distance verticale en x entre le graphe de f et la sécante

x 7→ f(a) +
f(b)− f(a)

b− a (x− a) .

On calcule que F (a) = 0 = F (b). En conséquence, F possède un maxi-

mum ou un minimum en un point intérieur x0 ∈]a, b[. (En effet, selon

le théorème sur l’existence du maximum et du minimum, F possède un

maximum et un minimum dans [a, b], et comme F s’annule en a et en b,

on obtient un extremum dans l’intérieur.) En ce point, on a F ′(x0) = 0,

et (∗) par le calcul.

Corollaires. Soit I ⊆ R un intervalle, f : I → R une fonction dérivable.

1. Soit M ≥ 0 une constante telle que |f ′(x)| ≤M pour tout x ∈ I. Alors

|f(x)− f(y)| ≤M |x− y| pour tout x, y ∈ I.

2. Si f ′(x) = 0 pour tout x ∈ I, alors f est une constante.

Pour la preuve, on applique le théorème des accroissements finis à l’inter-
valle [x, y] (ou [y, x] si y < x) afin d’obtenir

|f(x)− f(y)| = |f ′(x0)| |x− y| ≤M |x− y| .

La deuxième affirmation suit en posant M = 0.
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Règles de l’Hospital

Ces règles ont été publiées en 1696 par le marquis de l’Hospital, mais c’est Jean
Bernoulli qui les a trouvées et démontrées. Elles servent à donner un sens au
quotient de deux fonctions f/g en certains points en lesquels il prend la forme
0/0 ou ∞/∞, c’est-à-dire points x0 avec f(x0) = g(x0) = 0 ou lim

x→x0

f(x) =

lim
x→x0

g(x) =∞. Voici une version simple :

Règle de l’Hospital. Soient f, g : [a, b[→ R deux fonctions continues avec les
propriétés suivantes :

• f et g sont différentiables sur ]a, b[ ;

• f(a) = g(a) = 0 ;

• g(x) 6= 0 et g′(x) 6= 0 pour tout x ∈ ]a, b[ ;

• la limite lim
x→a

f ′(x)

g′(x)
existe.

Alors la limite lim
x→a

f(x)

g(x)
existe également et on a

lim
x→a

f(x)

g(x)
= lim
x→a

f ′(x)

g′(x)
.

Cas particulier, très utile : si les fonctions sont encore différentiables (à droite)
au point a, avec dérivées f ′(x) et g′(x) continues, et g′(a) 6= 0, alors

lim
x→a

f(x)

g(x)
=
f ′(a)

g′(a)
.

La démonstration, que nous ne présentons pas, repose sur une généralisation du
théorème des accroissements finis.

Il existe une version analogue pour limx→b. On peut même admettre a = −∞
et b =∞, et il y a des versions analogues pour le cas

lim
x→...

f(x) = lim
x→...

g(x) = ±∞.

Exemples

1. lim
x→0

sin(2x)

x

H
= lim

x→0

2 cos(2x)

1
=

2 cos 0

1
= 2.

C’est le cas le plus simple : le quotient prend la forme indéterminée
�0/0� pour x → 0, et une seule application de la règle conduit à une
limite qu’on peut évaluer directement. Remarquons que le premier signe
d’égalité (marqué avec un lettre H pour indiquer l’application de la règle
de l’Hospital) se justifie seulement à la fin : si la limite de f ′/g′ existe,
celle de f/g existe, et les deux limites sont égales.

Souvent on applique la règle de l’Hospital une deuxième fois :
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2. lim
x→0

1− cos x2
1− cosx

H
= lim

x→0

1
2 sin x

2

sinx

H
= lim

x→0

1
4 cos x2
cosx

=
1

4
.

3. Considérons3 lim
x→0

sinx− tanx

x3
.

On remarque tout d’abord que le numérateur et le dénominateur tendent
vers 0 pour x→ 0. Dès lors, on peut donc essayer d’appliquer la règle de
l’Hospital :

lim
x→0

sinx− tanx

x3
= lim
x→0

cosx− 1
cos2 x

3x2
= ?

De nouveau, le numérateur et le dénominateur tendent vers 0 pour x→ 0,
et en essayant une deuxième et une troisième fois avec la règle de l’Hospital
on trouve

lim
x→0

sinx− tanx

x3

H
= lim

x→0

cosx− 1
cos2 x

3x2

H
= lim

x→0

− sinx− 2 sin x
cos3 x

6x

= −1

6
lim
x→0

(
1 +

2

cos3 x

) sinx

x

= −1

6
(1 + 2)1 = −1

2
.

4. La règle de l’Hospital ne donne que des conditions suffisantes d’existence
de la limite. Il existe des cas où la limite du quotient des dérivées n’existe
pas et pourtant la limite du quotient des fonctions existe :

lim
x→0

x2 sin(1/x)

sinx
= lim
x→0

x

sinx
· lim
x→0

x sin(1/x) = 1 · 0 = 0

alors que le quotient des dérivées
2x sin(1/x)− cos(1/x)

cosx
n’admet pas de

limite en 0.

5. lim
x→0

( 1

x
− 1

ex − 1

)
Comme e0 = 1, cette limite prend la forme indéterminée 1/0− 1/0, donc
une évaluation directe n’est pas possible. Mais on peut écrire

1

x
− 1

ex − 1
=
ex − 1− x
x(ex − 1)

,

et cette dernière expression prend la forme �0/0� pour x → 0. La règle
de l’Hospital s’applique :

lim
x→0

( 1

x
− 1

ex − 1

)
= lim

x→0

ex − 1− x
x(ex − 1)

H
= lim

x→0

ex − 1

ex − 1 + xex

H
= lim

x→0

ex

2ex + xex
=

1

2
.

3Comme auparavant, il est en fait prématuré d’écrire une lim dont nous ne savons pas
encore l’existence : celle-ci fait partie de la question.
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6. lim
x→0

x lnx

Le logarithme ln est défini pour x > 0, et on a lnx → −∞ pour x → 0.
La limite prend donc la forme indéterminée 0 · (−∞) quand x → 0. Afin
d’appliquer la règle de l’Hospital, on écrit x lnx comme quotient :

lim
x→0

x lnx = lim
x→0

lnx
1
x

H
= lim

x→0

1
x

− 1
x2

= − lim
x→0

x = 0.
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Chapitre 4

Formule de Taylor et séries
entières

Polynômes

Considérons un polynôme de degré ≤ n

P (x) = b0 + b1x+ . . .+ bnx
n

et fixons x0 ∈ R. Si l’on pose y := x− x0, on peut remplacer x par x0 + y dans
P (x), et après simplification on obtient une expression de la forme

a0 + a1y + . . .+ any
n

pour certains coefficients ak. On peut donc écrire P (x) sous la forme

P (x) = a0 + a1(x− x0) + . . .+ an(x− x0)n (4.1)

=

n∑
k=0

ak(x− x0)k

qu’on appelle le �développement� de P autour de x0. Les coefficients dans ce
développement (4.1) sont uniquement déterminés par les dérivées successives de
P en x0 :

P (0)(x) =
∑n
k=0 ak(x− x0)k P (0)(x0) = a0 = 0! a0

P (1)(x) =
∑n
k=1 kak(x− x0)k−1 P (1)(x0) = a1 = 1! a1

P (2)(x) =
∑n
k=2 k(k − 1)ak(x− x0)k−2 P (2)(x0) = 2! a2

P (3)(x) =
∑n
k=3 k(k − 1)(k − 2)ak(x− x0)k−3 P (3)(x0) = 3! a3

. . . . . .

et ainsi, pour k = 0, 1, . . . , n

ak =
P (k)(x0)

k!
. (4.2)

Inversément, donnés n + 1 nombres d0, . . . , dn ∈ R, il existe un seul polynôme
P de degré ≤ n dont les dérivées successives en x0 sont P (k)(x0) = dk : en fait,
P est donné par la formule (4.1) avec les coefficients (4.2).
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Approximation locale : formule de Taylor

La formule

P (x) =

n∑
k=0

P (k)(x0)

k!
(x− x0)k,

qui est exacte pour un polynôme de degré ≤ n, donne encore une bonne ap-
proximation pour une fonction n-fois dérivable, si x est proche de x0 :

Théorème. (Formule de Taylor.) Soit f : I → R une fonction n-fois différentiable
(n ≥ 1) sur l’intervalle I ⊆ R, et soit x0 ∈ I. Alors, pour tout x ∈ I, on a

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k +Rn+1(x) (4.3)

où le �reste� Rn+1(x) a la propriété

lim
x→x0

Rn+1(x)

(x− x0)n
= 0. (4.4)

Le polynôme1

Tn(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k (4.5)

= f(x0) + f ′(x0)(x− x0) + . . .+
f (n)(x0)

n!
(x− x0)n

est appelé polynôme de Taylor de degré n au point x0 de la fonction f . Nous
avons vu que c’est l’unique polynôme de degré ≤ n dont les dérivées jusqu’à
l’ordre n en x0 cöıncident avec celles de la fonction f .

Voici les versions concrètes de la formule de Taylor pour n = 1 et n = 2 :

• n = 1, pour f différentiable :

f(x) = f(x0) + f ′(x0)(x− x0) +R2(x)

avec lim
x→x0

R2(x)

x− x0
= 0, c’est-à-dire

lim
x→x0

f(x)− f(x0)− f ′(x0)(x− x0)

x− x0
= 0.

C’est la caractérisation de la différentiabilité de f en x0.

• n = 2, pour f deux fois différentiable :

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 +R3(x)

avec lim
x→x0

R3(x)

(x− x0)2
= 0.

1Le polynôme de Taylor dépend de f et de x0 qui doivent être spécifiés dans le contexte.
Une notation plus explicite serait Tf,x0,n au lieu de Tn. Une remarque analogue s’applique
au reste Rn+1.
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Donnons la preuve de la formule de Taylor dans le cas où la dérivée f (n)

d’ordre n est encore continue. Considérons le polynôme de Taylor Tn et
le reste R(x) := Rn+1(x) = f(x) − Tn(x) correspondant. Le seul point
à montrer est que R possède la propriété (4.4). Comme f et Tn ont les
mêmes dérivées d’ordre ≤ n en x0, on a

R(x0) = R′(x0) = . . . = R(n)(x0) = 0,

ce qui nous donne la possibilité d’appliquer la règle de l’Hospital n fois :

lim
x→x0

R(x)

(x− x0)n
= lim
x→x0

R′(x)

n(x− x0)n−1
= . . . = lim

x→x0

R(n)(x)

n!

Puisque f (n) est (supposée) continue, la dérivée R(n) est continue, et donc

lim
x→x0

R(n)(x)

n!
=
R(n)(x0)

n!
= 0.

Dans le cas où f est n+ 1 fois différentiable, on peut décrire le reste avec plus
de précision :

Théorème. (Formule de Taylor avec reste de Lagrange.) Soit f : I → R une
fonction (n+ 1) fois différentiable (n ≥ 0) sur l’intervalle I ⊆ R, et soit x0 ∈ I.
Alors pour tout x ∈ I, il existe un point ξ (dépendant de x) entre x0 et x tel que

f(x) =

n∑
k=0

f (k)(x0)

k!
(x− x0)k +Rn+1(x)

avec
Rn+1(x) =

f (n+1)(ξ)

(n+ 1)!
(x− x0)n+1 . (4.6)

Dès lors, si Mn+1 est un nombre tel que |f (n+1)(ξ)| ≤ Mn+1 pour tout ξ entre
x0 et x, alors

|f(x)− Tn(x)| ≤ Mn+1

(n+ 1)!
|x− x0|n+1. (4.7)

Pour n = 1, le théorème se réduit au théorème des accroissements finis :

f(x) = f(x0) + f ′(ξ)(x− x0).

Corollaire. Si f : I → R est (n+ 1) fois dérivable avec f (n+1) ≡ 0, alors f est
un polynôme de degré ≤ n.

En fait, on a f = Tn, car Rn+1 ≡ 0 d’après (4.6).

Preuve du théorème. Si x = x0, l’affirmation se réduit à l’égalité f(x0) =
f(x0). Fixons maintenant un x 6= x0 et définissons un nombre c ∈ R par

f(x) = Tn(x) +
c

(n+ 1)!
(x− x0)(n+1).

Il faut montrer que c = f (n+1)(ξ) pour un ξ entre x0 et x. Soit g : I → R
la fonction

g(t) = f(x)−
n∑
k=0

f (k)(t)

k!
(x− t)k − c

(n+ 1)!
(x− t)n+1 .
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Alors g(x0) = 0 par le choix de c, et g(x) = f(x) − f(x) = 0. D’après
le théorème des accroissements finis, il existe donc un ξ dans l’intervalle
ouvert borné par x0 et x tel que g′(ξ) = 0. Cependant, le calcul de la
dérivée donne

g′(t) = −f
(n+1)(t)

n!
(x− t)n + c

(x− t)n

n!
,

et pour t = ξ, on obtient c = f (n+1)(ξ).

Séries de Taylor

Définition. Soit f : I → R une fonction indéfiniment différentiable, et soit
x0 ∈ I. La série de Taylor de f en x0 est la série

T (x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)k . (4.8)

Les nombres f (k)(x0)/k! s’appellent les coefficients de Taylor.

Les sommes partielles de la série sont les polynômes de Taylor Tn(x) de f en x0.
Fixons x ∈ I. Alors (par définition de la convergence d’une série de nombres)
la série de Taylor T (x) converge vers la valeur f(x) si et seulement si la suite
Tn(x) converge vers f(x) quand n→∞, c’est-à-dire si et seulement si le reste

Rn+1(x) = f(x)− Tn(x)→ 0 pour n→∞.

Si c’est le cas, alors (pour ce x)

f(x) =

∞∑
k=0

f (k)(x0)

k!
(x− x0)k (4.9)

et on dit que la série de Taylor �représente� la fonction f en x.

Il peut arriver que la série converge pour certaines valeurs x et diverge pour
d’autres. Pour montrer qu’elle converge vers f(x), on utilise souvent l’estimation
(4.7). L’exemple 5 ci-dessous montre que, même pour les x ∈ I pour lesquels la
série de Taylor converge, sa limite peut être différente de f(x).

Exemples

1. Considérons la série de Taylor pour f(x) = 1/(1 − x) avec x0 = 0. Pour
les dérivées de f on trouve f (k)(x) = k!/(1−x)k+1 pour k = 0, 1, 2, . . ., et
donc f (k)(0) = k!. La série de Taylor de f en 0 est la série géométrique :

T (x) =

∞∑
k=0

xk .

Nous avons vu (chapitre 2) qu’elle converge vers f pour |x| < 1 et diverge
pour |x| ≥ 1.

2. Considérons f(x) = sinx avec x0 = 0. Les dérivées de f sont données par

sin(m)(x) =

{
(−1)k sin(x) si m est pair, m = 2k

(−1)k cos(x) si m est impair, m = 2k + 1 .
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Comme sin(0) = 0 et cos(0) = 1, on obtient

sin(m)(0) =

{
0 si m est pair

(−1)k si m est impair, m = 2k + 1 ,

et la série de Taylor est

T (x) =

∞∑
m=0

sin(m)(0)

m!
xm =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1.

Montrons que la série converge vers sinx pour tout x ∈ R : l’inégalité (4.7)
s’écrit

| sin(x)− Tn(x)| ≤ Mn+1

(n+ 1)!
|x|n+1.

On peut choisir Mn+1 = 1 pour tout n, car | sin(n+1)(x)| est égal à ± sinx
ou ± cosx, et ainsi | sin(n+1)(ξ)| ≤ 1 pour tout ξ ∈ R. Comme2 |x|n+1/(n+
1)!→ 0 pour n→∞, il s’ensuite que

| sin(x)− Tn(x)| → 0 (n→∞),

et donc la série de Taylor converge vers sinx pour tout x ∈ R :

sinx =

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = x− x3

3!
+
x5

5!
∓ . . . (4.10)

La fonction sin et ses polynômes de Taylor T1, T3, T5, T7 en 0

3. De la même façon, on obtient la série du cosinus : pour tout x ∈ R

cosx =

∞∑
k=0

(−1)k

(2k)!
x2k = 1− x2

2!
+
x4

4!
∓ . . . (4.11)

4. La fonction exponentielle ex satisfait (ex)′ = ex, et donc (ex)(k) = ex pour
tout k ∈ N. Comme e0 = 1, la série de Taylor en x0 = 0 est

T (x) =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

2Lemme. Pour tout a ∈ R, on a lim
n→∞

an

n!
= 0.

Preuve. Fixons un k ∈ N avec k ≥ 2|a|. Alors pour n ≥ k∣∣∣∣ann!

∣∣∣∣ =
|a|n

n!
=
|a|k

k!

|a|
k + 1

|a|
k + 2

. . .
|a|
n
≤
|a|k

k!

(
1

2

)n−k
=

2k|a|k

k!

1

2n
→ 0 (n→∞).
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A l’aide de (4.7) on montrera au chapitre 6 que la série converge vers ex

pour tout x ∈ R, donc

ex =

∞∑
k=0

xk

k!
. (4.12)

5. Soit f : R→ R la fonction f(x) =

 exp

(
− 1

x2

)
pour x 6= 0

0 pour x = 0 .

On peut montrer que f est indéfiniment différentiable et que toutes les
dérivées f (k) s’annulent en x0 = 0. La série de Taylor en 0 est donc
T (x) = 0 pour tout x ∈ R, tandis que f(x) > 0 pour tout x 6= 0. Donc la
série de Taylor converge pour tout x ∈ R, mais pour x 6= 0 elle ne converge
pas vers f(x).

Séries entières

Une série entière est une série de la forme

∞∑
k=0

ak(x− x0)k . (4.13)

Ici les coefficients ak et le centre x0 sont des constantes, et x est une variable.
En particulier, toute série de Taylor est une série entière dont les coefficients
sont ceux de Taylor d’une fonction f :

ak =
f (k)(x0)

k!
.

Considérons le cas x0 = 0, c’est-à-dire une série entière de la forme

∞∑
k=0

akx
k . (4.14)

Lemme. Si la série (4.14) converge pour une certaine valeur x = x1 de la
variable x, alors elle converge absolument pour tout x ∈ R avec |x| < |x1|.

Preuve. Comme la série
∑
akx

k
1 converge, on a akx1

k → 0 pour k →∞ (p. 18),
donc |akx1

k| ≤M pour un nombre M > 0 et pour tout k ∈ N. Par conséquent

∣∣akxk∣∣ =
∣∣akx1

k
∣∣ · ∣∣∣∣ xx1

∣∣∣∣k ≤M · qk
avec q := |x/x1| < 1. Le critère de comparaison avec la série géométrique comme
majorante implique que

∑∞
k=0 |akxk| converge.

Conséquence. Pour toute série entière (4.14) il existe un � nombre � R ∈
[0,∞] := [0,∞[∪{∞}, son rayon de convergence, tel que

• la série converge absolument pour tout x ∈ R avec |x| < R ;

• la série diverge pour tout x ∈ R avec |x| > R.
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Pour les x avec |x| = R, on peut avoir convergence ou divergence. Il existe une
formule générale3 pour R, appelée formule de Hadamard, mais une des deux
méthodes suivantes permet souvent de déterminer ce rayon de convergence :

• Si L = lim
k→∞

k
√
|ak| existe, alors R =

1

L
.

• Si L = lim
n→∞

∣∣∣∣ak+1

ak

∣∣∣∣ existe, alors R =
1

L
.

(4.15)

Ici il faut interpréter 1/0 =∞ et 1/∞ = 0. Pour les séries entières de la forme
plus générale

∞∑
k=0

ak(x− x0)k,

on obtient (à l’aide d’une substitution z := x−x0) convergence pour |x−x0| < R
et divergence pour |x − x0| > R. La série converge donc pour tout x dans
l’intervalle de convergence ]x0−R, x0+R [, et la somme de la série définit une
fonction f : ]x0−R, x0+R [→ R,

f(x) :=
∞∑
k=0

ak(x− x0)k

pour x ∈ ]x0−R, x0+R [.

Exemples

6. La série géométrique
∑∞
k=0 x

k est une série entière avec coefficients ak = 1.
Nous avons déjà vu qu’elle converge pour |x| < 1 et diverge pour |x| ≥ 1,
donc le rayon de convergence est R = 1. Les deux formules pour R = 1/L
nous donnent le même résultat, par exemple k

√
|ak| = k

√
1 = 1, donc L = 1

et R = 1.

7. La série exponentielle
∑∞
k=0 x

k/k! converge pour tout x ∈ R, donc R =∞.
De nouveau, vérifions ce résultat avec une de formules pour R : on a
ak = 1/k!, donc ak+1/ak = 1/(k + 1) → 0 pour k → ∞. Ainsi L = 0 et
R = 1/0 =∞.

8. La série logarithmique

∞∑
k=1

(−1)k−1

k
xk = x− x2

2
+
x3

3
− x4

4
± . . .

converge pour x = 1 (série harmonique alternée) et diverge pour x = −1.
Son rayon de convergence est donc R = 1. On démontrera plus tard qu’elle
représente le logarithme naturel : pour −1 < x ≤ 1 on a

ln(1 + x) =

∞∑
k=1

(−1)k−1

k
xk = x− x2

2
+
x3

3
∓ . . . , (4.16)

d’où le nom de la série.

3R = 1/L avec L = lim sup
k→∞

k
√
|ak| := lim

k→∞
supj≥k

j
√
|aj |
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9. La série binomiale de Newton généralise la formule du binôme de Newton :

(1 + x)α =

∞∑
k=0

(
α

k

)
xk (4.17)

pour −1 < x < 1 et α ∈ R, avec les coefficients binomiaux (généralisés)(
α

k

)
:=

α · (α− 1) · . . . · (α− k + 1)

k!
.

Si α est un entier naturel, alors seulement un nombre fini de coefficients
sont différents de 0, et la formule se réduit à celle du binôme de Newton.

10.

∞∑
k=0

33kk xk

Les coefficients sont ak = 33kk. On trouve que ak+1/ak = 33(k + 1)/k →
33 = 27 pour k →∞. Le rayon de convergence est R = 1/27.

11.

∞∑
k=123

33kk xk

La série cöıncide avec l’exemple précédent sauf qu’on a omis les termes
pour k = 0, . . . , 122. La série converge et diverge pour les mêmes x que
l’exemple précédent. Le rayon de convergence est donc R = 1/27.

12.

∞∑
k=1

3kx2k

Ici l’exposant de x est 2k au lieu de k, mais on peut écrire la série sous la
forme standard en posant 2k = m :

∞∑
k=1

3kx2k =

∞∑
m=1

amx
m

avec les coefficients am =

{
3m/2 pour m ≥ 2 pair

0 pour m impair.

Les formules (4.15) ne s’appliquent pas, car la limite limm→∞
m
√
|am|

n’existe pas, et on ne peut pas former am+1/am quand am est égal à 0.
Mais on trouve le rayon de convergence comme suit : considérons la série
entière

∑∞
k=1 3kzk obtenue en remplaçant x2 = z dans la série originale.

Avec les formules (4.15) on trouve que le rayon de convergence de cette
nouvelle série est égal à 1/3. Elle converge donc pour |z| < 1/3, et elle
diverge quand |z| > 1/3. Comme z = x2, la série originale converge pour
|x2| < 1/3, c’est-à-dire pour |x| < 1/

√
3, et elle diverge pour |x| > 1/

√
3.

Le rayon de convergence de
∑∞
k=1 3kx2k est donc R = 1/

√
3.

Calcul avec les séries entières

Les fonctions qui peuvent être écrites comme limites de séries entières conver-
gentes constituent la plupart des fonctions utilisées dans les sciences. Les règles
de calcul avec les séries (chapitre 2, p.17) et le fait que les séries entières
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convergent absolument à l’intérieur de leur intervalle de convergence montrent
qu’on peut les manipuler comme des polynômes. Si, par exemple,

f(x) =

∞∑
k=0

akx
k

avec rayon de convergence R1 et

g(x) =

∞∑
k=0

bkx
k

avec rayon de convergence R2, alors le produit f(x)g(x) s’écrit également comme
limite d’une série entière, le produit de Cauchy

f(x)g(x) =

∞∑
k=0

( k∑
j=0

ajbk−j

)
xk (4.18)

avec un rayon de convergence R ≥ max{R1, R2}, le plus grand des nombres R1

et R2.

Théorème. Soit f : ]x0−R, x0+R [→ R la somme d’une série entière

f(x) =

∞∑
k=0

ak(x− x0)k

avec rayon de convergence R > 0. Alors f est dérivable dans ]x0−R, x0+R [.
On obtient la dérivée f ′ en dérivant la série terme par terme :

f ′(x) =

∞∑
k=1

k ak(x− x0)k−1 (4.19)

avec le même rayon de convergence R.

En appliquant ce théorème à la fonction f ′(x) =
∑∞
k=1 k ak(x − x0)k−1, on

obtient que f est deux fois dérivable avec

f ′′(x) =

∞∑
k=2

k(k − 1)ak(x− x0)k−2,

et ainsi de suite. La fonction f est donc indéfiniment différentiable dans l’inter-
valle ]x0 −R, x0 + r[.

Exemples

13. On veut écrire la fonction f(x) = 1/(1 + x)2 comme limite d’une série
entière autour de x0 = 0. Pour cela, on note qu’elle est la dérivée de la fonc-
tion −1/(1 + x) qu’on peut développer en utilisant la série géométrique :
pour |x| < 1,

f(x) =
d

dx

−1

1 + x
= − d

dx

1

1− (−x)

= − d

dx

∞∑
k=0

(−1)kxk série géométrique
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= −
∞∑
k=1

(−1)kk xk−1 selon le théorème

= −
∞∑
j=0

(−1)j+1(j+1)xj avec j = k − 1

=

∞∑
j=0

(−1)j(j+1)xj .

Donc, pour −1 < x < 1,

1

(1 + x)2
=

∞∑
k=0

(−1)k(k+1)xk = 1− 2x+ 3x2 ∓ . . .

14. Afin de prouver l’identité (4.16) pour −1 < x < 1, considérons la fonction
g : (−1, 1)→ R définie par

g(x) = ln(1 + x)−
∞∑
k=1

(−1)k−1

k
xk.

Il faut montrer que g = 0. En dérivant terme à terme selon le théorème,
on trouve

g′(x) =
1

1 + x
−
∞∑
k=1

(−1)k−1xk−1 =
1

1 + x
−
∞∑
k=0

(−1)kxk

et donc g′(x) = 0 (série géométrique). Il s’ensuit que g est une fonction
constante g = c. Pour déterminer la constante c, on calcule g(0) = ln(1) = 0.
Donc c = 0.

Séries entières et séries de Taylor

Une manière d’arriver à une série entière est de commencer avec une fonction
indéfiniment différentiable f : I → R et de former sa série de Taylor en un point
x0 ∈ I,

∞∑
k=0

f (k)(x0)

k!
(x− x0)k .

Si le rayon de convergence R de cette série est strictement positif, celle-ci va
converger sur l’intervalle ]x0 − R, x0 + R[, mais, comme nous avons vu dans
l’exemple 5, pas nécessairement vers f(x).

D’autre part, on peut commencer avec une série entière
∑∞
k=0 ak(x − x0)k de

rayon de convergence R > 0. Alors sa somme

f(x) =

∞∑
k=0

ak(x− x0)k (4.20)

est une fonction f :]x0−R, x0+R [→ R. Le théorème suivant dit que la série de
Taylor de f cöıncide avec la série donnée.

Théorème. Si la fonction f est la somme d’une série entière (4.20) de rayon
de convergence R > 0, alors il s’agit nécessairement de sa série de Taylor en
x0, c’est-à-dire les coefficients ak sont les coefficients de Taylor de f en x0 :

ak =
1

k!
f (k)(x0).
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Preuve. Elle est analogue à celle de (4.2) pour les polynômes : dériver la série k
fois terme par terme et ensuite poser x = x0.

Exemple

15. Soit à trouver la série de Taylor en x0 = 0 de la fonction f(x) =
x

2− x3
.

On peut résoudre ce problème en calculant les coefficients de Taylor f (k)(0)/k!.
Mais il est beaucoup plus facile d’utiliser une série déjà connue, la série
géométrique : on a

f(x) =
x

2− x3
=
x

2

1

1− x3

2

=
x

2

∞∑
k=0

(x3

2

)k
pour |x3/2| < 1, c’est-à-dire pour |x| < 3

√
2. Donc

f(x) =

∞∑
k=0

1

2k+1
x3k+1

pour tout x ∈]− 3
√

2, 3
√

2[. Le théorème nous dit que cette série est la série
de Taylor de la fonction f , le problème est résolu.

En particulier, le coefficient de Taylor f (301)(0)/301! doit cöıncider avec le
coefficient de x301 dans notre série, c’est-à-dire avec 1/2101. Par conséquent,
la dérivée d’ordre 301 de f en 0 est

f (301)(0) =
301!

2101
.

45



Chapitre 5

Calcul intégral

Introduction

L’intégrale d’une fonction f positive sur un intervalle [a, b] ⊆ R est l’aire A entre
le graphe de f et l’axe des x, donc un nombre :

∫ b

a

f(x) dx = A .

Se posent les problèmes de la définition et du calcul de cette aire ; il existe des
fonctions f très irrégulières pour lesquelles l’aire ne peut être définie raison-
nablement, mais il n’y a pas de problème pour les fonctions continues ou les
fonctions bornées ne comportant qu’un nombre fini de discontinuités. Si f est

négative, alors
∫ b
a
f(x)dx est égale à (−1)fois l’aire entre le graphe et l’axe des

x ; et dans le cas général d’une f qui change de signe, on compte les aires situées
au-dessus de l’axe x positivement, celles situées au-dessous négativement :

∫ b

a

f(x) dx = −A1 +A2 −A3 +A4

Pour a > b, on définit
∫ b
a
f(x)dx := −

∫ a
b
f(x)dx ; ainsi, par exemple (dessin !),∫ 1

2

x dx = −
∫ 2

1

x dx = −3

2
.

Enfin, on définit
∫ a
a
f(x) = 0. Avec ces conventions, on a la règle∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx (5.1)

pour des points arbitraires a, b, c ∈ R et pour toute fonction f continue dans un
intervalle contenant a, b et c.
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Si a ≤ b, et si f(x) ≤ g(x) pour tout x ∈ [a, b], alors∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx .

On peut donc � intégrer� une inégalité f(x) ≤ g(x).

La lettre x sous le signe d’intégration peut être remplacée par toute autre lettre :∫ b

a

f(x)dx =

∫ b

a

f(t)dt =

∫ b

a

f(u)du = . . .

Sommes de Riemann

Etudions plus en détail la définition de l’intégrale. On décompose l’intervalle
[a, b] en un nombre fini n de sous-intervalles [xk−1, xk] en choisissant n + 1
points x0 = a < x1 < . . . < xn = b. Dans chaque sous-intervalle [xk−1, xk], on
choisit un point quelconque ξk. Appelons pour le moment une telle subdivision
de l’intervalle [a, b] avec des points ξk ∈ [xk−1, xk] une subdivision décorée :

∆ = (x0, . . . , xn; ξ1, . . . , ξn) .

La somme

S(f,∆) :=

n∑
k=1

f(ξk)(xk − xk−1) (5.2)

s’appelle la somme de Riemann de f associée à la subdivision décorée ∆.

S(f,∆) est l’aire marquée en gris

Le pas d’une subdivision (décorée), noté h(∆), est défini par1

h(∆) := max{x1− x0, x2− x1, . . . , xn− xn−1 } = max
k=1,...,n

(xk − xk−1) .

C’est donc la plus grande des longueurs des intervalles de la subdivision.

Définition. La fonction f : [a, b]→ R est dite intégrable (au sens de Riemann,
sur [a, b]) si, pour toute suite ∆1,∆2,∆3, . . . de subdivisions décorées ∆m avec
h(∆m)→ 0 pour m→∞, la limite des sommes de Riemann associées S(f,∆m)
existe. Si c’est le cas, alors cette limite ne dépend pas de la suite (∆m)m∈N
choisie. On définit alors l’intégrale de f sur l’intervalle [a, b] comme la limite
des sommes de Riemann :∫ b

a

f(x)dx := lim
m→∞

S(f,∆m) . (5.3)

On peut montrer que toute fonction bornée ne comportant qu’un nombre fini
de discontinuités est intégrable sur [a, b].

1max{a1, a2, . . . , an} signifie le plus grand des nombres a1, a2, . . . , an.
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Intégration et différentiation

Des calculs d’aires de ce type étaient — pour certaines fonctions — connus bien
avant Newton et Leibniz : Archimède déjà savait calculer l’aire d’un segment
de parabole. Le début du calcul infinitésimal moderne est plutôt la découverte
de la relation entre différentiation et intégration. Là aussi, on trouve quelques
résultats déjà avant Newton et Leibniz, par exemple chez Torricelli et Barrow.
Cette relation est intuitivement facile à comprendre : en considérant la borne
supérieure de l’intégration comme variable, nous définissons la fonction

F (x) :=

∫ x

a

f(t) dt.

Pour x proche de x0, on aura F (x) ≈ F (x0) + f(x0) · (x− x0),

et donc
F (x)− F (x0)

x− x0
≈ f(x0)

ce qui pour x→ x0 rend la relation F ′(x0) = f(x0) plausible. Une démonstration
rigoureuse utilise le théorème suivant :

Théorème de la moyenne.2 Soit f : [a, b]→ R une fonction continue. Alors,
il existe un ξ ∈ [a, b] avec ∫ b

a

f(x) dx = f(ξ) · (b− a). (5.4)

Interprétation : f(ξ) =

∫ b
a
f(x) dx

b− a
est la valeur moyenne de f sur [a, b].

aire du rectangle abBA = aire sous le graphe de f

Preuve. La continuité de f garantit l’existence d’un minimum et d’un
maximum de f dans [a, b], c’est-à-dire il existe deux points x1, x2 ∈ [a, b]
avec

f(x1) ≤ f(x) ≤ f(x2)

2en allemand : Mittelwertsatz der Integralrechnung

48



pour tout x ∈ [a, b]. En intégrant cette inégalité, on obtient

f(x1) · (b− a) ≤
∫ b

a

f(x) dx ≤ f(x2) · (b− a),

donc

f(x1) ≤
∫ b
a
f(x) dx

b− a ≤ f(x2).

Selon le théorème des valeurs intermédiaires, il existe un ξ entre x1 et x2

avec

f(ξ) =

∫ b
a
f(x) dx

b− a .

Théorème fondamental du calcul différentiel et intégral. Soit f : [a, b]→
R une fonction continue.

1. La fonction

F : [a, b]→ R, F (x) :=

∫ x

a

f(t) dt

est différentiable et sa dérivée est F ′ = f .

2. Soit G : [a, b] → R une fonction primitive de f , c’est-à-dire une fonction
avec dérivée G′ = f . Alors∫ b

a

f(x) dx = G(b)−G(a) =:
[
G(x)

]b
a
. (5.5)

Preuve. 1. Soit x0 ∈]a, b[ quelconque. En utilisant (5.1) et le théorème de
la moyenne, on obtient pour x 6= x0 dans [a, b]

F (x)− F (x0)

x− x0
=

∫ x
a
f(t) dt−

∫ x0
a
f(t) dt

x− x0
=

∫ x
x0
f(t) dt

x− x0
= f(ξ)

pour un ξ entre x0 et x, donc

lim
x→x0

F (x)− F (x0)

x− x0
= lim
ξ→x0

f(ξ) = f(x0).

2. Soit

F (x) :=

∫ x

a

f(t) dt;

alors (d’après 1.) F ′ = f . Comme G′ = f , on a (G − F )′ = 0, et G − F
doit être une constante. Par conséquent, G(b) − F (b) = G(a) − F (a) et
donc

G(b)−G(a) = F (b)− F (a) =

∫ b

a

f(t) dt−
∫ a

a

f(t) dt =

∫ b

a

f(t) dt.

La fonction F (x) =
∫ x
a
f(t) dt, où la borne a est considérée comme fixe, mais

arbitrairement choisie, et x comme variable — et, plus généralement, toute

primitive de f — est appelée une intégrale indéfinie de f , tandis que
∫ b
a
f(t) dt,

avec des bornes a, b fixes, est une intégrale définie. Une intégrale indéfinie de la
fonction f(x) est souvent notée

∫
f(x) dx, comme dans les exemples suivants :∫

dx =

∫
1 dx = x+ C,

∫
x2 dx =

x3

3
+ C,

∫
cosx dx = sinx+ C,
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où C s’appelle la constante d’intégration. Cette notation veut indiquer que pour
toute constante C ∈ R la fonction sinx+ C est une intégrale indéfinie, c’est-à-
dire une primitive, de la fonction cosx. La notation est standard mais légèrement
incorrecte : il serait mieux d’écrire

∫ x
f(t) dt ou

∫ x
...
f(t) dt au lieu de

∫
f(x) dx.

Exemples

1. Calculer la dérivée de la fonction f : ]0,∞[→ R, f(x) =

∫ x2

1

tt dt.

Solution. Si l’on définit g(x) =

∫ x

1

tt dt, alors g′(x) = xx d’après le théo-

rème fondamental. En plus,

f(x) =

∫ x2

1

tt dt = g(x2).

Donc, avec la règle de la châıne

f ′(x) = g′(x2) (x2)′ = (x2)(x2) 2x = 2x2x2+1 .

Remarquons qu’il n’est pas nécessaire du tout de calculer l’intégrale
∫
tt dt.

2. Calculer la dérivée de la fonction f : ]0,∞[→ R, f(x) =

∫ x2

x

x3tt dt.

Solution. Remarquons qu’on peut sortir le facteur x3 de l’intégrale, parce
que l’intégration est par rapport à la variable t. Ainsi,

f(x) = x3

∫ x2

x

tt dt = x3

(∫ 1

x

tt dt+

∫ x2

1

tt dt

)
= x3

(
−
∫ x

1

tt dt+

∫ x2

1

tt dt

)
.

(Au lieu de 1 on pourrait choisir n’importe quel autre point dans le do-
maine de définition.) En utilisant la règle du produit et l’exemple précédent,
on obtient

f ′(x) = 3x2

∫ x2

x

tt dt+ x3
(
− xx + 2x2x2+1

)
= 3x2

∫ x2

x

tt dt− xx+3 + 2x2x2+4 .

Une conséquence importante de la relation entre intégration et différentiation
est le calcul intégral proprement dit : les lois du calcul différentiel se traduisent
en lois pour le calcul intégral, dont nous présentons les plus importantes.

Règles du calcul intégral

Linéarité de l’intégrale. Soient f, g : [a, b]→ R, et c ∈ R. Alors,∫ b

a

(
f(x) + g(x)

)
dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx.
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Preuve. C’est une conséquence immédiate de la définition de l’intégrale
comme limite de sommes de Riemann : on vérifie facilement que S(f +
g,∆m) = S(f,∆m) + S(g,∆m) et S(cf,∆m) = c S(f,∆m). Puis la limite
m→∞ donne le résultat.

Intégration par parties. Soient U, V : [a, b]→ R différentiables avec dérivées
continues U ′ = u et V ′ = v. Alors,∫ b

a

u(x)V (x) dx =
[
U(x)V (x)

]b
a
−
∫ b

a

U(x)v(x) dx. (5.6)

Preuve. La règle du produit pour la différentiation nous donne U ′V =
(UV )′ − UV ′, et donc uV = (UV )′ − Uv. On prend l’intégrale

∫ b
a

(. . .)dx

de cette identité en utilisant le fait que
∫ b
a

(UV )′(x) dx = [U(x)V (x)]ba
selon (5.5) dans le théorème fondamental.

Règle de substitution. Soit ϕ : [a, b] → R une fonction différentiable avec
dérivée continue, et soit f une fonction continue définie sur ϕ([a, b]). Alors,∫ ϕ(b)

ϕ(a)

f(x) dx =

∫ b

a

f
(
ϕ(t)

)
ϕ′(t) dt . (5.7)

Preuve. On considère la fonction h : [a, b]→ R définie par

h(s) =

∫ ϕ(s)

ϕ(a)

f(x) dx−
∫ s

a

f
(
ϕ(t)

)
ϕ′(t) dt.

Pour vérifier la règle de substitution, il faut montrer que h(b) = 0. Avec
la partie 1 du théorème fondamental et la règle de la châıne on trouve que
la dérivée h′(s) = f(ϕ(s))ϕ′(s) − f(ϕ(s))ϕ′(s) est nulle pour tout s. Par
conséquent, h est une fonction constante, et comme h(a) = 0, on conclut
qu’elle est nulle. En particulier, h(b) = 0.

Des exemples montrent que la règle de substitution s’applique dans les deux
sens, en la lisant de gauche à droite et en la lisant de droite à gauche. Pour son
application correcte, il ne faut pas oublier d’effectuer la substitution x = ϕ(t)
partout dans l’intégrale, c’est-à-dire qu’il ne faut pas seulement poser x = ϕ(t)
et prendre les bornes correctes a et b pour l’intégrale avec la variable t, mais il
faut aussi poser dx = ϕ′(t) dt. Le symbole dx dans l’intégrale est donc très utile
pour une application correcte de la règle de substitution.

Intégrales indéfinies. Souvent on utilise l’intégration par parties et la règle
de substitution pour des intégrales indéfinies :∫

u(x)V (x) dx = U(x)V (x)−
∫
U(x)v(x) dx (5.8)

∫
f(x) dx =

∫
f(ϕ(t))ϕ′(t) dt . (5.9)
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L’égalité (5.9) exige des explications. Rappelons que
∫
f(x) dx signifie une

fonction primitive de f , disons F (x), déterminée à l’addition d’une con-
stante C près. L’expression de droite signifie une primitive de la fonction
t 7→ f(ϕ(t))ϕ′(t), disons G(t). La formule dit (ou devrait dire) que les deux
primitives sont égales, à une constante près, aux points correspondants,
c’est-à-dire pour x = ϕ(t), donc que

F (ϕ(t)) = G(t) + C . (5.10)

C’est une conséquence de (5.7), mais voici une vérification directe : avec
la règle de la châıne et la définition de G, on trouve

d

dt

(
F (ϕ(t))−G(t)

)
= f(ϕ(t))ϕ′(t)− f(ϕ(t))ϕ′(t) = 0,

si bien que F (ϕ(t))−G(t) est une constante.

Intégration des séries entières. Soit f : ]x0−R, x0+R [→ R la somme d’une
série entière

f(x) =

∞∑
k=0

ak(x− x0)k

avec rayon de convergence R > 0. Alors la série

F (x) =

∞∑
k=0

ak
k + 1

(x− x0)k+1

obtenue en intégrant terme à terme possède le même rayon de convergence R,
et sa somme F : ]x0−R, x0+R [→ R est une fonction primitive de f .

En effet, d’après un théorème du chapitre 4 (page 41) on peut calculer la
dérivée F ′ en dérivant sa série terme à terme, et ainsi on obtient f .

Les lois du calcul intégral permettent de calculer un grand nombre d’intégrales
à partir d’une liste de quelques fonctions et leurs primitives. On trouve ces
listes de fonctions avec leurs primitives dans des recueils de formules et, plus
complètes, dans des tables d’intégrales. Ces tables existent sous forme imprimée
ou comme base de données, souvent intégrée dans un logiciel appliquant plus ou
moins automatiquement les lois du calcul intégral pour ramener les intégrales à
calculer à celles de la table. MathematicaTM et MapleTM sont deux logiciels de
ce type. Voici une mini–table d’intégrales pour quelques fonctions élémentaires.
Dans chaque formule, il faut ajouter +C avec une constante arbitraire C ∈ R
au membre de droite.∫
xa dx =


xa+1

a+ 1
pour a 6= −1

ln |x| pour a = −1∫
ax dx =

ax

ln(a)
pour a > 0, a 6= −1∫

ex dx = ex∫
cos(x) dx = sin(x)

∫
sin(x) dx = − cos(x)
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∫
dx

1 + x2
= arctan(x)∫

dx

1− x2
= Artanh(x) =

1

2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ pour |x| < 1∫
dx

x2 − 1
= −Arcoth(x) =

1

2
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣ pour |x| > 1∫
dx√

1− x2
= arcsin(x) pour |x| < 1∫

dx√
x2 + 1

= Arsinh(x) = ln
∣∣∣x+

√
x2 + 1

∣∣∣∫
dx√
x2 − 1

= Arcosh(x) = ln
∣∣∣x+

√
x2 − 1

∣∣∣ pour |x| > 1∫
dx

(1 + x2)n
=

x

(2n− 2)(1 + x2)n−1
+

2n− 3

2n− 2

∫
dx

(1 + x2)n−1
pour n = 2, 3, . . .

Exemples

3.

∫
sinx√
cosx

dx

Comme cos′ x = − sinx, l’intégrale est de la forme

−
∫
f(ϕ(x))ϕ′(x) dx

avec ϕ(x) = cosx et f(x) = 1/
√
x. La règle de substitution donne∫

sinx√
cosx

dx = −
∫

1√
u
du = −

∫
u−1/2 du

= − 1

1/2
u1/2 + C = −2

√
u+ C

= −2
√

cosx+ C .

Vérification du résultat par différentiation :

d

dx
(−2
√

cosx+ C) = −2
1

2
√

cosx
(− sinx) =

sinx√
cosx

√

En pratique, on pose simplement u = cosx et, en profitant de la notation
de Leibniz, du= du

dx dx= − sinx dx et dx= − (1/sinx)du. Remarquer que
la règle pour la dérivation de la fonction inverse s’écrit

dx

du
=

1
du
dx

.

On remplace toutes les expressions en x sous le signe d’intégration par des
expressions correspondantes en u afin d’arriver à une intégrale de la forme∫
g(u) du qu’on sait calculer. A la fin, on exprime le résultat en termes de

la variable x.
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En principe, cette procédure exige que la fonction u = ϕ(x) utilisée
pour la substitution soit bijective de sorte qu’on puisse exprimer x en
termes de u. Elle est donc justifiée seulement sur des intervalles où ϕ
est bijective. Mais en pratique, on fait le calcul sans spécifier de tels
intervalles, et on justifie le résultat obtenu en calculant sa dérivée,
comme nous l’avons fait dans cet exemple.

4.

∫
ln(x) dx

On sait que ln′(x) =
1

x
. Donc, en utilisant l’intégration par parties,

∫
ln(x) dx =

∫
1 · ln(x) dx = x ln(x)−

∫
x

1

x
dx

= x ln(x)− x+ C

Contrôle du résultat par dérivation :

d

dx
(x ln(x)− x+ C) = ln(x) + x

1

x
− 1 = ln(x)

√

5.

∫
sin2 x dx

∫
sin2 x dx =

∫
sinx · sinx dx

= − cosx sinx−
∫

(− cosx) cosx dx

= − cosx sinx+

∫
(1− sin2 x) dx .

A ce point, on est arrivé à la même intégrale
∫

sin2 x dx que l’on voulait
calculer. Mais on peut résoudre l’égalité obtenue par rapport à l’intégrale
cherchée : on a 2

∫
sin2 x dx = − cosx sinx+

∫
1dx, et ainsi∫

sin2 x dx =
1

2
(x− sinx cosx) + C .

Comme auparavant, on peut vérifier le résultat par différentiation.

6.

∫
sin
√
x− 1 dx

On utilise la substitution u =
√
x− 1. Alors x = u2 + 1 et dx = 2u du.

Ensuite, on continue avec une intégration par parties :∫
sin
√
x− 1 dx = 2

∫
u sinu du = −2u cosu+ 2

∫
cosu du

= −2u cosu+ 2 sinu+ C

= −2
√
x− 1 cos

√
x− 1 + 2 sin

√
x− 1 + C
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7.

∫ 1

0

x2 2x
3+1 dx

On utilise la substitution u = x3+1 et la formule 2u = eu ln 2 (voir chapitre
6). Alors du = 3x2dx. Pour x = 0 on a u = 1, et à x = 1 correspond u = 2.
Ainsi, ∫ 1

0

x22x
3+1 dx =

1

3

∫ 2

1

2udu =
1

3

∫ 2

1

eu ln 2du

=
1

3

[ 1

ln 2
eu ln 2

]u=2

u=1
=

1

3 ln 2

(
e2 ln 2 − eln 2

)
Comme alternative, on pourrait calculer l’intégrale indéfinie

∫
x22x

3+1 dx

et évaluer
[
. . .
]x=1

x=0
.

8.

∫ π/4

0

ex cos(2x) dx

Avec une intégration par parties on trouve∫ π/4

0

ex cos(2x) dx =
[
ex · cos(2x)

]x=π/4

x=0
+ 2

∫ π/4

0

ex sin(2x) dx

= −1 + 2

∫ π/4

0

ex sin(2x) dx.

Pour la dernière intégrale, une deuxième intégration par parties donne∫ π/4

0

ex · sin(2x) dx =
[
ex sin(2x)

]x=π/4

x=0
− 2

∫ π/4

0

ex cos(2x) dx

= eπ/4 − 2

∫ π/4

0

ex cos(2x) dx.

Par suite,∫ π/4

0

ex cos(2x) dx = −1 + 2
(
eπ/4 − 2

∫ π/4

0

ex cos(2x) dx
)

= −1 + 2eπ/4 − 4

∫ π/4

0

ex cos(2x) dx,

d’où l’on tire 5

∫ π/4

0

ex cos(2x) dx = −1 + 2eπ/4, et enfin le résultat

∫ π/4

0

ex cos(2x) dx =
1

5

(
−1 + 2eπ/4

)
.

Résolution d’équations différentielles

On traitera ce sujet plus tard, mais expliquons brièvement le rôle du
théorème fondamental du calcul différentiel et intégral dans la résolution
d’équations différentielles. L’exemple le plus simple d’une équation différen-
tielle est une équation de la forme

y′ = f
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avec une fonction donnée f . Ici on cherche une fonction y qui satisfasse à
l’équation, c’est-à-dire une fonction primitive y de f . Le théorème fonda-
mental nous dit que, si f est continue, la fonction

y(x) =

∫ x

x0

f(t) dt

est une solution. Cette solution remplit la condition initiale y(x0) = 0, et
pour la déterminer il faut calculer l’intégrale, ce qui revient au calcul d’une
aire. Comme la construction d’un carré de même aire permet le calcul de
celle-ci, on parlait aussi d’une quadrature. (La célèbre quadrature du cercle
est la construction—avec règle et compas—d’un carré ayant l’aire πr2

d’un cercle de rayon r donné.) C’est pourquoi on dit encore aujourd’hui
qu’une équation différentielle peut être �résolue par quadrature� si elle
se ramène à une équation du type y′ = f . L’intégration joue donc un
rôle dans la résolution d’équations différentielles, et on parle même de
l’� intégration� d’une équation différentielle au lieu de sa résolution.

Exemple. Considérons la chute libre sous l’hypothèse
galiléenne d’accélération constante (un cas particulier de
la deuxième loi de Newton). Soit s(t) la distance parcou-
rue au temps t. On cherche la fonction s. La vitesse au
temps t est la dérivée v(t) = ṡ(t), et l’accélération est
la dérivée seconde s̈(t). Nous pouvons donc reformuler
l’hypothèse de Galilée comme une équation différentielle

s̈(t) = a,

avec une constante a. Une intégration
∫ t

0
(. . .)dt donne ṡ(t)− ṡ(0) = at, et ainsi

ṡ(t) = v0 + at

avec la vitese initiale v0 = ṡ(0). Une intégration supplémentaire conduit à

s(t) =

∫ t

0

(v0 + aτ) dτ = v0t+
a

2
t2

puisque s(0) = 0.

Intégration numérique

Quand on ne connait pas de primitive de f , on utilise des méthodes d’approxi-

mation pour trouver la valeur approchée de l’intégrale définie
∫ b
a
f(x) dx. Une

approximation simple est donnée par les sommes de Riemann avec un pas h(∆)
suffisamment petit. Nous présentons deux autres méthodes d’approximation.
Les deux utilisent les valeurs de la fonction f en un nombre fini de points xk de
l’intervalle [a, b]. Elles sont de la forme générale∫ b

a

f(x) dx ≈
n∑
k=0

wkf(xk),

où les constantes wk sont appelées poids de la méthode utilisée.

Règle du trapèze. Découpons l’intervalle [a, b] en n sous-intervalles en choi-
sissant x0 = a < x1 < . . . < xn = b. Dans chaque sous-intervalle [xk−1, xk],
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nous interpolons la fonction f linéairement, c’est-à-dire que nous remplaçons le
graphe de la fonction entre xk−1 et xk par un segment de droite :

En posant ∆xk := xk − xk−1, nous obtenons l’approximation∫ b

a

f(x) dx ≈ 1

2

n∑
k=1

(
f(xk−1) + f(xk)

)
∆xk.

Dans le cas où les points xk sont équidistants avec ∆x1 = . . . = ∆xn = h := b−a
n ,

la formule se simplifie :∫ b

a

f(x) dx ≈ h
(1

2
f(x0) + f(x1) + . . . + f(xn−1) +

1

2
f(xn)

)
avec xk = a+ kh pour k = 0, . . . , n.

Comme pour d’autres méthodes approchées, on peut estimer l’erreur de cette
approximation de l’intégrale, c’est-à-dire la différence entre la valeur effective
de l’intégrale et la valeur donnée par la règle du trapèze. Une analyse détaillée
démontre :

Estimation d’erreur. Si la fonction f est deux fois continûment différentiable,
avec |f (2)(x)| ≤ M pour tout x ∈ [a, b], alors l’erreur d’intégration par la règle
du trapèze satisfait∣∣∣ ∫ b

a

f(x) dx− h
(1

2
f(x0) + f(x1) + . . . + f(xn−1) +

1

2
f(xn)

)∣∣∣ ≤ (b− a)
M

12
h2.

Règle de Simpson. Découpons l’intervalle [a, b] en un nombre pair 2n de
sous-intervalles en choisissant x0 = a < x1 < . . . < x2n = b. Sur chacun
des intervalles [x0, x2], [x2, x4], . . .[x2n−2, x2n] nous remplaçons la fonction
f par un polynôme d’interpolation de degré ≤ 2.

Pour l’intervalle [x0, x2], on choisit le polynôme p1 de degré ≤ 2 qui prend
les mêmes valeurs que f en x0, x1 et x2. La formule d’interpolation de
Lagrange (chapitre 1, p. 7) nous donne p1 sous la forme

p1(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
f(x0) +

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
f(x1)

+
(x− x0)(x− x1)

(x2 − x0)(x2 − x1)
f(x2)

Un calcul direct donne

x2∫
x0

p1(x) dx =
x2 − x0

6

(
f(x0) + 4f(x1) + f(x2)

)
.
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D’une manière analogue on construit les polynômes interpolants p2, . . . , pn.
Prenant comme approximation de l’intégrale

b∫
a

f(x) dx ≈
n∑
k=1

x2k∫
x2k−2

pk(x) dx,

on arrive à la règle de Simpson :∫ b

a

f(x) dx ≈
n∑
k=1

x2k − x2k−2

6

(
f(x2k−2) + 4f(x2k−1) + f(x2k)

)
.

Dans le cas où les points xk sont équidistants avec xk − xk−1 = h := b−a
2n

pour k = 1, . . . , 2n, la formule devient∫ b

a

f(x) dx

≈ h

3

(
f(x0) + 4f(x1) + 2f(x2) + . . .+ 2f(x2n−2) + 4f(x2n−1) + f(x2n)

)
=
h

3

n∑
k=1

(
f(x2k−2) + 4f(x2k−1) + f(x2k)

)
avec xk = a+ kh pour k = 0, . . . , 2n.

Estimation d’erreur. Si la fonction f est quatre fois continûment dif-
férentiable, avec |f (4)(x)| ≤ M pour tout x ∈ [a, b], alors l’erreur d’inté-
gration par la règle de Simpson avec points équidistants satisfait à∣∣∣∣ ∫ b

a

f(x) dx− h

3

n∑
k=1

(
f(x2k−2) + 4f(x2k−1) + f(x2k)

)∣∣∣∣ ≤ (b− a)
M

180
h4.

Intégrales impropres

Jusqu’ici, nous avons étudié l’intégrale d’une fonction f continue sur un inter-
valle [a, b] fermé et borné. Considérons maintenant le cas d’un intervalle de la
forme [a, b[. Soit f : [a, b[→ R une fonction continue. Notez que f n’est pas
définie en b. On parle d’un intégrale � impropre en b�, et on définit∫ b

a

f(x) dx := lim
ξ↗b

∫ ξ

a

f(x) dx

si cette limite existe. On dit alors que l’intégrale impropre �existe�, ou qu’elle
converge. La même définition s’applique lorsqu’on intègre jusqu’à une borne
infinie : ∫ ∞

a

f(x) dx := lim
ξ↗∞

∫ ξ

a

f(x) dx.

D’une manière analogue, pour f :]a, b]→ R on pose∫ b

a

f(x) dx := lim
ξ↘a

∫ b

ξ

f(x) dx

si cette limite existe. Finalement, pour une intégrale impropre en les deux bornes
a et b, c’est-à-dire pour une fonction continue f :]a, b[→ R, on choisit un c ∈]a, b[
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arbitrairement et définit∫ b

a

f(x) dx :=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx

= lim
ξ↘a

∫ c

ξ

f(x) dx+ lim
ξ↗b

∫ ξ

c

f(x) dx

si les deux limites de droite existent. On voit facilement que le résultat ne dépend
pas du choix de c.

Exemples

9.

∫ 1

0

dx√
x

= lim
ξ↘0

∫ 1

ξ

dx√
x

= lim
ξ↘0

[
2
√
x
]1
ξ

= 2

10.

∫ 1

0

dx

x2
= lim
ξ↘0

∫ 1

ξ

dx

x2
= lim
ξ↘0

[
− 1

x

]1
ξ

= +∞

11.

∫ ∞
0

dx

1 + x2
= lim
ξ→∞

∫ ξ

0

dx

1 + x2
= lim
ξ→∞

[
arctanx

]ξ
0

= π/2.

12.

∫ ∞
−∞

dx

1 + x2
=

∫ 0

−∞

dx

1 + x2
+

∫ ∞
0

dx

1 + x2
= π.

13.

∫ ∞
−∞

x dx n’existe pas, parce qu’on a

∫ 0

−∞
x dx = −∞ et

∫ ∞
0

x dx = +∞.

Mais la limite lim
ξ→∞

∫ ξ

−ξ
dx existe et est égale à 0.

14. Plus tard nous verrons que∫ ∞
−∞

e−x
2

dx =
√
π.

Avec la méthode de la substitution on en déduit que

1

σ
√

2π

∫ ∞
−∞

e−(t−µ)2/(2σ2) dt = 1

pour tout σ, µ ∈ R avec σ > 0. En statistique, cette relation dit que la
densité du loi normale gaussienne est une densité de probabilité.
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Chapitre 6

Logarithmes et fonctions
exponentielles

Le logarithme naturel

La fonction ln : R+ =]0,∞[→ R, appelée logarithme naturel, est définie par

lnx =

∫ x

1

dt

t
. (6.1)

On a

ln(xy) =

∫ xy

1

dt

t
=

∫ x

1

dt

t
+

∫ xy

x

dt

t
.

Avec la substitution t = xs, dt = x ds on trouve

ln(xy) =

∫ x

1

dt

t
+

∫ y

1

ds

s
,

et donc � l’équation fonctionnelle� du logarithme

ln(xy) = lnx+ ln y . (6.2)

Pour y = 1/x, il s’ensuit que

lnx+ ln
1

x
= ln

(
x · 1

x

)
= ln 1 = 0,

et ainsi

ln
1

x
= − lnx . (6.3)

Puisque
x

y
= x · 1

y
, on obtient comme conséquence de (6.2) et (6.3)

ln
(x
y

)
= lnx− ln y .

Par sa définition, la fonction ln satisfait ln′(x) = 1/x et ln(1) = 0. Comme la
primitive d’une fonction définie sur un intervalle est uniquement déterminée à
l’addition d’une constante près, la fonction ln est uniquement déterminée par
ces deux propriétés : ln est la seule primitive de 1/x sur R+ avec ln(1) = 0.
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La loi (6.2) peut être également vérifiée d’une autre façon. Pour cela, fixons
y > 0 en laissant x variable. Alors (y étant fixé)

d

dx

(
ln(xy)− lnx− ln y

)
=

1

xy

d

dx
(xy)− 1

x
=

1

x
− 1

x
= 0.

Par conséquent, ln(xy) − lnx − ln y = c avec une �constante� c (qui dépend
de y). En posant x = 1 dans cette identité on obtient c = 0, d’où le résultat.

Note historique. La découverte des logarithmes au début du 17ième
siècle était bienvenue, car ils permettaient de ramener une multiplication
à une addition. Bien que la première table de logarithmes, publiée par
John Napier en 1614, contint une autre fonction avec une autre loi, les
mathématiciens se rendirent vite compte qu’une fonction ln : R+ → R
satisfaisant

ln(xy) = lnx+ ln y

et dont on trouve les valeurs dans une table, était le moyen idéal pour
ramener une multiplication à une addition : pour le calcul du produit xy
on cherche les logarithmes lnx et ln y dans la table, on les additionne, et on
cherche dans la même table le nombre ayant cette somme lnx+ln y comme
logarithme. (Par une procédure analogue on ramène une division à une
soustraction.) Si on veut utiliser les logarithmes pour la réduction d’une
multiplication à une addition, on a besoin de l’injectivité de la fonction
ln : R+ → R : sinon il n’est pas possible de retrouver le nombre xy à partir
de son logarithme ln(xy). En effet :

Proposition. Le logarithme naturel ln : R+ → R est une fonction bijective.

Preuve. Par construction, il s’agit d’une fonction différentiable avec dérivée
ln′ x = 1/x > 0. Le logarithme naturel est donc une fonction strictement mono-
tone croissante et, par conséquent, injective. Pour voir qu’elle est surjective, il
suffit (à cause du théorème des valeurs intermédiaires, p. 21) de montrer que

lim
x↘0

lnx = −∞ et lim
x→+∞

lnx = +∞.

1 2 3ã 4 5 6 7 8 9

x

-2

-1

1

2

ln x

Montrons d’abord la deuxième égalité : soit x ≥ 2 et soit n le plus grand nombre
entier ≤ x. On a alors

lnx =

∫ x

1

dt

t
≥
∫ n

1

dt

t
=

∫ 2

1

dt

t
+

∫ 3

2

dt

t
+ . . .+

∫ n

n−1

dt

t

≥ 1

2
+

1

3
+ . . .+

1

n
,
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car 1
t ≥

1
k+1 pour t dans l’intervalle [k, k+ 1]. Donc limx→∞ lnx =∞, puisque

la série 1
2 + 1

3 + . . . diverge. La première égalité est une conséquence de la
deuxième, car ln(1/x) = − lnx :

lim
x↘0

lnx = lim
x→∞

ln(1/x) = − lim
x→∞

lnx = −∞ .

La fonction exponentielle

La bijectivité de ln : R+ → R permet de définir la fonction réciproque. Définissons
la fonction exponentielle

exp : R→ R+

comme la fonction réciproque du logarithme naturel, c’est-à-dire exp = ln−1.
A la place de expx on écrit aussi ex, car cela peut être interprété comme une
puissance d’un certain nombre e - voir plus bas. Donc

y = ex ⇐⇒ x = ln y. (6.4)

-3 -2 -1 1 2 3 4
x

1

5

10

20

exp x

Propriétés de la fonction exponentielle.

• exp(x+ y) = expx · exp y pour tous les x, y ∈ R

• exp(0) = 1

• exp(−x) =
1

expx
pour tout x ∈ R

• expx > 0 pour tout x ∈ R

• La fonction exp : R→ R+ est bijective ; plus précisément : elle est stricte-
ment croissante et

lim
x→−∞

expx = 0, lim
x→+∞

expx = +∞ .

• La fonction exp est différentiable. Elle est égale à sa propre dérivée :

exp′(x) = exp(x) .
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Ces propriétés découlent des propriétés du logarithme naturel. Le fait suivant
était déjà mentionné au chapitre 4.

Proposition. La série de Taylor de la fonction exp en x0 = 0 converge vers
expx pour tout x ∈ R, donc

ex =

∞∑
k=0

xk

k!
.

Preuve. Soit Tn le n-ième polynôme de Taylor de la fonction exponentielle :

Tn(x) :=

n∑
k=0

xk

k!
.

Il faut montrer que, pour tout x ∈ R, Tn(x) converge vers expx lorsque
n tend vers ∞. A cette fin, nous utilisons l’estimation (4.7) (page 37)
du reste | expx − Tn(x)| dans la formule de Taylor pour montrer que
| expx − Tn(x)| → 0 quand n → ∞. Rappelons l’estimation (4.7) du
reste : si Mn+1 est un nombre tel que |f (n+1)(ξ)| ≤ Mn+1 pour tout ξ
entre x0 et x, alors

|f(x)− Tn(x)| ≤ Mn+1

(n+ 1)!
|x− x0|n+1 . (∗)

Dans le cas présent, x0 = 0 et f = exp, et on a

|f (n+1)(ξ)| = | exp(n+1)(ξ)| = exp(ξ) ≤ 1 + ex

pour tout1 ξ entre 0 et x. On peut donc choisirMn+1 = 1+ex indépendamment
de n, et l’estimation (∗) devient

| expx− Tn(x)| ≤ (1 + ex)
|x|n+1

(n+ 1)!
.

On voit facilement que

lim
n→∞

|x|n+1

(n+ 1)!
= 0.

Par conséquent, | expx− Tn(x)| → 0 quand n→∞.

Proposition. Pour tout x ∈ R

expx = lim
n→∞

(
1 +

x

n

)n
.

Preuve. Fixons x ∈ R. Alors il existe un n0 ∈ N tel que 1 + x
n
> 0 pour

tout n ≥ n0. Pour de tels n, considérons l’expression

ln

((
1 +

x

n

)n)
.

La formule de Taylor donne pour la fonction f(y) = ln(1 + y)

ln(1 + y) = y +R(y)

1En fait, exp(ξ) ≤ 1 si x ≤ ξ ≤ 0, et exp(ξ) ≤ expx= ex si 0 ≤ ξ ≤ x, donc en tout cas
exp(ξ) ≤ 1 + ex.
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avec R(y)
y
→ 0 quand y → 0. En remplaçant y par x/n, il s’ensuit que

ln

((
1 +

x

n

)n)
= n ln

(
1 +

x

n

)
= n

(
x

n
+R

(
x

n

))
= x+ x

n

x
R

(
x

n

)
= x

(
1 +

R(x/n)

x/n

)
−→ x

pour n→∞. Par conséquent,

lim
n→∞

(
1 +

x

n

)n
= lim

n→∞
exp

(
ln

(
1 +

x

n

)n)
= exp

(
lim
n→∞

ln

(
1 +

x

n

)n)
= expx .

exp(x) comme puissance

Nous voulons maintenant justifier l’écriture de expx comme une puissance ex.
Soit le nombre e (d’Euler)

e := exp(1) = 2.71828 . . .

Rappelons que, pour a ∈ R positif et pour tout nombre rationnel positif x =
p
q ∈ Q (avec p, q ∈ N et q > 0), la puissance ax est définie comme

ax = a
p
q := q

√
ap = ( q

√
a)p .

Pour x ∈ Q négatif on définit alors ax := 1
a−x . Ainsi,

a−3/4 =
1

a3/4
=

1
4
√
a3
.

Considérons maintenant a = e.

Proposition. Pour tout x ∈ Q on a

exp(x) = ex . (∗)

La valeur exp(x) est donc vraiment une puissance au sens habituel de e quand
x est rationnel, ce qui justifie la notation.

Preuve. Pour démontrer l’égalité (∗) pour tout x ∈ Q positif, c’est-à-dire
pour montrer que

e
p
q = q

√
ep, (∗∗)

pour tous p, q ∈ N avec q > 0, on utilise la règle exp(x+ y) = expx · exp y
plusieurs fois. On procède en trois étapes. Commençons avec le cas p > 0
et q = 1 :

exp p = exp(1 + . . .+ 1) = exp(1) · . . . · exp(1) = e · . . . · e = ep .

Dans le cas plus général où p, q ∈ N avec q > 0,(
exp

p

q

)q
= exp

(
p

q
+ . . .+

p

q

)
= exp

(
q · p

q

)
= exp p = ep,
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où nous avons utilisé le fait déjà établi que exp p = ep. En prenant la racine
q
√

on obtient (∗∗). Enfin pour x ∈ Q négatif, −x est un nombre rationnel
positif et donc, comme nous l’avons déjà montré, exp(−x) = e−x. Par
conséquent,

expx =
1

exp (−x)
=

1

e−x
= ex,

d’où le résultat (∗) pour tout x ∈ Q.

Puissances et logarithmes généraux

Le logarithme naturel et la fonction exponentielle nous permettent de donner
une définition raisonnable de la puissance ax pour tout a > 0 et tout x ∈ R.
Fixons a > 0 ; alors la fonction f(x) = ex ln a satisfait à l’équation fonctionnelle
f(x + y) = f(x)f(y) avec les conditions f(0) = 1 et f(1) = a. En suivant la
preuve de la proposition précédente on obtient pour x rationnel f(x) = f(1)x =
ax, c’est-à-dire

ax = ex ln a (6.5)

pour tout x ∈ Q. Nous définissons ax par cette formule pour x 6∈ Q. Pour a = 1,
nous obtenons la fonction peu intéressante ax ≡ 1, et pour a 6= 1 une fonction
strictement monotone. La fonction inverse

loga : R+ → R,

le logarithme de base a, est donc bien définie si a 6= 1 :

x = loga y ⇔ y = ax= ex ln a ⇔ x ln a = ln y .

Par conséquent,
loga y =

ln y

ln a
. (6.6)

Pour a = e on a loge y = ln y puisque ln e = 1. Le nombre e est donc la base du
logarithme naturel.

Croissance exponentielle

Soit N(t) le nombre d’individus d’une population (par exemple de bactéries) au
temps t. Souvent, l’hypothèse suivante n’est pas trop irréaliste :

Sur un petit intervalle de temps ∆t, l’accroissement ∆N = N(t +
∆t)−N(t) est (à peu près) proportionnel au produit N(t)∆t, avec
un facteur de proportionnalité λ > 0 :

N(t+ ∆t)−N(t) ≈ λN(t)∆t

Pour t fixe, la fonction N(t + ∆t) de ∆t est donc à peu près linéaire dans cet
intervalle, avec pente λN(t) :

N(t+ ∆t) ≈ N(t) + λN(t)∆t
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Pour l’étudier avec les méthodes du calcul différentiel, nous faisons abstraction
du fait que N ne prend que des valeurs entières et admettons aussi des valeurs
réelles quelconques. (En étudiant par exemple la croissance de bactéries, on ne
va pas compter les individus, mais peser toute la culture ; notre idéalisation est
donc raisonnable.) L’allure locale presque linéaire de la fonction N(t) implique
maintenant

Ṅ(t) = lim
∆t→0

N(t+ ∆t)−N(t)

∆t
= λN(t),

c’est-à-dire que la fonction N(t) satisfait l’équation différentielle

Ṅ = λN.

Cherchons donc les fonctions N : R → R avec Ṅ = λN, où λ > 0 est une
constante. La proposition suivante montre que, si nous y ajoutons encore une
condition initiale N(t0) = N0, il y a une et une seule solution, à savoir la fonction

N(t) = N0 e
λ(t−t0). (6.7)

Proposition. Soit λ ∈ R, et soit I ⊆ R un intervalle. Alors les solutions
y : I → R de l’équation différentielle

ẏ = λy

sont les fonctions
y(t) = Aeλt

avec A ∈ R. Donné t0 et y0, l’unique solution remplissant la condition initiale
y(t0) = y0 est la fonction

y(t) = y0 e
λ(t−t0).

Preuve. Pour toute constante A ∈ R, la fonction t 7→ Aeλt est une solution de
l’équation différentielle. Soit maintenant t 7→ y(t) une solution quelconque de
cette équation. Il faut montrer qu’elle est de la forme Aeλt pour une constante

A. A cette fin, étudions la fonction h(t) =
y(t)

eλt
. Pour sa dérivée on trouve

ḣ(t) =
ẏ(t)eλt − y(t)λeλt

(eλt)2
=
λy(t)eλt − y(t)λeλt

(eλt)2
= 0 .

Par conséquent, h est une fonction constante, disons h(t) ≡ A, et par suite
y(t) = Aeλt. Enfin, la condition initiale y(t0) = y0 permet de déterminer la
constante A : on a y0 = Aeλt0 , donc A = y0 e

−λt0 et ainsi

y(t) = y0 e
λ(t−t0).

Décroissance exponentielle : décomposition radioactive

On utilise le même modèle mathématique pour la décomposition radioactive,
mais avec un facteur de proportionnalité négatif. Soit N(t) le nombre de noyaux
radioactifs d’une élément donnée présents dans un échantillon au temps t. Alors

Ṅ = −λN

avec λ > 0, et par conséquent

N(t) = N(t0)e−λ(t−t0). (6.8)
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En général on ne donne pas le facteur λ mais plutôt la demi-vie τ , le temps
après lequel il ne reste que la moitié de la masse initiale :

N(t0 + τ) = N(t0)e−λτ=
1

2
N(t0) ⇐⇒ e−λτ =

1

2
⇐⇒ λτ = ln 2.

La relation entre λ et τ est donc

τ =
ln 2

λ
, λ =

ln 2

τ
.

Exemple. Si la demi-vie d’une substance radioactive vaut 400 ans, après com-
bien d’années 90% de cette substance se seront désintégrés ?

On calcule le temps en années après lesquelles il reste 10% de la substance. On
a donc l’équation N(t) = 1

10N(t0), et on cherche 4t = t− t0. Avec (6.8)

N(t) = N(t0)e−λ(t−t0) = N(t0)e−λ4t

on obtient 1
10 = e−λ4t, ce qui donne ln( 1

10 ) = −λ4t et

4t = − 1

λ
ln
( 1

10

)
= −400

ln 2
ln
( 1

10

)
≈ 1328.8

Il faut donc environ 1328.8 années pour que 90% de la substance se désintègrent.

Exemple. On considère des substances radioactives A et B. La demi-vie de la
substance A vaut 500 ans, la substance B perd un pour mille par an. Laquelle
de ces deux substances se décompose le plus vite ?

On compare les demi-vies en années des deux substances, τA = 500 et τB . Pour
la substance B on a N(t+ 1) = N(t)− 1

1000 N(t), donc

N(t+ 1) =
999

1000
N(t)

D’autre part, N(t+ 1) = N(t) e−λB(t+1−t) = N(t) e−λB , et ainsi

999

1000
N(t) = N(t) e−λB

d’où on déduit que λB = − ln 999
1000 . Pour la demi-vie on obtient

τB =
ln 2

λB
≈ 692.8

C’est donc la substance A qui se décompose le plus vite.

Exemple. Dans un délai d’un mois, la concentration d’une substance radio-
active dans un échantillon de glace a diminué par décomposition radioactive
de 45,62% à 45,61% de la concentration originelle. Quel est l’âge de la glace ?
Quelle était la concentration il y a 100 ans ?

On mesure le temps en années. Soit N(t) la quantité de substance radioactive
dans l’échantillon au temps t. Si t0 dénote le moment de la formation de la glace,
et si t1 est le moment présent, on sait que N(t1) = 0.4561N(t0) et N

(
t1− 1

12

)
=

0.4562N(t0). On a alors les deux équations

0.4561N(t0) = N(t0) e−λ(t1−t0)

0.4562N(t0) = N(t0) e−λ
(
t1− 1

12−t0
)
.
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La première équation donne

(1) −λ(t1 − t0) = ln 0.4561.

En divisant les équations, on obtient aussi 4561
4562 = eλ/12, donc la valeur

λ = 12 ln
(4562

4561

)
≈ 0.00263 . . .

L’âge de la glace est égal à la différence t1 − t0. L’équation (1) ci-dessus donne

t1 − t0 = − ln 0.4561

λ
= − ln 0.4561

12 ln(4562/4561)
≈ 298.414 . . .

La glace date donc d’environ 298 ans. La concentration il y a 100 ans est donnée
par

N(t1 − 100) = N(t0) e−λ (t1−100−t0) = N(t0) e−λ (t1−t0)e100λ

= N(t0) 0.4561
(4562

4561

)1200

≈ 0.593N(t0)

Elle était donc environ 59.3% de la concentration initiale.

La croissance ou décroissance exponentielle n’est qu’un exemple parmi
beaucoup d’autres d’applications de la fonction exponentielle. C’est effec-
tivement une des fonctions les plus importantes. Mais à son origine était
bien l’idée de simplifier des calculs grâce aux logarithmes.

Le baron écossais John Napier (1550 – 1617) publia sa table de loga-
rithmes sous le titre Mirifici logarithmorum canonis descriptio, ejusque
usus, in utraque trigonometria ; ut etiam in omni logistica mathematica,
amplissimi, facillimi, & expeditissimi explicatio en 1614 à Edimbourg.

L’horloger et mécanicien suisse Jost Bürgi (1552 – 1632) publia sa table de
logarithmes sous le titre Aritmetische und Geometrische Progress Tabulen,
sambt gründlichem unterricht, wie solche nützlich in allerley Rechnungen
zugebrauchen und verstanden werden sol en 1620 à Prague.

68



Chapitre 7

Equations différentielles :
introduction

Terminologie

Une équation différentielle est une équation exprimant une relation entre une
fonction et ses dérivées. Quand il s’agit d’une fonction de plusieurs variables et de
ses dérivées partielles (voir le chapitre 10), on parle d’une équation aux dérivées
partielles. Nous ne traitons ici que des équations différentielles ordinaires, où
l’on a des fonctions d’une seule variable x 7→ y(x). L’ordre d’une telle équation
différentielle est le plus grand ordre des dérivées qui y figurent :

y′ = 3y + x2 premier ordre

y′ sin(y′′) + ay + y5 = x second ordre

avec1 y= y(x), y′= y′(x) etc. Commençons par les équations différentielles de
premier ordre. Une telle équation est appelée explicite si sa forme est y′ =
F (x, y), implicite dans le cas contraire :

y′ = F (x, y) explicite

G(x, y, y′) = 0 implicite

En général, il faut préciser le domaine de définition de l’équation, c’est-à-dire
celui de la fonction F pour une équation explicite :

y′ = F (x, y) pour (x, y) ∈ D, (7.1)

où D est un sous–ensemble du plan R2, par exemple un rectangle ou tout le
plan. Une solution de cette équation différentielle est une fonction différentiable
ϕ : I → R, où I est un intervalle dans R, telle que

1. le graphe de ϕ est contenu dans D, c’est-à-dire que
(
x, ϕ(x)

)
∈

D pour tout x ∈ I ;

2. la fonction ϕ satisfait l’équation : ϕ′(x) = F
(
x, ϕ(x)

)
pour tout

x ∈ I.

1Dans ce contexte, il est courant de désigner la fonction en question par y. Traditionel-
lement, on regardait y comme une �quantité variable� qui dépend d’une autre quantité
x. Mais pour éviter toute confusion, il est souvent préférable d’utiliser un autre symbole, et
d’écrire la première équation, par exemple, comme ϕ′ = 3ϕ+g, où g est la fonction g(x) = x2.
Evidemment, d’autres désignations pour les variables sont possibles.
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Interprétation géométrique

A une équation différentielle

y′ = F (x, y), (x, y) ∈ D,

on peut associer un champ de directions dans D : pour chaque point (x, y) ∈
D on considère la droite passant par ce point et ayant la pente F (x, y). Une
solution est alors une fonction ϕ dont le graphe est une courbe dans D telle que
ses tangentes font partie de cette famille de droites. Dans une représentation
graphique, on symbolise quelques-unes de ces droites par des petits traits.

Exemples

1. y′ =
1

1 + x2
pour (x, y) ∈ D = R2 .

Solutions : y = arctanx+ C, C ∈ R .
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-1
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Champs de directions et quelques solutions

2. y′= − x

y
pour (x, y) ∈ D avec D = {(x, y) ∈ R2; y 6= 0 } .

Solutions : y = ±
√
C2 − x2, C ∈ R .

Les solutions sont obtenues en utilisant la méthode de la séparation des
variables expliquée ci-dessous. Pour un C ∈ R donné, la solution est définie
pour |x| ≤ C, c’est-à-dire sur l’intervalle I =] − C,C[. Son graphe est un
demi-cercle.
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Problèmes à valeur initiale

Souvent, on cherche une solution de l’équation (7.1) remplissant une certaine
condition initiale y(x0) = y0, où le point (x0, y0) ∈ D est donné. On parle alors
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d’un problème à valeur initiale ou d’un problème de Cauchy. Ce problème se
formule donc ainsi : trouver une fonction y, définie sur un intervalle I contenant
x0, telle que

y′(x) = F (x, y(x)) pour tout x ∈ I ,
y(x0) = y0 .

(7.2)

Géométriquement, on cherche une solution dont le graphe contient le point
(x0, y0). Dans les exemples 1 et 2 on voit que chaque point (x0, y0) ∈ R2 est situé
sur une seule courbe. Il y a donc une seule solution de l’équation différentielle
qui satisfasse à la condition initiale y(x0) = y0.

On peut montrer que tout problème à valeur initiale (7.2) possède une solution
unique définie sur un certain intervalle I, pourvu que F satisfasse à des hy-
pothèses de régularité assez peu exigeantes. Il suffit par exemple de demander
que F possède des dérivées partielles ∂F/∂x et ∂F/∂y qui soient des fonctions
continues sur D (voir le chapitre 10 pour la notion de dérivée partielle).

Une autre condition suffisante, la condition de Lipschitz, est qu’il existe
une constante c telle que

|F (x, y1)− F (x, y2)| ≤ c|y1 − y2|

pour tout (x, y1), (x, y2) ∈ D (théorème de Picard–Lindelöf, également ap-
pelé théorème de Cauchy–Lipschitz). Mais voici un exemple d’un problème
à valeur initiale dont la solution n’est pas unique :

y′ = |y|2/3
y(0) = 0 .

(7.3)

On vérifie que la fonction constante y(x) = 0 et la fonction y(x) = x3/27
sont deux solutions différentes. En fait, il y a un nombre infini de solutions
y : R→ R : pour toutes constantes a, b avec a ≤ 0 ≤ b, la fonction

y(x) =


(x− a)3/27 si x < a
0 si a ≤ x ≤ b
(x− b)3/27 si b < x

est une solution du problème (7.3).
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Une méthode de résolution : la séparation des variables

On a déjà considéré au chapitre 5 l’exemple le plus simple d’une équation dif-
férentielle, une équation de la forme y′(x) = f(x) dans laquelle on cherche
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une primitive y(x) d’une fonction f(x) donnée. On trouve les solutions par
�quadrature�, c’est-à-dire par intégration :

y(x) =

∫
f(x) dx+ C.

Ici nous traitons une classe plus large d’équations différentielles qui peuvent
être également résolues par quadrature. La méthode s’applique aux équations
y′ = F (x, y) dans lesquelles F est un produit d’une fonction f(x) et une fonction
de y que nous écrivons sous la forme 1/g(y) pour simplifier la notation dans ce
qui suit.

Considérons donc une équation différentielle de la forme

y′ =
f(x)

g(y)
(7.4)

avec deux fonctions continues f : I → R et g : J → R, où I et J sont des
intervalles, et où la fonction g ne s’annule pas : g(y) 6= 0 pour tout y ∈ J . On
peut séparer les variables, c’est-à-dire écrire l’équation sous la forme équivalente

g(y) · y′ = f(x).

On prend l’intégrale des deux cotés de cette égalité :∫
g(y(x))y′(x) dx =

∫
f(x) dx+ C,

et avec la substitution u = y(x), du = y′(x)dx on a∫
g(u) du =

∫
f(x) dx+ C. (7.5)

Soient F et G des primitives de f et g respectivement. Alors (7.5) s’écrit G(u) =
F (x) + C, et comme u = y(x), nous avons obtenus les solutions y = y(x) sous
la forme implicite

G(y) = F (x) + C. (7.6)

Pour calculer y(x), il reste à isoler y dans l’équation (7.6). Ce dernier pas est
souvent difficile ou impossible. Mais même si on ne parvient pas à résoudre par
rapport à y, l’équation (7.6) donne les graphes des solutions comme courbes
dans le plan x, y, et on peut souvent se contenter de cette description implicite.

Pour décrire le passage de l’équation différentielle donnée à l’équation G(y) =
F (x) + C, la notation de Leibniz est très pratique, car elle permet de résumer
nos raisonnements comme suit.

Méthode de la séparation des variables : Pour résoudre l’équation différen-
tielle

y′ =
f(x)

g(y)

on procède en trois étapes :

1. Séparer les variables entre les deux membres, c’est-à-dire utiliser

la relation y′ =
dy

dx
et écrire l’équation différentielle comme

g(y) dy = f(x) dx;
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2. intégrer cette équation :

G(y) =

∫
g(y) dy =

∫
f(x) dx = F (x) + C;

3. résoudre l’équation G(y) = F (x) + C par rapport à y, c’est-
à-dire isoler y, ou trouver les courbes {(x, y) ∈ I × J ; G(y) −
F (x) = C}.

Condition initiale. La solution y = y(x) trouvée dépend encore d’une cons-
tante C. On peut choisir C de manière à satisfaire à une condition initiale
y(x0) = y0. Mais pour cela il est souvent avantageux de prendre les primitives
F et G de sorte que G(y0) = F (x0) = 0 (et donc C = 0), c’est-à-dire de
remplacer les intégrales indéfinies du deuxième pas par les intégrales définies :

G(y) =

∫ y

y0

g(s) ds =

∫ x

x0

f(s) ds = F (x).

Exemples

3. y′ = λy avec λ ∈ R. Nous avons déjà vu les solutions au chapitre 6 : ce
sont les fonctions y = Aeλx avec A ∈ R. Retrouvons-les par la méthode
de la séparation des variables dans le cas où y 6= 0 :

séparation :
dy

dx
= λy → 1

y
dy = λ dx

intégration : ln |y| = λx+ C

résolution : |y| = eλx+C = B eλx

avec une constante positive B = eC .

L’égalité |y(x)| = B eλx montre que la fonction y n’a pas de zéro et par
conséquent ne change pas de signe sur R. Ainsi on a soit y(x) = B eλx

pour tout x ∈ R soit y(x) = −B eλx pour tout x ∈ R. En tout cas on peut
écrire la solution sous la forme y = Aeλx avec une constante A ∈ R.

4. y′ = xy pour (x, y) ∈ D = R2 .

séparation :
dy

dx
= xy → 1

y
dy = x dx pour y 6= 0

intégration : ln |y| = x2

2
+ C

résolution : |y| = B ex
2/2

avec une constante positive B = eC .

Comme dans l’exemple précédent, l’égalité |y(x)| = B ex
2/2 montre que la

fonction y n’a pas de zéro et par conséquent ne change pas de signe sur
R. Ainsi on a soit y(x) = B ex

2/2 pour tout x ∈ R, soit y(x) = −B ex2/2

pour tout x ∈ R. En tout cas la solution sécrit sous la forme y = Aex
2/2

avec une constante A ∈ R.
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5. y′ =
1

y
pour y > 0, avec condition initiale y(x0) = y0 > 0.

séparation :
dy

dx
=

1

y
→ y dy = dx

intégration : 1
2 (y2 − y0

2) = x− x0

résolution : y2 = 2(x− x0) + y0
2

y =
√

2(x− x0) + y0
2

Pour que y(x0) = y0, il faut prendre la racine positive, parce que y0 > 0.
La solution remplissant la condition initiale y(x0) = y0 n’existe que pour
x > x0 − 1

2y0
2.

6.
dx

dt
= x2 − 2x+ 2.

Noter que dans cet exemple t est la variable indépendante, et on cherche
des fonctions x = x(t).

séparation :
dx

x2 − 2x+ 2
= dt

intégration :

∫
dx

x2 − 2x+ 2
= t+ C

Avec complétion du carré x2 − 2x+ 2 = (x− 1)2 + 1
et substitution x− 1 = u, on obtient

arctan(x− 1) = t+ C

résolution : x(t) = 1 + tan(t+ C)

avec C ∈ R .

Vérifions que les fonctions trouvées satisfont à l’équation différentielle : de
x(t) = 1 + tan(t + C) on obtient x′(t) = tan′(t + C) = 1 + tan2(t + C).
D’autre part, x2− 2x+ 2 = (1 + tan)2− 2(1 + tan) + 2 = 1 + tan2(t+C).

7.
dy

dx
=

sinx

y + cos y
.

Séparation des variables et intégration donnent le résultat

1

2
y2 + sin y = − cosx+ C

avec C ∈ R. On ne peut pas résoudre par rapport à y, donc on n’obtient
pas de formule explicite pour la solution y = y(x).
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Réduction au cas séparable

Dans certains cas, on peut ramener l’équation différentielle y′ = F (x, y) à une
équation à variables séparables avec une substitution convenable. C’est le cas si
la fonction F est homogène, c’est-à-dire si elle satisfait à l’identité

F (tx, ty) = F (x, y) (7.7)

pour tout t 6= 0. Pour la fonction y cherchée, on fait l’ansatz

y(x) = xu(x) . (7.8)

La substitution dans y′ = F (x, y) donne la condition

u+ xu′ = F (x, xu) (7.9)

pour la fonction u. Comme F est homogène, on a F (x, xu) = F (1, u), et (7.9)
équivaut à u+ xu′ = F (1, u). Donc u satisfait l’équation

u′ =
1

x
(F (1, u)− u).

On peut alors souvent déterminer u par la méthode de la séparation des va-
riables. Enfin, y(x) = xu(x) est une solution de y′ = F (x, y).

Exemples

8. y′ =
y + x

x

L’équation n’est pas séparable. Comme la fonction F (x, y) = (y + x)/x
est homogène, on utilise l’ansatz y(x) = xu(x). L’équation differentielle
devient alors

u+ xu′ =
xu+ x

x
,

c’est-à-dire xu′ = 1. Séparation des variables et intégration conduisent à
u = ln |x|+ C, et enfin

y(x) = x(ln |x|+ C)

avec C ∈ R.

9. On cherche la solution du problème à valeur initiale

y′ =
x2 + 2y2

xy
, y(1) = 2.

Notons que la domaine de définition de l’équation est D = {(x, y) ∈ R2 |
xy 6= 0}, c’est-à-dire le plan privé des axes x et y. Si x 7→ y(x) est une
solution, alors les fonctions x 7→ −y(x) et x 7→ y(−x) sont des solutions.
Il suffit donc de considérer les solutions dans le quadrant x, y > 0.

La fonction F (x, y) = (x2 +2y2)/xy est homogène. L’ansatz y(x) = xu(x)
donne l’équation

xu′ =
1 + u2

u
.
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La séparation des variables conduit à∫
u

1 + u2
du =

∫
1

x
dx+ C1 . (7.10)

On trouve l’intégrale du côté gauche de l’équation par la substitution
1 + u2 = v, 2u du = dv :∫

u

1 + u2
du =

1

2

∫
1

v
dv =

1

2
ln |v|+ C2 =

1

2
ln(1 + u2) + C2 .

L’équation (7.10) devient

ln(1 + u2) = 2 ln |x|+ C = ln(x2) + C

avec C = 2(C1 − C2) et donc 1 + u2 = B x2 avec B = eC . La résolution
par rapport à u donne u = ±

√
Bx2 − 1, et les solutions dans le quadrant

x, y > 0 sont

y(x) = x
√
Bx2 − 1

avec une constante B > 0.

Reste à choisir B telle que la condition initiale y(1) = 2 soit satisfaite :
pour x = 1,

2 = y(1) = 1
√
B12 − 1 =

√
B − 1 .

Il faut donc que B = 5, et la solution du problème à valeur initiale est la
fonction

y(x) = x
√

5x2 − 1 .

Elle est définie sur l’intervalle ] 1√
5
,∞[.

Considérons un autre cas qui se laisse ramener à une équation séparable : ce
sont les équations différentielles de la forme

y′ = f(ax+ by + c) (7.11)

avec des constantes a, b, c ∈ R, b 6= 0. Dans ce cas, on pose u = ax+ by + c ou,
plus précisement,

u(x) = ax+ by(x) + c,

c’est-à-dire que l’on fait l’ansatz y(x) = (u(x)− ax− c)/b avec une fonction u
à déterminer. Pour u on obtient u′ = a+ by′. Par conséquent, y est une solution
de (7.11) si et seulement si u est une solution de l’équation séparable

u′ = a+ b f(u).

Exemple

10. y′ = (x+ y)2 .

C’est une équation différentielle de la forme (7.11) avec a = b = 1 et c = 0.
La fonction u(x) = x+ y(x) satisfait

u′ = 1 + y′ = 1 + (x+ y)2 = 1 + u2 ,

donc on a l’équation différentielle

u′ = 1 + u2 .
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La séparation des variables donne∫
du

1 + u2
=

∫
dx+ C .

Par suite, arctanu = x+C et u = tan(x+C). Pour la fonction y = u− x
on obtient finalement

y(x) = tan(x+ C)− x

avec C ∈ R.

Application : l’équation logistique

Le modèle. Rappelons le modèle de croissance d’une population (par exemple
de bactéries)

Ṅ(t) = αN(t),

où Ṅ = dN/dt. Nous avons vu que ce modèle décrit une croissance exponen-
tielle :

N(t) = N0e
αt.

Mais une telle croissance n’est pas très réaliste sur une longue période, car elle
serait illimitée. C’est pourquoi le mathématicien belge Pierre François Verhulst
proposa en 1838 l’équation différentielle logistique pour la description de certains
processus de croissance :

Ṅ = αN − βN2, (7.12)

avec deux coefficients positifs α et β. Le coefficient α est le taux de croissance
non freinée, tandis que le coefficient β tient compte de la �concurrence� entre les
individus de la population : la croissance est freinée par le nombre de rencontres
entre les individus, et celui-ci est à peu près proportionnel à N2.

Un autre raisonnement pour justifier la présence du terme −βN2 est le suivant :
l’espace vital et la nourriture de la population étant limités, il y a une taille
maximale possible N∞, et on suppose que la vitesse de croissance Ṅ(t) est
proportionnelle et à la taille actuelleN(t) et à la �marge� disponibleN∞−N(t).
Cela nous donne une équation différentielle de la forme

Ṅ = λN(N∞ −N) : (7.13)

nous retrouvons l’équation logistique avec α = λN∞ et β = λ.

Solution de l’équation. Ecrivons l’équation logistique sous la forme Ṅ =
N(α−βN), ce qui nous permet de trouver déjà les deux solutions stationnaires,
c’est-à-dire constantes : N ≡ 0 et N ≡ α/β. Afin de trouver les autres solutions,
nous séparons les variables :

dN

N(α− βN)
= dt.

Pour l’intégration nous écrivons le premier membre comme

1

N(α− βN)
=

1

α

(
1

N
+

β

α− βN

)
.
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(Une méthode pour trouver de tels décompositions est expliquée dans l’applica-
tion suivante.) Ainsi,∫

dN

N(α− βN)
=

1

α

(∫
dN

N
+

∫
β dN

α− βN

)
=

1

α

(
ln |N | − ln |α− βN |

)
=

1

α
ln

∣∣∣∣ N

α− βN

∣∣∣∣ .
Donc

ln

∣∣∣∣ N

α− βN

∣∣∣∣ = αt+ c,

et par conséquent
N(t)

α− βN(t)
= Ceαt (7.14)

avec C = ±ec. La résolution par rapport à N(t) donne le résultat

N(t) =
αCeαt

1 + βCeαt
(7.15)

avec C ∈ R. (Pour C = 0 c’est la solution constante N ≡ 0.) On peut exprimer
la constante C à l’aide d’une valeur initiale N(0) = N0 : posant t = 0 dans
(7.14) on obtient C = N0/(α − βN0), et la substitution de cette valeur dans
(7.15) donne finalement la solution

N(t) =
αN0e

αt

α+ βN0(eαt − 1)
. (7.16)

Solutions de l’équation logistique

Remarque : en voyant la solution (7.16), il est difficile de �comprendre� la
signification des constantes α et β, tandis que dans l’équation différentielle
Ṅ = αN −βN2 leur rôle est clair. Cet exemple est typique : il est souvent
plus facile de comprendre une loi naturelle si elle est exprimée par une
équation différentielle que si l’on connâıt seulement la solution explicite.

Discussion des solutions

• La formule a un sens pour N0 = 0 et donne dans ce cas la solution triviale
N(t) ≡ 0.

• Pour N0 = α/β, on obtient la solution constante N(t) ≡ α/β, c’est-
à-dire que la taille de la population reste constante : c’est une solution
d’équilibre. Pour cette taille, les deux termes du côté droit de l’équation
(7.12) se compensent, puisque αN = α2/β = βN2.
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• Pour 0 < N0 < α/β, la solution est strictement croissante, car Ṅ =
αN − βN2 > 0 pour 0 < N < α/β. De plus, N∞ := lim

t→∞
N(t) = α/β.

• Pour N0 > α/β, la solution est strictement décroissante vers lim
t→∞

N(t) =

α/β = N∞.

• Pour 0 < N < N∞, la vitesse Ṅ(t) de croissance est maximale lorsque
N(t) = α/(2β), c’est-à-dire au moment où la population atteint la moitié
de sa taille asymptotique N∞.

• Considérons une solution N(t) avec 0 < N < N∞. Elle est alors définie
sur R, avec lim

t→−∞
N(t) = 0 et lim

t→∞
N(t) = N∞. Soit t0 le temps auquel

Ṅ est maximal, c’est-à-dire avec N(t0) = N∞/2. Alors, le graphe de la
fonction N(t) est symétrique par rapport au point (t0, N(t0)).

Α�Β

Ht0, NHt0LL

t

N

Application : Réaction bimoléculaire

L’équation différentielle. Considérons une réaction chimique bimoléculaire
A + B → X entre deux réactifs A,B dans une solution, dont le produit est
la substance X. Au cours de la réaction, une molécule de A réagit avec une
molécule de B pour former une molécule de la substance X. Soient a(t), b(t) et
x(t) les concentrations (molécules par volume) de A,B,X au temps t, avec les
valeurs initiales données a(0) = a0, b(0) = b0 et x(0) = 0. Alors

a(t) + x(t) = a0, b(t) + x(t) = b0 .

On cherche la concentration x(t) pour t > 0. Un raisonnement analogue à celui
utilisé pour la loi de la décomposition radioactive conduit à

ẋ(t) = k a(t)b(t) (7.17)

avec une constante k > 0. Il faut donc résoudre le problème à valeur initiale

ẋ(t) = k
(
a0 − x(t)

)(
b0 − x(t)

)
,

x(0) = 0 .
(7.18)

Notons que l’équation différentielle est du même type que l’équation logistique
(7.13). Supposons que 0 < a0 < b0, c’est-à-dire qu’il y a un surplus de la
substance B. La séparation des variables donne∫

1

(a0 − x)(b0 − x)
dx =

∫
k dt . (7.19)
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Calcul de l’intégrale. Pour calculer le premier membre de (7.19), nous uti-
lisons une méthode standard, la décomposition en éléments simples (en alle-
mand : Partialbruchzerlegung) de la fonction rationelle 1

(x−a0)(x−b0) : on peut

déterminer des constantes c1 et c2 telles que

1

(x− a0)(x− b0)
=

c1
x− a0

+
c2

x− b0
(7.20)

pour tout x 6= a0, b0. En fait, si l’on multiplie l’égalité (7.20) par (x−a0)(x−b0),
on obtient 1 = c1(x− b0) + c2(x− a0) ou

1 = (c1 + c2)x− c1b0 − c2a0 .

Cette dernière condition est remplie pour tout x ∈ R (et donc (7.20) l’est pour
tout x 6= a0, b0) si l’on choisit c1 et c2 tels qu’ils satisfassent au système linéaire

c1 + c2 = 0

−c1b0 − c2a0 = 1

dont les solutions sont c1 = 1/(a0 − b0) et c2 = −1/(a0 − b0). En substituant
ces valeurs dans (7.19), on a la décomposition en éléments simples

1

(x− a0)(x− b0)
=

1

a0 − b0
1

x− a0
− 1

a0 − b0
1

x− b0
.

Pour l’intégrale, on obtient alors∫
1

(x− a0)(x− b0)
dx =

1

a0 − b0

∫ (
1

x− a0
− 1

x− b0

)
dx

=
1

a0 − b0
(ln |x− a0| − ln |x− b0|)

=
1

a0 − b0
ln

∣∣∣∣x− a0

x− b0

∣∣∣∣
Solution de l’équation différentielle. Retournons à l’équation (7.19) : nous
avons maintenant

1

a0 − b0
ln

∣∣∣∣x− a0

x− b0

∣∣∣∣ = kt+ C

et ainsi
x− a0

x− b0
= B e

k(a0−b0)t
(7.21)

avec une constante B = ±e(a0−b0)C . La résolution de cette égalité par rapport
à x (multiplier par x− b0 et isoler x) nous donne les solutions

x(t) =
a0 − b0B e

k(a0−b0)t

1−B ek(a0−b0)t

avec B ∈ R. Finalement, la constante B est déterminée par la condition initiale
x(0) = 0 : posons t = 0 dans (7.21) ; alors x(0) = 0 implique que B = a0/b0.
Avec cette valeur pour B, nous obtenons la solution de notre problème (7.18) :

x(t) = a0b0
1− ek(a0−b0)t

b0 − a0 e
k(a0−b0)t

. (7.22)
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Nous laissons l’étude detaillée de cette fonction comme exercice, mais notons
que ẋ(t) > 0 et que lim

t→∞
x(t) = a0, car a0 − b0 < 0.

Méthodes numériques

Pour la plupart des équations différentielles aucune solution explicite (en termes
de fonctions connues) ne peut être trouvée. Dans ce cas, on utilise des méthodes
numériques pour calculer des solutions approchées. Là encore, il n’y a pas de
méthode miracle, mais il faut bien choisir la méthode appropriée pour traiter
une équation différentielle donnée, ce qui est l’affaire du spécialiste.

Nous présentons ici la méthode numérique la plus élémentaire, dite méthode du
polygone d’Euler.

L’idée est très simple, car liée à la représentation géométrique d’une équation
différentielle par son champ de directions. Au lieu de chercher une solution
exacte ϕ du problème {

y′ = F (x, y) avec (x, y) ∈ D
y(x0) = y0

nous construisons une fonction ψ linéaire par morceaux, c’est-à-dire une fonction
dont le graphe est un polygone, de sorte que chaque segment de droite ait la pente
prescrite par l’équation différentielle en son extrémité gauche.

Plus précisément, afin d’obtenir une valeur approximative en x > x0 d’une
solution ϕ, considérons des points x0 < x1 < x2 < . . . < xn = x, et la fonction
ψ définie comme suit sur l’intervalle [x0, x] :

ψ(t) := y0 + F (x0, y0)(t− x0) pour x0 ≤ t ≤ x1

y1 := ψ(x1) = y0 + F (x0, y0)(x1 − x0)

ψ(t) := y1 + F (x1, y1)(t− x1) pour x1 ≤ t ≤ x2

y2 := ψ(x2) = y1 + F (x1, y1)(x2 − x1)
...

ψ(t) := yn−1 + F (xn−1, yn−1)(t− xn−1) pour xn−1 ≤ t ≤ x
yn := ψ(xn) = yn−1 + F (xn−1, yn−1)(xn − xn−1).

Enfin la valeur yn est prise comme valeur approximative en xn = x d’une solu-
tion ϕ :

ϕ(x) ≈ yn
On procède d’une manière analogue pour x < x0.
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Exemple. Considérons le problème à valeur initiale y′= y, y(0) = 1 et fixons
x > 0. Nous décomposons l’intervalle [0, x] en n parties de longueur x/n, c’est-
à-dire que nous posons

x0 = 0, x1 =
x

n
, . . . , xk =

kx

n
, . . . , xn =x.

La méthode d’Euler donne les valeurs suivantes yk pour k = 0, . . . , n :

y0 = 1 (condition initiale)

y1 = y0 + y0
x

n
= 1 +

x

n

y2 = y1 + y1
x

n
= y1

(
1 +

x

n

)
=
(

1 +
x

n

)2

...

yn = yn−1 + yn−1
x

n
= yn−1

(
1 +

x

n

)
=
(

1 +
x

n

)n
.

En passant à des subdivisions toujours plus fines de l’intervalle [0, x], c’est-à-dire
pour n→∞, nous trouvons

lim
n→∞

yn = lim
n→∞

(
1 +

x

n

)n
= ex,

la solution exacte du problème.
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Chapitre 8

Equations différentielles
linéaires

8.1. Equations différentielles linéaires du premier
ordre

Soit I un intervalle dans R, et soit a : I → R une fonction continue donnée.
Nous considérons l’équation différentielle

y′(x) + a(x) y(x) = 0, (8.1)

ou encore, avec une deuxième fonction continue donnée g : I → R,

y′(x) + a(x) y(x) = g(x). (8.2)

On appelle (8.1) une équation différentielle linéaire homogène, et (8.2) une
équation différentielle linéaire inhomogène.

Résolution de l’équation homogène. Traitons d’abord l’équation homogène
(8.1) par séparation des variables. Supposons que nous ayons une solution ϕ :
I → R avec ϕ(x) 6= 0 pour tout x ∈ I. L’équation (8.1) est alors équivalente à

ϕ′(x)

ϕ(x)
= −a(x) .

En intégrant de x0 ∈ I à x et utilisant le théorème fondamental, on obtient

ln |ϕ(x)| = −
∫ x

x0

a(t) dt+ C

avec x0 ∈ I et C = ln |ϕ(x0)| ∈ R, ou

|ϕ(x)| = eC e
−

∫ x
x0
a(t) dt

et finalement
ϕ(x) = c e

−
∫ x
x0
a(t) dt

(8.3)

avec une constante c = ± eC ∈ R\{0}. En admettant aussi c = 0, on obtient
encore une solution, la solution triviale ϕ ≡ 0. Posant x = x0 on voit que
c = ϕ(x0).
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Vérifions que nous avons trouvé toutes les solutions. Soit x0 ∈ I, et soit
ϕ0 la solution

ϕ0(x) = e
−

∫ x
x0
a(t) dt

.

Soit ϕ une solution quelconque de (8.1). Alors, la fonction ϕ/ϕ0 satisfait(
ϕ

ϕ0

)′
=
ϕ′ϕ0 − ϕ′0ϕ

ϕ2
0

=
(−aϕ)ϕ0 + (aϕ0)ϕ

ϕ0
2

≡ 0.

La fonction ϕ/ϕ0 est donc constante, c’est-à-dire que

ϕ(x) = dϕ0(x) = d e
−

∫ x
x0
a(t) dt

, d ∈ R.

Donc toute solution est de la forme (8.3) avec une constante c ∈ R.

Résolution de l’équation inhomogène. Soit ϕ1(x) une solution non-triviale
de l’équation homogène. Alors, comme nous venons de le voir, la solution générale
de l’équation homogène est donnée par

ϕ = c ϕ1 (8.4)

avec une constante c ∈ R. La méthode de la �variation de la constante�, permet
de trouver une solution ψ(x) de l’équation inhomogène (8.2) : on remplace la
constante c dans la formule (8.4) par une fonction γ(x). On fait donc l’ansatz

ψ(x) = γ(x)ϕ1(x),

d’où
ψ′ + aψ = γ′ϕ1 + γ ϕ′1 + γ aϕ1︸ ︷︷ ︸

=0

.

Donc la fonction ψ vérifie l’équation ψ′ + aψ = g si et seulement si γ′ϕ1 = g,
c’est-à-dire

γ′ =
g

ϕ1
.

On trouve alors γ par intégration :

γ(x) = c0 +

∫ x

x0

g(t)

ϕ1(t)
dt

où c0 ∈ R. Avec ce γ(x) (et un choix arbitraire de la constante c0) nous obtenons
une solution

ψ1(x) := γ(x)ϕ1(x) (8.5)

de l’équation inhomogène (8.2). La proposition suivante nous donne alors toutes
les solutions.

Proposition 1. Fixons une solution ψ1 de l’équation inhomogène (8.2). Alors
on obtient la solution générale de (8.2) sous la forme

ψ = ψ1 + ϕ, (8.6)

où ϕ est la solution générale de l’équation homogène (8.1).

Donc la solution générale de l’équation inhomogène (8.2) est

ψ = ψ1 + c ϕ1 (8.7)

avec une constante c ∈ R.
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Preuve de la proposition. On vérifie que, pour toute solution ϕ de l’équation
homogène, la fonction ψ = ψ1 + ϕ est une solution de l’équation inho-
mogène. Inversément, pour toute solution ψ de l’équation inhomogène,
la fonction ϕ définie par ϕ := ψ − ψ1 est une solution de l’équation ho-
mogène :

ϕ′ + aϕ = ψ′ − ψ′1 + a(ψ − ψ1)

= (ψ′ + aψ)− (ψ′1 + aψ1)

= g − g = 0

Donc ψ s’écrit sous la forme ψ = ψ1 +ϕ avec une solution ϕ de l’équation
homogène. Remarquons que la proposition est un cas particulier de la
proposition 2 plus bas.

Exemples

1. y′ + xy = x

Equation homogène : y′ + xy = 0 ;

solution générale de l’équation homogène selon (8.3) :

y = c e−
∫ x
0
t dt = c e−x

2/2, c ∈ R .

solution particulière de l’équation inhomogène : y ≡ 1 (devinée)

solution générale de l’équation inhomogène :

y = 1 + c e−x
2/2, c ∈ R.

2. y′ +
y

x
= e2x, x > 0

Solution générale de l’équation homogène :

ϕ(x) = c e− ln x =
c

x
, c ∈ R;

variation de la constante :

ansatz : ψ(x) =
γ(x)

x

substituer l’ansatz dans l’équation inhomogène :

ψ′ +
ψ

x
=
γ′ x− γ
x2

+
γ

x2
=
γ′

x

!
= e2x

γ′ = x e2x

integration :

γ(x) =

∫ x

0

t e2tdt+ C0 = . . . =

(
x

2
− 1

4

)
e2x + C1

une solution particulière de l’équation inhomogène :

ψ1(x) =

(
x

2
− 1

4

)
e2x

x
.

Solution générale de l’équation inhomogène :

ψ(x) = ψ1(x) +
c

x
, c ∈ R
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8.2. Equations différentielles linéaires d’ordre n

Une équation différentielle linéaire d’ordre n est une équation de la forme

y(n)(x) + an−1(x)y(n−1)(x) + . . .+ a1(x)y′(x) + a0(x)y(x) = g(x)

ou, de manière plus concise,

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = g (8.8)

avec des fonctions continues données an−1, . . . , a0, g : I → R sur un intervalle
I ⊆ R. Les fonctions an−1, . . . , a0 sont appelées coefficients de l’équation. Celle–
ci est dite homogène quand g ≡ 0, c’est-à-dire

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = 0. (8.9)

Dans le cas n = 1 on retrouve les équations (8.1) et (8.2).

Afin de mieux comprendre la structure de (8.8) et (8.9), considérons les en-
sembles de fonctions

C0(I) := {ψ : I → R | ψ continue }

Cn(I) := {ϕ : I → R | ϕ n-fois continûment différentiable }

et l’application (un �opérateur différentiel�) L : Cn(I)→ C0(I) définie par

L =
dn

dxn
+ an−1

dn−1

dxn−1
+ . . .+ a1

d

dx
+ a0. (8.10)

Avec cette notation, les équations (8.8) et (8.9) s’écrivent simplement

L(y) = g, (8.8a)

L(y) = 0. (8.9a)

On vérifie facilement que L est une application R–linéaire, c’est-à-dire

L(ϕ1 + ϕ2) = L(ϕ1) + L(ϕ2)

L(cϕ) = cL(ϕ).

pour tout c ∈ R et ϕ,ϕ1, ϕ2 ∈ Cn(I). Les équations différentielles (8.8) et
(8.9) sont donc des équations linéaires dans le sens de l’algèbre linéaire.

Solutions de l’équation homogène

Soit S ⊆ Cn(I) l’ensemble de toutes les solutions ϕ : I → R de l’équation
homogène (8.9), c’est-à-dire

S = {ϕ ∈ Cn(I) | L(ϕ) = 0}.

Alors S est un sous-espace linéaire de Cn(I), c’est-à-dire si ϕ1, ϕ2 ∈ S et c ∈ R,
alors ϕ1 + ϕ2 ∈ S et cϕ1 ∈ S.

Supposons en effet que ϕ1, ϕ2 ∈ S, donc que ϕ1 et ϕ2 soient des fonctions
n-fois continûment différentiables avec L(ϕ1) = 0 et L(ϕ2) = 0. Alors ϕ1+
ϕ2 est n-fois continûment différentiable, et, puisque L est une application
linéaire,

L(ϕ1 + ϕ2) = L(ϕ1) + L(ϕ2) = 0 + 0 = 0.

Ainsi ϕ1 + ϕ2 ∈ S. Par un argument similaire, cϕ1 ∈ S.
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Par conséquent, l’équation homogène satisfait un principe de superposition :
toute combinaison linéaire

ϕ = c1ϕ1 + c2ϕ2 + . . .+ ckϕk

de solutions (avec des coefficients constants c1, . . . , ck ∈ R) est encore une so-
lution. Afin de donner une description générale de l’ensemble S des solutions,
introduisons une autre notion de l’algèbre linéaire.

Definition. Un ensemble {ϕ1, . . . , ϕk} de fonctions ϕ : I → R est dit linéaire-
ment dépendant (sur l’intervalle I) si l’on peut écrire la fonction constante 0
comme une combinaison linéaire non-triviale des fonctions ϕ1, . . . , ϕk, c’est-à-
dire s’il existe des constantes c1, . . . , ck ∈ R qui ne sont pas toutes nulles avec1

c1ϕ1 + . . .+ ckϕk = 0.

Sinon on l’appelle linéairement indépendant. Autrement dit : {ϕ1, . . . , ϕk} est
linéairement indépendant si la relation

c1ϕ1(x) + . . .+ ckϕk(x) = 0 ∀x ∈ I

avec des constantes c1, . . . , ck entrâıne que c1 = . . . = ck = 0.

Exemples

3. L’ensemble de fonctions {x, ex, 2x} est linéairement dépendant sur tout
intervalle I, puisque

1 · x+ 0 · ex +

(
−1

2

)
· 2x = 0,

pour tout x ∈ R. (Ici c1 = 1, c2 = 0 et c3 = − 1/2.)

4. Par contre, le sous-ensemble {x, ex} est linéairement indépendant sur tout
intervalle I non dégénéré, c’est-à-dire qui contient au moins deux points
différents. Supposons en effet une relation

c1x+ c2 e
x = 0 ∀x ∈ I

avec des constantes c1 et c2. Il faut déduire que c1 = c2 = 0. En prenant la
dérivée seconde de la relation par rapport à x on arrive à c2 e

x = 0, d’où
c2 = 0. Donc c1x = 0 pour tout x ∈ I et ainsi c1 = 0.

Il existe un critère, facile à vérifier quand k est petit, pour l’indépendance linéaire
d’un ensemble de fonctions ϕ1, . . . , ϕk qui sont (n−1)-fois dérivables sur I.

Definition. Le déterminant de Wronski (le �Wronskien�) W (x) des k fonctions
ϕ1, . . . , ϕk est le déterminant

W (x) =

∣∣∣∣∣∣∣∣∣∣
ϕ1(x) ϕ2(x) . . . ϕk(x)

ϕ′1(x) ϕ′2(x) . . . ϕ′k(x)
...

...
...

ϕ
(k−1)
1 (x) ϕ

(k−1)
2 (x) . . . ϕ

(k−1)
k (x)

∣∣∣∣∣∣∣∣∣∣
1C’est une égalité entre fonctions, i.e. c1ϕ1(x) + . . .+ ckϕk(x) = 0 pour tout x ∈ I.
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Nous renvoyons à la littérature pour la définition générale d’un déterminant,
mais rappelons que pour k = 2,∣∣∣∣ a bc d

∣∣∣∣ = ad− bc .

Donc le Wronskien de deux fonctions ϕ1, ϕ2 est donné par

W (x) =

∣∣∣∣∣ ϕ1(x) ϕ2(x)

ϕ′1(x) ϕ′2(x)

∣∣∣∣∣ = ϕ1(x)ϕ′2(x)− ϕ2(x)ϕ′1(x).

Critère de Wronski. S’il existe un x ∈ I tel que W (x) 6= 0, alors ϕ1, . . . , ϕk
sont linéairement indépendants.

Exemple

5. Considérons de nouveau les fonctions ϕ1(x) =x et ϕ2(x) = ex sur un in-
tervalle non dégénéré. Le Wronskien est

W (x) =

∣∣∣∣ x ex1 ex

∣∣∣∣ = x ex − ex = (x− 1)ex.

On a W (x) 6= 0 pour tout x 6= 1. Par le critère, les fonctions x et ex sont
linéairement indépendantes sur I.

Retournons à l’équation homogène (8.9).

Théorème. (i) L’équation différentielle linéaire homogène d’ordre n à coeffi-
cients continus

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = 0 (8.9)

possède n solutions indépendantes sur I. Un tel ensemble de n solutions indé-
pendantes ϕ1, . . . , ϕn s’appelle un système fondamental de solutions.

(ii) Si ϕ1, . . . , ϕn est un système fondamental de solutions, alors toute solution
de (8.9) est une combinaison linéaire

ϕ = c1ϕ1 + c2ϕ2 + . . .+ cnϕn

avec des coefficients constants c1, . . . , cn ∈ R.

Par conséquent, si l’on dispose d’un système fondamental, la solution générale
de (8.9) est donnée par

ϕ = c1ϕ1 + c2ϕ2 + . . .+ cnϕn (8.11)

avec des constantes arbitraires c1, . . . , cn ∈ R.

Le théorème garantit l’existence d’un système fondamental. En général il
n’est pas possible de donner un système fondamental explicite pour une
équation donnée. Ceci est cependant possible lorsque les coefficients aj
sont des constantes. Nous retournerons plus tard à cette question. Re-
marquons que, dans la terminologie de l’algèbre linéaire, un système fon-
damental est une base de l’espace vectoriel S de solutions. Donc S est un
espace vectoriel de dimension n.
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Solutions de l’équation inhomogène

Considérons maintenant l’équation inhomogène L(y) = g, c’est-à-dire

y(n) + an−1y
(n−1) + . . .+ a1y

′ + a0y = g . (8.8)

Proposition 2. Fixons une solution ψ1 de l’équation inhomogène L(y) = g.
Alors on obtient la solution générale de cette équation par

ψ = ψ1 + ϕ,

où ϕ est la solution générale (donnée par (8.11)) de l’équation homogène L(y) =
0.

En termes des ensembles de solutions, on peut exprimer ce résultat comme
suit. Rappelons que S dénote l’ensemble de toutes les solutions de l’équa-
tion homogène. Soit maintenant

Sg := {ϕ ∈ Cn(I) | L(ϕ) = g}

l’ensemble des solutions ϕ : I → R de l’équation inhomogène. Soit ψ1 ∈ Sg
un élément arbitraire. Alors

Sg = ψ1 + S := {ψ1 + ϕ | ϕ ∈ S}.

Pour la preuve de la proposition 2, montrons que Sg ⊆ ψ1 + S et que,
inversément, ψ1 +S ⊆ Sg. Si ψ ∈ Sg, alors la fonction ϕ := ψ−ψ1 satisfait
à L(ϕ) = L(ψ − ψ1) = g − g = 0. Donc ϕ ∈ S, et ψ = ψ1 + ϕ ∈ ψ1 + S.
Inversément, si ψ ∈ ψ1 + S, alors il existe ϕ ∈ S tel que ψ = ψ1 + ϕ. Par
conséquent

L(ψ) = L(ψ1 + ϕ) = L(ψ1) + L(ϕ) = g + 0 = g,

et donc ψ ∈ Sg.

Suivant la proposition 2, la procédure pour trouver la solution générale de
l’équation inhomogène (8.8) est la suivante :

1. Trouver un système fondamental ϕ1, . . . , ϕn de l’équation homogène.

2. Trouver une solution ψ1 de l’équation inhomogène.

3. La solution générale de l’équation inhomogène est alors

ψ = ψ1 + c1ϕ1 + . . .+ cnϕn (8.12)

pour des constantes arbitraires c1, . . . , cn ∈ R.

Quand on connâıt la solution générale, on peut choisir les n constantes c1, . . . , cn
afin de remplir des conditions auxiliaires, par exemple n conditions initiales
ψ(x0) = y0, ψ

′(x0) = y1, . . . , ψ
(n−1)(x0) = yn−1 avec x0, y0, . . . , yn−1 donnés.

Méthode de variation des constantes

Pour réaliser la deuxième étape de la procédure ci-dessus, il faut déterminer
une solution ψ1 de l’équation inhomogène L(y) = g. A cette fin, il existe des
méthodes directes quand les coefficients aj sont constants et pour certains types
de fonctions g, utilisant un ansatz convenable. Dans quelques cas très simples,
on peut même deviner une solution.
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Par contre, la méthode variation des constantes est une méthode générale pour
trouver une solution ψ1, mais à condition qu’on dispose déjà d’un système fon-
damental ϕ1, . . . , ϕn de l’équation homogène. Considérons le cas n= 2 pour
simplifier la notation. L’équation L(y) = g est alors de la forme

y′′(x) + a1(x)y′(x) + a0(x)y(x) = g(x) . (8.13)

Supposons que ϕ1, ϕ2 soit un système fondamental, donc en particulier que

ϕ′′1 + a1ϕ
′
1 + a0ϕ1 = 0

ϕ′′2 + a1ϕ
′
2 + a0ϕ2 = 0 .

(8.14)

La solution générale de l’équation homogène est alors

y(x) = c1ϕ1(x) + c2ϕ2(x)

avec des constantes c1 et c2. Pour trouver une solution de l’équation inhomogène,
considérons maintenant l’ansatz

y(x) = γ1(x)ϕ1(x) + γ2(x)ϕ2(x) (8.15)

avec des fonctions γ1(x) et γ2(x) à déterminer. En le substituant dans l’équation
différentielle (8.13) et à l’aide de (8.14) on obtient la condition

γ′′1ϕ1 + γ′′2ϕ2 + 2γ′1ϕ
′
1 + 2γ′2ϕ

′
2 + a1γ

′
1ϕ1 + a1γ

′
2ϕ2 = g

pour les fonctions γ1 et γ2. On peut réarranger cette équation sous la forme

(ϕ1γ
′
1 + ϕ2γ

′
2)′ + (ϕ′1γ

′
1 + ϕ′2γ

′
2) + a1 · (ϕ1γ

′
1 + ϕ2γ

′
2) = g .

Cette dernière équation est certainement satisfaite si l’on trouve des fonctions
γ1 et γ2 telles que

ϕ1γ
′
1 + ϕ2γ

′
2 = 0

ϕ′1γ
′
1 + ϕ′2γ

′
2 = g,

c’est-à-dire
ϕ1(x)γ′1(x) + ϕ2(x)γ′2(x) = 0

ϕ′1(x)γ′1(x) + ϕ′2(x)γ′2(x) = g(x).
(8.16)

Notons que, pour tout x ∈ I fixé, le système (8.16) est un système linéaire pour
les inconnues γ′1(x) et γ′2(x) avec des coefficients connus ϕ1(x), ϕ2(x), ϕ′1(x)
et ϕ′2(x). Et si l’on connâıt leurs dérivées γ′1, γ′2, les fonctions γ1 et γ2 s’en
déduisent par intégration. La méthode de variation des constantes procède donc
comme suit :

1. Partir d’un système fondamental donné ϕ1, ϕ2 de l’équation homogène.

2. Résoudre (8.16) afin d’obtenir les dérivées γ′1, γ
′
2 des fonctions cherchées.

3. Calculer des fonctions primitives de γ′1 et γ′2 par intégration afin d’obtenir
γ1 et γ2.

4. Alors la fonction ψ1(x) := γ1(x)ϕ1(x) + γ2(x)ϕ2(x) est une solution de
l’équation inhomogène.
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Le raisonnement et la méthode se généralisent aux cas n ≥ 3 : on obtient une
solution de la forme

ψ1(x) = γ1(x)ϕ1(x) + . . .+ γn(x)ϕn(x).

Le système (8.16) est alors un système de n équations linéaires pour les n in-
connues γ′1(x), . . . , γ′n(x).

Exemples

6. Considérons l’équation différentielle

y′′ − 2y′ + y =
ex

x
(8.17)

sur l’intervalle I =]0,∞[. On en cherche la solution générale.

Notons que (8.17) est une équation différentielle linéaire inhomogène d’or-
dre n= 2 à coefficients continus (en fait constants). On vérifie que les fonc-
tions ϕ1(x) = ex et ϕ2(x) =xex sont des solutions de l’équation homogène
correspondante

y′′ − 2y′ + y = 0.

(On verra plus tard comment arriver à ces solutions.) A l’aide du critère de
Wronski on confirme facilement que ϕ1, ϕ2 sont linéairement indépendan-
tes. Donc ils forment un système fondamental de l’équation homogène.

Appliquons la méthode de variation des constantes pour trouver une solu-
tion ψ1 de l’équation inhomogène. Dans le cas présent, le système linéaire
(8.16) devient

exγ′1(x) + x exγ′2(x) = 0

exγ′1(x) + (ex + xex)γ′2(x) =
ex

x
.

La résolution de ce système par rapport à γ′1(x) et γ′2(x) fournit

γ′1(x) = −1 γ′2(x) =
1

x

et par suite

γ1(x) =

∫
(−1) dx+ C1 = −x+ C1

γ2(x) =

∫
1

x
dx = ln |x|+ C2 = lnx+ C2

car x > 0 sur l’intervalle I. On peut choisir les constantes d’intégration
C1 = 0 et C2 = 0 parce qu’on n’a besoin que d’une seule solution ψ1 de
l’équation inhomogène. Ainsi

ψ1(x) = γ1(x)ϕ1(x) + γ2(x)ϕ2(x)

= −x ex + x ex lnx ,

et la solution générale de l’équation différentielle (8.17) est

ψ(x) = ψ1(x) + c1ϕ1(x) + c2ϕ2(x)

= −x ex + x ex lnx+ c1e
x + c2 x e

x

= x ex lnx+ c1 e
x + c3 x e

x

(c3 = c2 − 1) avec des constantes arbitraires c1, c3 ∈ R.
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7. Pour l’équation (8.17) de l’exemple précédent, on cherche la solution ψ
qui satisfasse aux conditions initiales ψ(1) = 3 et ψ′(1) = − 1.

On substitue la solution générale

ψ(x) = x ex lnx+ c1 e
x + c2 x e

x (c1, c2 ∈ R)

dans le système de deux équations

ψ(1) = 3

ψ′(1) = −1,

ce qui donne deux équations pour les deux constantes c1, c2 inconnues

c1e + c2e = 3

c1e + 2 c2e = −1− e .

En soustrayant la deuxième équation de la première, on a −c2e = 4 + e
d’où c2 = − 4

e − 1 et c1 = 3−c2e
e = 7

e + 1. La solution cherchée est donc

ψ(x) = x ex lnx+

(
7

e
+ 1

)
ex −

(
4

e
+ 1

)
x ex .

8.3. Equations différentielles linéaires du second
ordre à coefficients constants

Il s’agit d’équations différentielles de la forme

y′′(x) + a1y
′(x) + a0y(x) = f(x)

avec des constantes a1, a0 ∈ R ou, dans une autre notation (que nous utilisons
pour le reste du chapitre),

ẍ(t) + bẋ(t) + cx(t) = f(t) (8.18)

avec b, c ∈ R et f : I → R une fonction continue sur l’intervalle I. Nous utilisons
la lettre t pour désigner la variable indépendante, car elle représente souvent le
temps. Voici plusieurs variantes d’un exemple physique :

Exemples

8. Une masse m est suspendue à un ressort de longueur `0 qui suit la loi de
Hooke.

Forces :

F1 = k · (`− `0), F2 = g ·m.

La force totale est donc

F = g ·m− k · (`− `0)

et, selon la loi de Newton m῭ =
F , on a :

῭+
k

m
` = g +

k

m
`0.
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9. En ajoutant un amortissement par une force proportionnelle à la vitesse,
par exemple un frottement, on obtient l’équation plus générale

῭+ a ˙̀ +
k

m
` = g +

k

m
`0

avec a > 0.

10. Supposons que le point de suspension du ressort soit en mouvement ver-
tical oscillatoire. On a donc pour la hauteur de ce point (relative à la
position neutre)

h(t) = h0 sin(ωt),

et, si x(t) est la position de la masse au temps t, la longueur du ressort
est

`(t) = x(t) + h(t).

L’équation du mouvement est maintenant

ẍ+ aẋ+
k

m
x = g +

k

m
`0 −

k

m
h0 sin(ωt).

Polynôme caractéristique

Pour trouver les solutions de l’équation différentielle linéaire homogène

ẍ(t) + bẋ(t) + cx(t) = 0 (8.19)

avec b, c ∈ R, nous essayons des fonctions de la forme x(t) = eλt. En substituant
cet ansatz dans (8.19), on obtient

λ2eλt + bλeλt + ceλt = 0

et donc, comme eλt 6= 0 pour tout t,

λ2 + bλ+ c = 0 . (8.20)

Définition. Le polynôme

χ(λ) := λ2 + bλ+ c (8.21)

s’appelle le polynôme caractéristique de l’équation différentielle linéaire homo-
gène (8.19).

Il en résulte que la fonction x(t) = eλt est une solution de l’équation différentielle
(8.19) si et seulement si λ est une racine du polynôme caractéristique. Mais est-
ce qu’on trouve ainsi deux solutions linéairement indépendantes, c’est-à-dire un
système fondamental ?

Rappelons d’abord la formule de résolution de l’équation quadratique

λ2 + bλ+ c = 0

avec b, c ∈ R. Les solutions de cette équation sont

λ1 =
−b+

√
∆

2
et λ2 =

−b−
√

∆

2
,

où
∆ := b2 − 4c

est le discriminant de l’équation. Il faut distinguer trois cas :
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1. Lorsque ∆ > 0, on a deux solutions réelles distinctes λ1 6= λ2 ;

2. lorsque ∆ = 0, on a une solution réelle �double� λ1 = λ2 ;

3. lorsque ∆ < 0, il n’y a pas de solution réelle.

Dans le cas où ∆ < 0, il y a deux solutions complexes (voir le chapitre 9 pour
la justification)

λ1 = α+ iβ et λ2 = α− iβ

avec α, β ∈ R et i :=
√
−1. En effet,

λ1,2 =
−b±

√
∆

2
=
−b±

√
−1 · |∆|
2

=
−b±

√
−1
√
|∆|

2

= − b
2
± i
√
|∆|
2

et donc α = −b/2 et β =
√
|∆|/2. Comme dans les deux premiers cas, on a

λ1 + λ2 = − b et λ1λ2 = c. Retournons maintenant à l’équation différentielle
(8.19).

Système fondamental

Considérons d’abord le cas ∆ > 0. Le polynôme caractéristique χ(λ) possède
deux racines réelles distinctes λ1 6= λ2. Nous avons donc les deux solutions
x1(t) = eλ1t et x2(t) = eλ2t, dont le Wronskien en t = 0 est égal à∣∣∣∣ x1(0) x2(0)

ẋ1(0) ẋ2(0)

∣∣∣∣ =

∣∣∣∣ 1 1
λ1 λ2

∣∣∣∣ = λ2 − λ1 6= 0.

Les deux solutions x1(t) et x2(t) forment donc un système fondamental.

Dans le cas ∆ = 0, le polynôme caractéristique possède l’unique racine λ1 =λ2.
L’ansatz nous donne une seule solution x1(t) = eλ1t. Mais on vérifie que, dans
ce cas, la fonction x2(t) = teλ1t est une deuxième solution.

En fait, avec ∆ = 0 les formules pour λ1,2 donnent b = −2λ1 et c = λ2
1.

Par conséquent, l’équation (8.20) s’écrit

ẍ− 2λ1ẋ+ λ1
2x = 0

et un calcul direct montre que la fonction x(t) = teλ1t en est une solution.

Calculons le Wronskien des fonctions x1(t) = eλ1t et x2(t) = teλ1t en t = 0 :∣∣∣∣ x1(0) x2(0)
ẋ1(0) ẋ2(0)

∣∣∣∣ =

∣∣∣∣ 1 0
λ1 1

∣∣∣∣ = 1.

Les deux solutions x1(t) et x2(t) forment donc un système fondamental.

Dans le cas ∆ < 0, le polynôme caractéristique χ(λ) possède deux racines com-
plexes distinctes λ1,2 = α± iβ avec α, β ∈ R, β 6= 0. Ce cas est mieux traité en
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utilisant la fonction exponentielle complexe introduite au chapitre 9. On trouve
que les fonctions

x1(t) = eαt cos(βt), x2(t) = eαt sin(βt)

forment un système fondamental. Résumons les résultats :

Théorème. Soient λ1, λ2 les racines du polynôme caractéristique

χ(λ) = λ2 + bλ+ c

de l’équation différentielle linéaire homogène

ẍ(t) + bẋ(t) + cx(t) = 0

aux coefficients b, c ∈ R constants. On trouve alors un système fondamental de
solutions comme suit :

1. λ1 6= λ2 réels : x1(t) = eλ1t, x2(t) = eλ2t

2. λ1 =λ2 réel : x1(t) = eλ1t, x2(t) = teλ1t

3. λ1,2 =α± iβ non réels (β 6= 0) : x1(t) = eαt cosβt, x2(t) = eαt sinβt.

Remarquons qu’un théorème plus général donne un système fondamen-
tal pour les équations différentielles linéaires homogènes à coefficients
constants d’ordre arbitraire n. Comme dans le cas n= 2 considéré ici, on
arrive au polynôme caractéristique χ(λ) en substituant l’ansatz x(t) = eλt

dans l’équation. Le degré du polynôme χ(λ) est alors égal à n, et la forme
du système fondamental dépend des zéros λ1, . . . , λn. Nous nous limitons
cependant au cas le plus simple et important n = 2.

Exemples de la physique

Leur équation homogène était de la forme ẍ+ bẋ+ cx = 0 avec b ≥ 0 et c > 0.
En posant δ := b/2 et ω0 :=

√
c, nous pouvons écrire

ẍ+ 2δẋ+ ω2
0x = 0,

et les racines du polynôme caractéristique sont

λ1,2 = −δ ±
√
δ2 − ω2

0 .

On distingue quatre cas selon la valeur du coefficient d’amortissement δ.

• δ = 0 : On a λ1,2 = ±iω0, et la solution générale est donc de la
forme

x(t) = A cos ω0t+B sin ω0t

avec A,B ∈ R ; on peut aussi l’écrire sous la forme

x(t) = C sin ω0(t− τ)

avec C ≥ 0 et 0 ≤ τ < 2π/ω0. C’est une oscillation non
amortie d’amplitude C et de fréquence ν = ω0/2π.
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• 0 < δ < ω0 : Les racines

λ1,2 = −δ ± i
√
ω2

0 − δ2

du polynôme caractéristique ne sont pas réelles ; après avoir

posé ω :=
√
ω2

0 − δ2, la solution générale est

x(t) = Ae−δt cosωt+Be−δt sinωt,

ce que nous pouvons de nouveau écrire comme

x(t) = Ce−δt sinω(t− τ)

avec C ≥ 0 et 0 ≤ τ < 2π . C’est une oscillation amortie.
La fréquence est ν = ω/2π, donc plus petite que la fréquence
du même oscillateur non amorti, et l’amplitude C(t) = Ce−δt

décrôıt exponentiellement.

• δ = ω0 : Le polynôme caractéristique a la racine double λ1 =λ2 =−
δ ; la solution générale est par conséquent

x(t) = (A+Bt)e−δt.

• δ > ω0 : Le polynôme caractéristique a deux racines réelles
négatives :

λ1,2 = −δ ±
√
δ2 − ω2

0 < 0.

La solution générale est donc de la forme

x(t) = Aeλ1t +Beλ2t.

Dans les trois derniers cas, on a limt→∞ x(t) = 0 pour les solutions. Mais pour
un amortissement faible, c’est-à-dire dans le cas 0 < δ < ω0, une solution non
triviale (i.e. non nulle) décrit encore une sorte d’oscillation : x(t) s’annule en
une infinité de points t équidistants. Lorsque l’amortissement devient plus fort,
c’est-à-dire pour δ ≥ ω0, le caractère oscillatoire disparâıt : une solution non
triviale s’annule au plus une fois. C’est pourquoi on parle aussi du �cas-limite
apériodique� lorsque δ = ω0.

Résolution de l’équation inhomogène

Afin de trouver une solution particulière de l’équation inhomogène (8.18),

ẍ(t) + bẋ(t) + cx(t) = g(t)

on peut appliquer la méthode de variation des constantes. Mais, dans certains
cas, on trouve une solution en l’essayant avec une fonction du même type que
l’inhomogénéité g(t). Nous illustrons ceci par quelques exemples.
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Exemples

11. g(t) ≡ d avec d ∈ R constante : En cherchant une solution � du même
type � que l’inhomogénéité, on trouve la solution constante x(t) ≡ d/c si
c 6= 0. (Dans le cas c = 0, on a une équation du premier ordre pour la
fonction y := ẋ, à savoir ẏ + by = d, et dans le cas b = c = 0, l’équation
est simplement ẍ = d avec la solution générale x(t) = At+B.)

12. g(t) = a0 +a1t+ . . .+amt
m un polynôme en t. En cherchant un polynôme

du même degré comme solution, disons

x(t) = α0 + α1t+ . . .+ αmt
m,

on obtient un système d’équations linéaires pour les coefficients inconnus
α0, . . . , αm :

c α0 + b α1 + 2α2 = a0,
c α1 + 2b α2 + 6α2 = a1,

...
c αm = am

Pour c 6= 0, ce système admet une solution : on détermine les αj dans
l’ordre αm, αm−1, αm−2, . . . , α0. (De nouveau, le cas c= 0 doit être traité
différemment.)

13. g(t) = k1 sinβx+ k2 cosβx. On cherche une solution de la forme

x(t) = A sinβx+B cosβx

avec des constantes A,B à déterminer. La substitution de cet ansatz dans
l’équation différentielle conduit à une équation de la forme

(γ1A+ γ2B) sinβx+ (γ3A+ γ4B) cosβx = k1 sinβx+ k2 cosβx

avec certains coefficients γ1, . . . , γ4. On trouve alors A,B en résolvant le
système linéaire

γ1A+ γ2B = k1

γ3A+ γ4B = k2 .
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Chapitre 9

Les nombres complexes

Nous avons vu l’utilité des nombres complexes dans le traitement des équations
différentielles linéaires du second ordre. Ici, nous allons approfondir le sujet et
trouver une façon moins mystérieuse d’obtenir les solutions dans le cas où le
polynôme caractéristique ne possède pas de racine réelle.

Nombres entiers et nombres rationnels. Au début, �nombre� signi-
fie entier naturel : 0, 1, 2, 3, . . . . Ces nombres servent surtout à compter
ou à numéroter des objets. Il est encore assez facile d’étendre cette notion
en introduisant les nombres négatifs. On obtient ainsi l’ensemble Z des
nombres entiers.

On sait aussi calculer avec les fractions ou nombres rationnels, c’est-à-dire
les quotients d’entiers : on a les quatre opérations élémentaires addition,
soustraction, multiplication et division, avec les lois de calcul bien connues,
où les nombres 0 et 1 jouent des rôles particuliers. Le mathématicien dit
que les nombres rationnels forment un corps, que l’on dénote normalement
par Q pour rappeler qu’il s’agit de quotients de nombres entiers. Si les
nombres naturels servent à compter des objets, les nombres rationnels
peuvent servir à mesurer des grandeurs, et la relation “<” permet de
comparer les résultats de ces mesures.

Nombres réels. Pensant aux nombres rationnels comme résultats de
mesure, on les représente souvent par des longueurs ou comme points d’une
droite. Déjà les Pythagoréens avaient découvert qu’il existe sur cette droite
des points auxquels ne correspond aucun nombre rationnel : la longueur
de la diagonale dans un carré de côté 1 représente un tel point sur la
droite ; autrement dit : il n’existe pas de nombre rationnel a avec a2 = 2.

En comblant pour ainsi dire les �places� non occupées sur la droite par
les nombres rationnels, on obtient le corps R des nombres réels. Il est
complet dans le sens suivant :

Si x1 ≤ x2 ≤ x3 ≤ . . . est une suite monotone croissante de nombres
réels et si cette suite est bornée, c’est-à-dire qu’il existe un M ∈ R avec
xn ≤ M pour tout n, alors la suite converge : il existe un x ∈ R tel que
x = lim

n→∞
xn.

Remarquons encore que tout nombre réel s’écrit comme limite d’une suite
de nombres rationnels. En effet, chaque fois que nous écrivons un nombre
réel comme fraction décimale infinie, nous le décrivons comme limite d’une
telle suite. Par exemple, π = 3, 1415926 . . . signifie que π est la limite de
la suite

3

1
,

31

10
,

314

100
,

3141

1000
,

31415

10000
, . . . etc.
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L’extension du corps Q des nombres rationnels en R, le corps des nombres
réels, a – entre autres – l’effet que l’équation x2 = 2 admet maintenant
des solutions, à savoir ±

√
2 ∈ R. Plus généralement, x2 = a admet des

solutions dans R pour a ∈ R, a ≥ 0. Par contre, l’équation x2 = −1 n’a
pas de solution dans R puisque x2 ≥ 0 pour tout x ∈ R.

Arithmétique des nombres complexes

On va construire une extension de R, le corps C des nombres complexes, dans
lequel l’équation x2 = −1 a une solution. Pour arriver à la construction de C,
nous faisons provisoirement comme si nous l’avions déjà, avec notamment une
solution de l’équation x2 = −1 que nous désignons par la lettre i (pour nombre
� imaginaire�). Un nombre complexe est alors une �expression� de la forme

a+ bi

avec deux nombres réels a et b. Nous calculons avec ces expressions comme avec
les polynômes a+ bx de degré un, mais en utilisant la règle

i2 = −1.

Nous obtenons ainsi les formules suivantes pour l’addition, la soustraction et la
multiplication :

(u+ vi) + (x+ yi) = (u+ x) + (v + y)i

(u+ vi)− (x+ yi) = (u− x) + (v − y)i

(u+ vi) · (x+ yi) = ux+ vxi+ uyi+ vyi2

= (ux− vy) + (vx+ uy)i

(9.1)

car vyi2 = vy(−1) = −vy. Pour la division

u+ vi

x+ yi
,

quand x 6= 0 ou y 6= 0, on amplifie la fraction par le nombre x− yi dit conjugué
de x+ yi :

u+ vi

x+ yi
=

(u+ vi)(x− yi)
(x+ yi)(x− yi)

=
(ux+ vy) + (vx− uy)i

x2 + y2

=
ux+ vy

x2 + y2
+
vx− uy
x2 + y2

i.

(9.2)

Ainsi, on arrive de nouveau à une expression de la forme a + bi avec a, b ∈ R.
Par exemple,

1 + 2i

3− 4i
=

(1 + 2i)(3 + 4i)

(3− 4i)(3 + 4i)
=
−5 + 10i

25
= −1

5
+

2

5
i .

Si l’on regarde les nombres réels comme des nombres complexes a+bi avec b = 0,
les opérations arithmétiques (9.1) et (9.2) se réduisent aux opérations connues
pour les nombres réels, par exemple

(u+ 0i) · (x+ 0i) = (ux− 0 · 0) + (0x+ u0)i = ux+ 0i .
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Justification

Apparemment, nous sommes capables de calculer avec les expressions de la forme
a+ bi comme nous avons l’habitude de calculer avec les nombres réels. Mais les
nombres complexes existent-ils ? Qu’est-ce qu’une �expression� ? Remarquons
que a+bi est caractérisé de maniêre unique par le couple (a, b) de nombres réels.
En termes de tels couples, nos calculs (9.1) et (9.2) s’écrivent comme suit :

(u, v)± (x, y) = (u± x, v ± y)

(u, v) · (x, y) = (ux− vy, vx+ uy)

(u, v)

(x, y)
=

(
ux+ vy

x2 + y2
,
vx− uy
x2 + y2

)
.

(9.3)

On définit maintenant le corps des nombres complexes en posant

C := R2 = {(x, y) | x, y ∈ R}

et on définit les opérations arithmétiques par les formules (9.3). Un nombre
complexe z ∈ C est donc simplement un couple

z = (x, y)

de nombres réels.

On vérifie que C, muni des opérations (9.3), est un corps, c’est-à-dire qu’on a les
mêmes lois de calcul que pour les nombres rationnels ou pour les nombres réels,
par exemple la commutativité et l’associativité de la multiplication : z1z2 = z2z1

et (z1z2)z3 = z1(z2z3) pour z1, z2, z3 ∈ C. L’élément nul est (0, 0), et l’unité est
(1, 0).

R comme sous-ensemble de C
C est une extension de R dans le sens suivant : considérons l’application

α : R −→ C, t 7→ (t, 0).

Cette application est compatible avec les opérations arithmétiques dans R resp.
C : si pour un instant +R denote l’addition dans R et +C celle de C, alors

α(t+R s) = (t+R s, 0) = (t, 0) +C (s, 0),

et de manière analogue pour les autres opérations. Calculer dans R avec les
nombres réels s, t, . . . ou calculer dans C avec les nombres complexes (s, 0),
(t, 0), . . . revient donc au même. En identifiant le nombre réel x ∈ R avec le
nombre complexe (x, 0) ∈ C, on considère R comme un sous-ensemble de C. Les
opérations algébriques dans C sont alors compatibles avec celles de R.

Le nombre i

Définissons l’unité imaginaire i par

i := (0, 1)
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Alors on peut écrire z = (x, y) ∈ C comme

(x, y) = (x, 0) + (0, y) = (x, 0) + (y, 0) · (0, 1) = x+ yi

et ainsi1

z = (x, y) = x+ yi,

ce qui justifie l’écriture x+ yi (= x+ iy) à la place de (x, y).

Vérifions que le nombre i est bien une solution de l’équation z2 = − 1 (l’autre
étant −i) : selon (9.3) on a

i2 = (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) ,

et comme (−1, 0) = −1 on obtient

i2 = −1 .

Pour un nombre complexe z = x+ yi avec x, y ∈ R on appelle

x la partie réelle de z Re z := x

y la partie imaginaire de z Im z := y

x− yi le (nombre) conjugué de z z̄ := x− yi.

Un nombre complexe iy avec x = 0 et y 6= 0 est dit purement imaginaire.

Géométrie des nombres complexes

Identifions le nombre complexe z = x + iy avec le point du plan dont les co-
ordonnées cartésiennes sont x et y. Si ϕ dénote l’angle entre l’axe des x et le
vecteur

−→
0z, alors

cosϕ =
x

r
et sinϕ =

y

r
,

où r= |z| est la valeur absolue ou la norme de z, c’est-à-dire la longueur eucli-
dienne du vecteur

−→
0z :

|z| :=
√
x2 + y2 =

√
z · z̄ (=⇒ zz̄ = |z|2) .

z = x+ iy

r = |z| =
√
x2 + y2

x = r cosϕ

y = r sinϕ

z = r(cosϕ+ i sinϕ)

(9.4)

r et ϕ sont les coordonnées polaires de z ; l’angle ϕ s’appelle aussi argument de
z, noté arg z. Il n’est pas unique mais seulement déterminé à un multiple entier
de 2π près, et pour z = 0 il n’est pas du tout défini.

Le conjugué z̄ est le point symétrique de z par rapport à l’axe réel (des x).

1Normalement, on préfère les lettres z, w pour les nombres complexes, et x, y, r, s, t, . . .
pour les réels.

101



Interprétation géométrique des opérations arithmétiques

Addition : C’est l’addition
vectorielle usuelle dans le
plan, si nous identifions le
point z avec le vecteur

−→
0z.

Multiplication : Pour le produit de deux nombres complexes

z = x+ iy = r(cosϕ+ i sinϕ)

w = u+ iv = s(cosψ + i sinψ)

on trouve en utilisant les formules

sin(ϕ+ ψ) = sinϕ cosψ + cosϕ sinψ

cos(ϕ+ ψ) = cosϕ cosψ − sinϕ sinψ

le résultat
z · w = rs (cos(ϕ+ ψ) + i sin(ϕ+ ψ)). (9.5)

Donc on a

|z · w| = |z| · |w| et arg(z · w) = arg(z) + arg(w) . (9.6)

Pour une interprétation géométrique, fixons maintenant un nombre complexe

z0 = r0(cosϕ0 + i sinϕ0) 6= 0 ,

et considérons l’application mz0 : C → C donnée par la multiplication avec z0,
c’est-à-dire donnée par mz0(z) = z0z. Alors la formule

mz0(z) = z0z = r0r (cos(ϕ+ ϕ0) + i sin(ϕ+ ϕ0))

montre que mz0 est une similitude directe (en allemand : Drehstreckung) com-
posée de la rotation d’angle ϕ0 = arg(z0) et de centre 0 et de l’homothétie de
facteur r0 = |z0|.

Les triangles hachurés
sont semblables.

Si l’on applique l’égalité (9.5) plusieurs fois pour calculer zn = z · . . . · z avec
z = cosϕ+ i sinϕ, on obtient la formule de De Moivre :

(cosϕ+ i sinϕ)n = cos(nϕ) + i sin(nϕ) (9.7)
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Passage d’un nombre complexe à son inverse : Pour z = |z|(cosϕ + i sinϕ) on
obtient avec zz̄ = |z|2

1

z
=

1

zz̄
z̄ =

1

|z|2
|z|(cosϕ− i sinϕ)

=
1

|z|
(cos(−ϕ) + i sin(−ϕ)) . (9.8)

Ainsi, ∣∣∣1
z

∣∣∣ =
1

|z|
et arg

(1

z

)
= − arg(z) . (9.9)

Les triangles hachurés
sont semblables.

De (9.6) et (9.9) on obtient∣∣∣ z
w

∣∣∣ =
|z|
|w|

et arg
( z
w

)
= arg(z)− arg(w) . (9.10)

Distance et limites

La distance entre deux points z1 = x1 + iy1 et z2 = x2 + iy2 dans le plan
complexe C = R2 est définie par

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2 . (9.11)

C’est donc la longueur du segment de droite entre z1 et z2. A l’aide de cette
notion de distance, on définit la convergence d’une suite (zk)k∈N = (z0, z1, z2, . . .)
comme pour les nombres réels dans le chapitre 3. On voit facilement qu’une suite
zk = xk + iyk converge vers z = x+ iy si et seulement si les parties réelles xk et
les parties imaginaires yk convergent : xk → x et yk → y.

En fait, avec la définition (9.11) on trouve que la distance |z−zk| satisfait
aux inégalités

max{|x− xk|, |y − yk|} ≤ |z − zk| ≤
√

2 max{|x− xk|, |y − yk|},

où max{a, b} est le plus grand des deux nombres a, b ∈ R. Par conséquent
|z − zk| → 0 si et seulement si |x− xk| → 0 et |y − yk| → 0 pour k →∞.

On obtient ainsi les notions de limite, continuité et différentiabilité (complexe)
d’une fonction f : C→ C. La convergence d’une série

∞∑
k=0

zk

à termes complexes est de nouveau définie comme la convergence de la suite des
sommes partielles sn :=

∑n
k=0 zk.
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Equations algébriques

Par construction, C est le plus petit corps contenant R et une solution de
l’équation z2 + 1 = 0. Il est donc surprenant que toute équation algébrique

anz
n + an−1z

n−1 + . . .+ a1z + a0 = 0

de degré n ≥ 1 admette des solutions dans C. Plus précisément :

Théorème fondamental de l’algèbre. Soit P (z) un polynôme de degré n ≥ 1
à coefficients (réels ou) complexes :

P (z) = anz
n + an−1z

n−1 + . . .+ a1z + a0

avec a0, a1, . . . , an ∈ C et an 6= 0. Alors P possède n zéros z1, . . . , zn ∈ C (pas
nécessairement distincts) et s’écrit comme

P (z) = an · (z − z1) · . . . · (z − zn) . (9.12)

Remarquons néanmoins que la résolution effective d’une équation algébrique
n’est pas facile, car il n’existe pas de formule générale pour les solutions z1, . . . , zn,
sauf pour les polynômes degrés ≤ 4. Rappelons celle des deux solutions d’une
équation quadratique az2 + bz + c = 0 :

z1,2 =
−b±

√
b2 − 4ac

2a
.

Lorsque les coefficients a, b et c sont réels, nous pouvons distinguer trois cas
suivant la valeur du discriminant ∆ = b2 − 4ac : Si ∆ > 0, alors il existe deux
solutions réelles z1 6= z2 ; pour ∆ = 0 il existe une solution réelle double z1 = z2 ;
et si ∆ < 0 il existe deux solutions complexes non réelles et conjuguées z2 = z̄1.

Racines n-ièmes de l’unité. A l’aide de la formule de De Moivre (9.7)
on voit facilement que les solutions de l’équation zn = 1 sont les n nombres
complexes

zk = cos
2kπ

n
+ i sin

2kπ

n

pour k = 0, 1, . . . , n−1, appelés les racines n-ièmes de l’unité. Ils sont
situés sur le cercle unité et sont les sommets d’un polygone régulier à n
côtés.

Les racines 5-ièmes de
l’unité
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La fonction exponentielle complexe

La série exponentielle

exp z :=

∞∑
n=0

zn

n!
(9.13)

converge pour tout nombre complexe z. Comme dans le cas réel considéré au
chapitre 6, on a de plus l’égalité

exp z = lim
n→∞

(
1 +

z

n

)n
. (9.14)

Pour z ∈ C on définit, d’après Euler,

ez := exp z.

Théorème. La fonction exponentielle exp : C→ C a les propriétés suivantes :

(a) elle est continue ;

(b) exp(z + w) = exp z · expw pour tous z, w ∈ C ;

(c) pour tout t ∈ R on a la formule d’Euler :

exp(it) = cos t+ i sin t (9.15)

Conséquences

(i) exp(z) exp(−z) = exp(z−z) = exp(0) = 1, donc exp(z) 6= 0 pour tout
z ∈ C.

(ii) Pour z = x+ iy ∈ C on a

ez = ex+iy = exeiy = ex(cos y + i sin y)

et ainsi |ez| = eRe(z) et arg (ez) = Im(z).

(iii) La représentation d’un nombre complexe en coordonnées polaires s’écrit
à l’aide de la fonction exponentielle

z = reiϕ = r(cosϕ+ i sinϕ) (9.16)

Remarquons qu’on peut arriver à la formule d’Euler en utilisant l’argu-
ment fallacieux suivant : la formule de De Moivre implique notamment

cos t+ i sin t =

(
cos

t

n
+ i sin

t

n

)n
.

Or, pour n assez grand, cos t
n
≈ 1 et sin t

n
≈ t

n
. Donc,

cos t+ i sin t =

(
cos

t

n
+ i sin

t

n

)n
≈
(

1 +
it

n

)n
≈ eit.
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Une preuve rigoreuse de la formule d’Euler s’obtient en utilisant les séries
connues pour sin et cos : avec i2k = (i2)k = (−1)k on obtient

eit =

∞∑
n=0

(it)n

n!

=

∞∑
k=0

(it)2k

(2k)!
+ i

∞∑
k=0

(it)2k+1

(2k + 1)!

=

∞∑
k=0

(−1)k
t2k

(2k)!
+ i

∞∑
k=0

(−1)k
t2k+1

(2k + 1)!

= cos t+ i sin t .

Dérivée d’une fonction à valeurs complexes

On définit la différentiabilité et la dérivée d’une fonction f : R→ C d’argument
réel, mais à valeurs complexes, comme pour une fonction g : R → R à valeurs
réelles :

f ′(t0) = lim
t→t0

f(t)− f(t0)

t− t0
. (9.17)

On démontre facilement que f = u+ iv est différentiable si et seulement si ses
parties réelle u et imaginaire v le sont, et que

f ′(t) = u′(t) + iv′(t). (9.18)

On a les mêmes notations alternatives pour la dérivée, f ′(t0) = ḟ(t0) =
df

dt
(t0),

que dans le cas réel.

Exemple. Pour un nombre complexe λ, considérons la fonction f : R → C
donnée par f(t) = eλt. Le calcul direct de la dérivée est facile :

f ′(t) = lim
τ→0

eλ(t+τ)− eλt

τ
= lim
τ→0

eλτ − 1

τ
eλt

= lim
τ→0

(
1

τ

(
1
/

+ λτ +
(λτ)2

2!
+ . . . − 1

/))
eλt

= λeλt = λf(t).

On arrive au même résultat en utilisant la formule (9.18), c’est-à-dire en
passant par la décomposition de f(t) en parties réelle u(t) et imaginaire
v(t) : si λ = α+ iβ avec α, β ∈ R, alors

f(t) = eλt = eαteiβt = eαt (cosβt+ i sinβt)

= eαt cosβt+ i eαt sinβt.

Donc f(t) = u(t) + iv(t) avec

u(t) = eαt cosβt

v(t) = eαt sinβt .

On trouve u′(t) = αeαt cosβt− eαtβ sinβt

v′(t) = αeαt sinβt+ eαtβ cosβt,

et finalement

u′(t) + iv′(t) = eαt
(
α cosβt− β sinβt+ i(α sinβt+ β cosβt)

)
= (α+ iβ)eαt(cosβt+ i sinβt) = λeλt.
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Exemple. On peut prouver la formule d’Euler en utilisant la dérivée de la
fonction f(t) = (cos t+ i sin t)/eit :

f ′(t) =
(− sin t+ i cos t)eit − (cos t+ i sin t)ieit

e2it
= 0.

Cette fonction est donc constante, et ainsi f(t) ≡ f(0) = 1, ce qui démontre

eit = cos t+ i sin t

pour tout t ∈ R.

Les équations différentielles linéaires revisitées

Rappelons le problème : Comment résoudre l’équation différentielle linéaire ho-
mogène à coefficients constants

ẍ+ bẋ+ cx = 0

dans le cas où son polynôme caractéristique χ(λ) = λ2 +bλ+c n’a pas de racine
réelle ?

Admettons maintenant des solutions complexes de l’équation différentielle, c’est-
à-dire des fonctions différentiables ϕ : R → C avec ϕ̈(t) + bϕ̇(t) + cϕ(t) = 0.
Nous venons de voir que, pour une fonction de la forme ϕ(t) = eλt avec λ ∈ C
on a la même forme de la dérivée que pour λ ∈ R, à savoir ϕ̇(t) = λeλt. Cela
nous donne le

Théorème. Une fonction z(t) = eλt est une solution (complexe) de l’équation
différentielle z̈+bż+cz = 0 si et seulement si λ ∈ C est une racine du polynôme
caractéristique χ(λ) = λ2 + bλ+ c.

Dans ce théorème, on peut même admettre des coefficients b, c complexes ; mais
revenons à notre problème où b et c sont réels mais tels que le polynôme ca-
ractéristique n’a pas de racine réelle. Il a donc les deux racines complexes
conjuguées λ1,2 = α ± iβ avec β 6= 0. Elles sont donc différentes, et on voit
facilement que les deux solutions

z1(t) = eλ1t = eαteiβt = eαt(cos(βt) + i sin(βt))

z2(t) = eλ2t = eαte−iβt = eαt(cos(βt)− i sin(βt))

sont linéairement indépendantes et forment un système fondamental complexe.

Toute combinaison linéaire a1z1(t) +a2z2(t) à coefficients a1, a2 ∈ C est une so-
lution. En particulier, nous retrouvons le système fondamental de deux solutions
réelles donné à la page 95 comme suit :

x1(t) =
1

2
z1(t) +

1

2
z2(t) = eαt cos(βt)

x2(t) =
1

2i
z1(t)− 1

2i
z2(t) = eαt sin(βt)

Oscillations et complexification. Les solutions complexes sont utiles pour
traiter les oscillations induites. Considérons par exemple l’équation différentielle

ẍ+ 2δẋ+ ω2
0x = cos(ωt). (9.19)
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avec δ, ω0 ∈ R. On peut regarder cette équation comme la partie réelle de
l’équation complexe

z̈ + 2δż + ω2
0z = eiωt. (9.20)

Lorsque z(t) = x(t) + iy(t) est une solution complexe de (9.20), sa partie réelle
x(t) résout (9.19).

Pour (9.20) nous cherchons une solution du même type que l’inhomogénéité,
c’est-à-dire que nous faisons l’ansatz z(t) = Aeiωt. On trouve

z̈ + 2δż + ω2
0z = (−ω2 + 2iδω + ω2

0)Aeiωt.

C’est une solution de (9.20) si l’on choisit

A =
1

ω2
0 − ω2 + 2iδω

.

Exemple. Pour obtenir une solution de ẍ + x = cos 2t, on procède en trois
étapes :

1. Complexification : z̈ + z = e2it.

2. Résolution de cette équation par l’ansatz z(t) = Ae2it : on obtient A =
1

1−4 = − 1
3 , donc la solution complexe

z(t) = −1

3
e2it.

3. La partie réelle de z(t) est la fonction x(t) = −1

3
cos 2t. Elle est bien

solution :

ẍ+ x =
4

3
cos 2t− 1

3
cos 2t = cos 2t.

Il faut remarquer que cette méthode ne fonctionne pas si ω2
0 − ω2 + 2iδω = 0.

Mais ce n’est le cas que lorsque δ = 0 et ω = ±ω0. On trouve alors une solution
avec la méthode de la variation des constantes.

Note historique

L’idée de résoudre l’équation x2 = −1 tout simplement en ajoutant encore
des nombres — notamment i avec i2 = −1 — n’était pas à l’origine
des nombres complexes. On se contentait plutôt de constater que cette
équation n’avait pas de solution : si l’équation x2 = b est interprétée
géométriquement comme recherche d’un carré de côté x tel que son aire
soit égale à b, l’équation n’a pas de sens pour b = −1, et la non-existence
d’une solution ne gêne pas.

Par contre, on connaissait au 16ème siècle des formules pour la résolution
d’équations cubiques. Une de ces formules de Cardan donnait comme
solution de l’équation

x3 = px+ q avec p, q > 0

l’expression

x1 =
3

√
q

2
+

√
q2

4
−
(p

3

)3

+
3

√
q

2
−
√
q2

4
−
(p

3

)3

.
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Pour l’équation x3 = 15x+ 4 la formule nous livre

x1 =
3

√
2 +
√
−121 +

3

√
2−
√
−121.

Cette expression contient le nombre
√
−121, qui n’avait pas de sens pour

les gens de l’époque. Mais en ignorant ce fait et en calculant avec ce
nombre inexistant ou imaginaire suivant certaines règles, on trouva le
résultat x1 = 4, une solution parfaitement admissible !

Dans cet exemple, les nombres complexes sont donc un outil qui permet de
trouver les solutions réelles d’un problème à données réelles. Nous avons
vu une autre application de ce genre, à savoir l’utilisation des nombres
complexes dans la résolution de certaines équations différentielles réelles.

L’interprétation géométrique des nombres complexes fut découverte vers
la fin du 18ème siècle (Caspar Wessel, Jean-Robert Argand) : comme elle
joua un rôle essentiel dans la démonstration du théorème fondamental de
l’algèbre par Gauss, on parle aujourd’hui du plan (numérique) de Gauss.
La construction des nombres complexes à partir des nombres réels que
nous avons présentée n’a été introduite qu’en 1833 par le mathématicien
et physicien irlandais W.R. Hamilton.
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Chapitre 10

Gradient et dérivées
partielles

Dans ce chapitre, nous traitons des fonctions f(x1, x2, . . . , xn) de plusieurs va-
riables, principalement dans les cas n= 2 et n= 3 qui montrent déjà les diffé-
rences essentielles par rapport au cas n= 1. On utilisera aussi x, y, z comme
noms des variables, à la place de x1, x2, x3. Les fonctions considérées sont en
général définies sur des sous-ensembles D ⊆ Rn, tels par exemple

{(x, y) ∈ R2 | (x− x0)2 + (y − y0)2 < r} (un disque ouvert),

{(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d} (un rectangle fermé),

{(x, y, z) ∈ R3 | x, y, z > 0} (un octant).

Représentations graphiques

Graphes. La première méthode de visualisation d’une fonction f : D → R de
deux variables (c’est-à-dire avec D ⊆ R2) est la représentation par son graphe
Gf ⊆ R3 défini par

Gf =
{(
x, y, f(x, y)

)
| (x, y) ∈ D

}
=
{(
x, y, z

)
∈ R3 | (x, y) ∈ D, z = f(x, y)

}
,

une sorte de �tapis flottant� dans l’espace R3 au-dessus de D :

Ensembles de niveau. Une autre méthode de visualisation graphique d’une
fonction f : D → R définie sur D ⊆ R2 est la représentation par ses lignes de
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niveau (ou courbes de niveau, plus précisément ses ensembles de niveau). Pour
tout s ∈ R, la ligne de niveau Ns est l’ensemble des points (x, y) du plan en
lesquels la fonction est définie et prend la valeur s :

Ns = {(x, y) ∈ D | f(x, y) = s } .

On obtient Ns comme projection de l’intersection du graphe de f avec le plan
horizontal z = s dans le plan x, y.

Exemples

1. Une fonction linéaire inhomogène (ou fonction affine) de deux variables
f : R2 → R est une fonction de la forme

f(x, y) = ax+ by + c

avec des constantes a, b, c ∈ R. Son graphe est un plan dans R3. Si a 6= 0
ou b 6= 0, alors toute ligne de niveau

Ns = {(x, y) | ax+ by + c = s}

est une droite. Mais si a = b = 0, alors f est une fonction constante ; dans
ce cas, Ns = ∅ pour s 6= c, et Ns = R2 pour s = c.

2. Si f(x, y) = x2 + y2, alors le graphe Gf est un parabolöıde de révolution,
obtenu en faisant tourner la parabole z=x2 autour de l’axe des z. Pour
s > 0, la courbe de niveau Ns est un cercle de rayon

√
s centré l’origine

(0, 0) ; pour s < 0, Ns est l’ensemble vide, tandis que N0 consiste en un
seul point, (0, 0).
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3. Le graphe de f(x, y) = x2−y2 est un parabolöıde hyperbolique, une surface
qui possède la forme d’une selle. Pour s 6= 0, les lignes de niveau Ns sont
des hyperboles, tandis que N0 est une paire de droites.

4. La fonction f(x, y) =
√

1− (x2 + y2) est définie pour x2 + y2 ≤ 1, c’est-
à-dire f : D → R avec le disque D = {(x, y) ∈ R2; x2 + y2 ≤ 1}. Son
graphe est un hémisphère de rayon 1. Pour 0 ≤ s < 1, la ligne de niveau
Ns = {(x, y) | x2 + y2 = 1− s2} est un cercle de rayon

√
1− s2.

5. Les lignes de niveau sur une carte topographique sont celles de la fonction
f(x, y) = altitude au point (x, y). Les isobares sur une carte météorologi-
que sont les courbes de niveau de la pression atmosphérique.

Cas général. Plus généralement, pour les fonctions f : D → R de n variables,
c’est-à-dire avec D ⊆ Rn, on a aussi les notions de graphe Gf ⊆ Rn+1 et
d’ensemble de niveau, Ns ⊆ D. Dans ce cas général, ils sont définis par

Gf = {(x1, . . . , xn, xn+1) | xn+1 = f(x1, . . . , xn)}
Ns = {(x1, . . . , xn) ∈ D | f(x1, . . . , xn) = s}.

Par exemple les surfaces équipotentielles d’un champ électrique dans R3 sont les
ensembles de niveau du potentiel électrique. Pour n > 3 les ensembles Ns ⊆ Rn
sont impossibles (ou au moins difficiles) à visualiser, mais ils ont une signification
très concrète : les �points� (x1, . . . , xn) ∈ Ns sont les solutions de l’équation
f(x1, . . . , xn) = s.
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L’espace Rn

On peut regarder les fonctions de n variables comme fonctions ~x 7→ f(~x) d’une
seule variable – mais cette variable ~x représente des points dans Rn. Rappelons
que Rn est l’ensemble des n-uples

~x = (x1, x2, . . . , xn)

de nombres réels. Donc R1 = R est la droite réelle, R2 le plan avec ses coor-
données cartésiennes, et R3 = {(x, y, z) | x, y, z ∈ R} l’espace euclidien. Les
éléments ~x ∈ Rn s’appellent les points de Rn ou les vecteurs, et x1, x2 . . . sont
les composantes du vecteur ~x. Dans ce contexte, les nombres λ ∈ R s’appellent
les scalaires.

Remarquons que, dans un traitement plus approfondi, on distingue entre
points x ∈ Rn et vecteurs ~v. Géométriquement, les vecteurs sont des
�flèches� avec un point initial x et un point final y. On peut formaliser
ce concept en définissant qu’un vecteur en x est un couple ~v = (x, y) de
points de Rn. Dans notre régime simplifié, on identifie ~v = (x, y) avec y,
et on utilise la notation ~y au lieu de y seulement pour se rappeler qu’il
ne s’agit pas d’un scalaire.

Opérations algébriques. Dans Rn, on utilise les opérations algébriques sui-
vantes : l’addition des vecteurs, la multiplication des vecteurs par des scalaires
λ, et le produit scalaire 〈~x, ~y〉 de vecteurs. Elles sont définies par

~x+ ~y = (x1, . . . , xn) + (y1, . . . , yn) := (x1+y1, . . . , xn+yn)

λ~x = λ · (x1, . . . , xn) := (λx1, . . . , λxn)

〈~x, ~y〉 :=
n∑
k=1

xkyk = x1y1 + . . .+ xnyn

pour ~x, ~y ∈ Rn et λ ∈ R. Notons en particulier que le produit scalaire de deux
vecteurs n’est pas un vecteur mais un nombre (ou scalaire). Dans la littérature,
on trouve souvent la notation ~x · ~y au lieu de 〈~x, ~y〉. On vérifie facilement les
règles

〈~x+~y, ~z〉 = 〈~x, ~z〉+ 〈~y, ~z〉

〈~x, ~y+~z〉 = 〈~x, ~y〉+ 〈~x, ~z〉

〈λ~x, ~y〉 = λ〈~x, ~y〉 = 〈~x, λ~y〉

〈~x, ~y〉 = 〈~y, ~x〉 .

Distance. Les notions de longueur, distance et d’angle connues de la géométrie
vectorielle dans R2 et R3 se généralisent à Rn : la norme euclidienne (ou lon-
gueur) d’un vecteur ~x est définie par

||~x|| :=
√
〈~x, ~x〉 =

√
x2

1 + . . .+ x2
n ,

la distance (euclidienne) entre ~x et ~y par

dist(~x, ~y) := ||~x− ~y|| =
√

(x1−y1)2 + . . .+ (xn−yn)2

et l’angle θ ∈ [0, 2π] entre ~x, ~y 6= ~0 satisfait

cos θ =
〈~x, ~y〉
||~x|| ||~y||

.
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(Remarquons que, comme dans le plan R2 et dans R3, il y a en fait deux angles
caractérisés par cette relation, θ et 2π−θ. ) Les vecteurs ~x, ~y sont dits orthogo-
naux (ou perpendiculaires) si 〈~x, ~y〉 = 0. Un vecteur unitaire est un vecteur ~x
avec ||~x|| = 1.

La boule (ouverte) de centre ~a et de rayon r > 0, aussi appelée r-voisinage de
~a, est l’ensemble de points à distance < r de ~a, c’est-à-dire

Br(~a) := {~x ∈ Rn | ||~x− ~a|| < r}.

Un point ~x est dit un point intérieur d’un ensemble D ⊆ Rn s’il existe un rayon
r > 0 tel que la boule Br(~x) est contenue dans D ; et l’ensemble D est dit un
ensemble ouvert si tout point de D est un point intérieur de D.

Le concept de distance dans Rn donne lieu aux notions de convergence et de
continuité comme dans le cas n = 1. Une suite

(~xk)k∈N = (~x0, ~x1, . . .)

de points ~xk dans Rn est dite convergente vers ~a si la suite de ses distances
||~xk − ~a|| à ~a tend vers zéro. Dans ce cas on écrit ~xk → ~a (k →∞) ou

lim
k→∞

~xk = ~a.

Comme dans le cas n = 2 (voir p.101), on montre que ~xk → ~a si et seulement
si xk,j → aj pour tout j = 1, . . . , n, c’est-à-dire si et seulement si la jième
composante de ~xk = (xk,1, . . . , xk,n) converge vers la jième composante de ~a =
(a1, . . . , an).

Une fonction f : Rn → R est dit continue en ~x si lim
k→∞

f(~xk) = f(~x) pour toute

suite ~xk avec ~xk → ~x.

La base standard. Considérons maintenant les vecteurs unitaires

~e1 = (1, 0, 0, . . . , 0)

~e2 = (0, 1, 0, . . . , 0)

~e3 = (0, 0, 1, . . . , 0)

. . .

~en = (0, 0, 0, . . . , 1) .

(L’ensemble ordonné ~e1, . . . , ~en s’appelle la base standard de l’espace Rn.) Ils
satisfont aux �relations d’orthogonalité�

〈~ej , ~ek〉 = δjk :=

{
1, si j = k;
0, si j 6= k.

On obtient les composantes xj d’un vecteur ~x = (x1, . . . , xn) comme produit
scalaire de ~x avec ~ej ,

xj = 〈~x,~ej〉.
Tout ~x s’écrit comme combinaison linéaire des ~ej : par exemple, pour n = 3,

~x = (x1, x2, x3)

= x1 · (1, 0, 0) + x2 · (0, 1, 0) + x3 · (0, 0, 1)

= x1~e1 + x2~e2 + x3~e3

= 〈~x,~e1〉~e1 + 〈~x,~e2〉~e2 + 〈~x,~e3〉~e3
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et en général

~x =

n∑
j=1

xj~ej =

n∑
j=1

〈~x,~ej〉~ej .

Fonctions différentiables, différentielles, gradients

Rappelons (voir p. 23) qu’une fonction f : R → R d’une seule variable
réelle est différentiable en x0 si elle admet une bonne approximation par
une fonction linéaire inhomogène x 7→ f(x0)+a·(x−x0) dans un voisinage
de x0. Plus précisément,

f(x) = f(x0) + a · (x− x0) +R(x)

avec un reste R(x) ayant la propriété

lim
x→x0

R(x)

|x− x0|
= 0.

Si c’est le cas, alors a est la limite d’un quotient de différences

a = f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
,

et on appelle la fonction linéaire h 7→ dfx0(h) := f ′(x0) · h la différentielle
de f en x0. Sous cette forme, la définition de la différentiabilité s’étend
aux fonctions de plusieurs variables.

Une fonction L : Rn → R de ~h = (h1, . . . , hn) est dite linéaire si elle est de la
forme

L(~h) = 〈~l,~h〉 = l1h1 + . . .+ lnhn

avec un vecteur constant ~l = (l1, . . . , ln) ∈ Rn. Les composantes lj sont alors

uniquement déterminées par L, car L(~ej) = 〈~l, ~ej〉 = lj .

Définition. Soit D ⊂ Rn. La fonction f : D → R est (totalement) différentiable

en ~x0 ∈ D s’il existe une fonction linéaire L : Rn → R, L(~h) = 〈~l,~h〉, telle que
pour tout ~x ∈ D

f(~x) = f(~x0) + L(~x− ~x0) +R(~x) (10.1)

= f(~x0) + 〈~l, ~x− ~x0〉+R(~x) (10.2)

et où le reste R satisfait à la condition

lim
~x→~x0

R(~x)

||~x− ~x0||
= 0.

Nous verrons que ~l et donc L sont alors uniquement déterminés. La fonction
L s’appelle la différentielle, le vecteur ~l le gradient de f en ~x0. On désigne la
différentielle par df~x0

et le gradient par gradf(~x0) ou
−→∇f(~x0) (à lire �nabla f�).

Ainsi par définition,

df~x0
(~h) = 〈gradf(~x0),~h〉 (10.3)

Donc la différentielle df~x0
, une application linéaire Rn → R, est donnée par le

produit scalaire avec le vecteur gradf(~x0).

115



En posant ~x− ~x0 =: ~h on peut maintenant écrire les équations (10.1-2) sous la
forme

f(~x0 + ~h) = f(~x0) + df~x0
(~h) +R(~h) (10.4)

= f(~x0) + 〈gradf(~x0),~h〉+R(~h) (10.5)

avec lim
~h→~0

R(~h)

||~h||
= 0.

Dérivées directionnelles

Fixons ~x et ~v ∈ Rn et considérons la droite paramétrée t 7→ ~x+ t~v (t ∈ R) dans
Rn. Considérons la fonction t 7→ f(~x+ t~v) de la seule variable réelle t.

L’équation (10.5) avec ~h = t~v nous donne

f(~x+ t~v) = f(~x) + 〈gradf(x), t~v〉+R(t~v)

= f(~x) + t〈gradf(~x), ~v〉+R(t~v)

et donc
f(~x+ t~v)− f(~x)

t
= 〈gradf(~x), ~v〉+

R(t~v)

t
.

A la limite t→ 0 nous obtenons

df~x(~v) = 〈gradf(~x), ~v〉 = lim
t→0

f(~x+ t~v)− f(~x)

t
. (10.6)

Cette limite
d

dt

∣∣∣
t=0

f(~x+ t~v) = lim
t→0

f(~x+ t~v)− f(~x)

t
(10.7)

s’appelle la dérivée directionnelle de f le long de ~v, ou suivant ~v, bien qu’elle ne
dépende pas seulement de la direction de ~v. C’est le taux de variation instantanée
de f considérée comme fonction de t sur la droite t 7→ ~x+ t~v, pour t = 0. Quand
~v est un vecteur unitaire, c’est simplement la croissance (ou la pente) de f en
~x dans la direction de ~v.

Signification du gradient

La formule (10.6) donne la signification du gradient. Prenons en effet un vecteur
unitaire ~v, et soit θ l’angle entre ~v et gradf(~x). Alors

d

dt

∣∣∣
t=0

f(~x+ t~v) = 〈gradf(~x), ~v〉
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= ||gradf(~x)|| ||~v|| cos θ

= ||gradf(~x)|| cos θ

≤ ||gradf(~x)||,

avec l’égalité si et seulement si cos θ = 1, c’est-à-dire si ~v et gradf(~x) ont la même
direction. Donc la croissance de f est maximale dans la direction du gradient,
et la valeur de cette croissance maximale est égale à sa longeur ||gradf(~x)||.

Dérivées partielles et calcul du gradient

Si f : D → R est une fonction différentiable en ~x, comment calculer son gradient
gradf(~x) ? Rappelons qu’on peut calculer les composantes d’un vecteur ~w en
prenant les produits scalaires wj = 〈~w,~ej〉. Ainsi pour obtenir les composantes
〈gradf(~x), ~ej〉 du vecteur gradf(~x), nous appliquons la formule (10.6) avec ~v =
~ej . Par exemple pour j = 1,

〈gradf(~x), ~e1〉 = lim
t→0

f(~x+ t~e1)− f(~x)

t

= lim
t→0

f(x1+ t, x2, . . . , xn)− f(x1, x2, . . . , xn)

t

Mais c’est simplement la dérivée en ξ = x1 de la fonction de la seule variable
réelle ξ,

ξ 7→ f(ξ, x2, . . . , xn),

qu’on obtient à partir de f en fixant les autres variables x2, . . . , xn. Cette dérivée
est dite dérivée partielle en ~x de f par rapport à x1, et notée

∂f

∂x1
(~x) ou ∂x1

f(~x) ou ∂1f(~x).

De manière analogue existent les dérivées partielles par rapport aux autres va-
riables ∂jf = ∂xj

f = ∂f
∂xj

pour j = 2, . . . , n. La dérivée partielle de f par rap-

port à une variable xj se détermine en considérant les autres variables comme
constantes, c’est-à-dire en traitant f comme fonction de la seule variable xj , et
en calculant la dérivée ordinaire de cette fonction. Pour le gradient, nous avons
finalement

gradf =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
, (10.8)

et la formule (10.5) (avec ~x à la place de ~x0) s’écrit

f(~x+ ~h) = f(~x) +

n∑
j=1

∂f

∂xj
(~x)hj +R(~h). (10.9)

Exemples

6. Dans le cas n = 2 et avec la notation (x, y) à la place de ~x = (x1, x2) et

(h, k) à la place de ~h = (h1, h2), le gradient de f est

gradf =

(
∂f

∂x
,
∂f

∂y

)
,

la différentielle en (x, y) est la fonction linéaire df(x,y) : R2 → R donnée
par

(h, k) 7→ df(x,y)(h, k) =
∂f

∂x
(x, y)h+

∂f

∂y
(x, y)k
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et la formule (10.9) devient

f(x+ h, y + k) = f(x, y) +
∂f

∂x
(x, y)h+

∂f

∂y
(x, y)k +R(h, k). (10.10)

7. Pour f : R2 → R, f(x, y) = xy + sin(xy3) on obtient

∂f

∂x
(x, y) = y + cos(xy3)y3

∂f

∂y
(x, y) = x+ cos(xy3)3xy2.

8. Différentiation implicite. Supposons que la fonction z = z(x, y) satis-
fasse à l’équation

xyz = sin(x+ y + z).

Calculer ∂z/∂x en termes de x, y, z.

Solution. On ne peut pas résoudre l’équation par rapport à z afin d’obtenir
une formule explicite pour la fonction z(x, y). Au lieu de cela, on prend la
dérivée ∂/∂x de l’équation en utilisant la règle de la châıne :

∂

∂x
(xyz) =

∂

∂x
sin(x+ y + z)

yz + xy
∂z

∂x
= cos(x+ y + z)

(
1 +

∂z

∂x

)
En résolvant cette dernière équation pour ∂z/∂x, on obtient le résultat :

∂z

∂x
=

cos(x+ y + z)− yz
xy − cos(x+ y + z)

.

Noter que cette formule ne donne pas ∂z/∂x explicitement comme fonction
de x et y, mais en termes de x, y et z = z(x, y).

Critère de différentiabilité

Si toutes les dérivées partielles ∂jf(~x) existent, alors f est dite partiellement
différentiable en ~x. Nous avons vu que toute fonction totalement différentiable en
~x est partiellement différentiable en ~x. Par contre, il existe des fonctions partielle-
ment différentiables qui ne sont pas totalement différentiables : on peut écrire la
formule (10.9), mais le reste ne satisfait pas la condition lim~h→~0R(~h)/||~h|| = 0.
Néanmoins on peut démontrer le théorème suivant :

Théorème. Si les dérivées partielles ∂1f, . . . , ∂nf de f : D → R existent en
chaque point d’une voisinage de ~x et sont des fonctions continues en ~x, alors f
est totalement différentiable en ~x.

Pour vérifier que f est différentiable dans (chaque point d’) un domaine D,
il suffit donc de calculer ses dérivées partielles et de contrôler qu’elles sont
continues. Selon ce critère, la fonction f(x, y) = xy + sin(xy3) de l’exemple
précédent est différentiable dans tout R2.
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Application : propagation d’erreurs

Soit f(~x) = f(x1, . . . , xn) une fonction de plusieurs variables que l’on
aimerait évaluer au point ~a = (a1, . . . , an). Si l’argument ~a n’est pas connu
avec précision mais seulement à une petite erreur ε près, on se pose la
question de l’influence de cette erreur sur la valeur de f : si ~x ≈ ~a avec
~x− ~a = ~h satisfaisant ||~h|| ≤ ε, comment estimer l’erreur |f(~x)− f(~a)| ?

Pour cette estimation, nous utilisons l’approximation

f(~x) = f(~a+ ~h) = f(~a) + 〈−→∇f(~a),~h〉+R(~h)

≈ f(~a) + 〈−→∇f(~a),~h〉 (10.11)

et mesurons l’erreur entre ~a et ~x par leur distance euclidienne, c’est-à-dire
nous supposons que

||~x− ~a|| = ||~h|| =

√√√√ n∑
j=1

h2
j ≤ ε.

En négligeant pour le moment l’erreur de l’approximation (10.8), nous
obtenons

|f(~x)− f(~a)| = |〈−→∇f(~a),~h〉|

= ||−→∇f(~a)|| · ||~h|| · | cos θ|

≤ ε ||−→∇f(~a)||

= ε

√√√√ n∑
j=1

(
∂f

∂xj
(~a)

)2

.

Il s’agit d’une estimation du � premier ordre �, ce qui veut dire qu’en
tenant compte du fait que (10.9) n’est qu’une approximation, nous avons
en réalité

|f(~x)− f(~a) ≤ ε||−→∇f(~a)||+R(ε)

avec lim
ε→0

R(ε)/ε = 0.

Règle de la châıne

Courbes. Une courbe (paramétrée) différentiable dans Rn est une application
différentiable ~γ : I → Rn définie sur un intervalle I ⊆ R. Donc

~γ(t) = (γ1(t), . . . , γn(t)),

et la différentiabilité veut dire que tout composante γj est une fonction diffé-
rentiable. L’interprétation cinématique est la trajectoire d’une particule qui se
meut dans l’espace Rn : on considère le paramètre t comme le temps et ~γ(t)
comme la position de la particule au temps t.

Le vecteur vitesse de la courbe γ en t ∈ I est la dérivée

~̇γ(t) =
d~γ

dt
(t) = lim

h→0

~γ(t+ h)− ~γ(t)

t

= lim
h→0

(γ1(t+ h)− γ1(t)

t
, . . . ,

γn(t+ h)− γn(t)

t

)
=
(

lim
h→0

γ1(t+ h)− γ1(t)

t
, . . . , lim

h→0

γn(t+ h)− γn(t)

t

)
=
(
γ̇1(t), . . . , γ̇n(t)

)
.
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C’est un vecteur tangent à la courbe au point ~γ(t).

Exemple

9. La courbe ~γ : R → R2, ~γ(t) = (cos t, sin t), est une paramétrisation du

cercle unité dans le plan. Son vecteur vitesse en t est ~̇γ(t) = (− sin t, cos t).

Théorème. (Règle de la châıne) Soient ~γ : I → D ⊂ Rn une courbe et f :
D → R une fonction différentiable. Alors la fonction composée f ◦ ~γ : I → R,
(f ◦ ~γ)(t) = f(~γ(t)) est également différentiable, et sa dérivée se calcule par

d

dt
f(~γ(t)) = df~γ(t)(~̇γ(t))

=
〈

(gradf)(~γ(t)), ~̇γ(t)
〉

(10.12)

=

n∑
j=1

∂f

∂xj
(~γ(t))

dγj
dt

(t).

Donc le taux de variation instantanée de f le long de la courbe est donné par
le produit scalaire du gradient de f avec la vitesse de la courbe.

Voici une autre façon, moins précise mais souvent utilisée, d’écrire cette formule :
la courbe est décrite en donnant les coordonnées comme fonctions x1(t), . . . , xn(t)
du paramètre t ; alors

df

dt
=

n∑
j=1

∂f

∂xj

dxj
dt

. (10.13)

Dans cette notation, l’application ~γ n’est pas explicitement mentionnée : on
utilise xj(t) au lieu de γj(t). Il faut s’assurer d’évaluer ∂f/∂xj au point correct.

Indiquons la preuve de (10.12) dans le cas n= 2, i.e. montrons que

d

dt
f(x(t), y(t)) =

∂f

∂x
(x(t), y(t))

dx

dt
(t) +

∂f

∂y
(x(t), y(t))

dy

dt
(t) (10.14)

sous l’hypothèse que les dérivées partielles de f soient continues :

f(~γ(t+h))− f(~γ(t))

h
=

f(x(t+h), y(t+h))− f(x(t), y(t))

h

=
f(x(t+h), y(t+h))− f(x(t), y(t+h))

h

+
f(x(t), y(t+h))− f(x(t), y(t))

h

=
∂f

∂x
(θ1, y(t+h))

x(t+h)− x(t)

h
+
∂f

∂y
(x(t), θ2)

y(t+h)− y(t)

h

avec un θ1 entre x(t), x(t+h) et un θ2 entre y(t), y(t+h). Ici nous avons
appliqué le théorème des accroissements finis (voir p. 30) à la fonction
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x 7→ f(x, y(t+h)) et la fonction y 7→ f(x(t), y). Quand h tend vers zéro,
on a θ1 → x(t), y(t+h)→ y(t) et θ2 → y(t). Par conséquent

∂f

∂x
(θ1, y(t+h))→ ∂f

∂x
(x(t), y(t))

∂f

∂y
(x(t), θ2)→ ∂f

∂y
(x(t), y(t))

et donc

lim
h→0

f(~γ(t+h))− f(~γ(t))

h
=
∂f

∂x
(x(t), y(t))

dx

dt
(t) +

∂f

∂y
(x(t), y(t))

dy

dt
(t).

Exemples

10. Exprimer la dérivée partielle
∂

∂x

(
f(x, g(x, y))

)
en termes des dérivées par-

tielles de f et g.

Solution. Rappelons que ∂
∂x

(
f(x, g(x, y))

)
est la dérivée de la fonction

d’une variable x 7→ f(x, g(x, y)) avec y fixé. Soit ~γ la courbe x 7→ (x,
g(x, y)) dans R2. Nous appliquons la règle de la châıne pour calculer la
dérivée de la fonction x 7→ f(x, g(x, y)) = f(~γ(x)) :

∂

∂x

(
f(x, g(x, y))

)
=
∂f

∂x
(x, g(x, y)) · 1 +

∂f

∂y
(x, g(x, y))

∂g

∂x
(x, y).

Noter la différence entre
∂

∂x

(
f(x, g(x, y))

)
et

∂f

∂x
(x, g(x, y)), la dérivée

partielle ∂f/∂x évaluée au point (x, g(x, y)).

11. (Différentiation implicite.) Supposons que la fonction z = z(x, y) satisfasse
à l’équation

F (x, y, z) = 0

avec une fonction F différentiable connue. Calculer ∂z/∂y en termes de
x, y, z.

Solution. On prend la dérivée ∂/∂y de l’équation en utilisant la règle de
la châıne pour la fonction y 7→ F (x, y, z(x, y)) :

∂

∂y
F (x, y, z) = 0

∂F

∂x

∂x

∂y
+
∂F

∂y

∂y

∂y
+
∂F

∂z

∂z

∂y
= 0

∂F

∂y
+
∂F

∂z

∂z

∂y
= 0

En résolvant cette dernière équation pour ∂z/∂y, on obtient le résultat :

∂z

∂y
= −

∂F

∂y
(x, y, z)

∂F

∂z
(x, y, z)
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Gradient et ensembles de niveau

Montrons que le gradient d’une fonction différentiable f : D → R est orthogonal
aux ensembles de niveau de f dans le sens suivant : soit Ns = {~x ∈ D | f(~x) = s}
un ensemble de niveau, et soit ~γ : I → Ns ⊆ Rn une courbe différentiable conte-
nue dans Ns. Alors pour tout t ∈ I, le gradient gradf(~γ(t)) est orthogonal au

vecteur tangent ~̇γ(t) de la courbe. En fait, la fonction t 7→ f(~γ(t)) est constante
(égale à s), donc sa dérivée s’annule, et en utilisant la règle de la châıne (10.12)
on obtient

0 =
d

dt
f(~γ(t)) = 〈 (gradf)(~γ(t)), ~̇γ(t) 〉.

Donc gradf(~γ(t)) est orthogonal au vecteur ~̇γ(t).

Courbes de niveau et gradient

Exemple

12. Trouver la droite normale à la surface S ⊆ R3 donnée par

x2yz + 3y2 = 2xz2 − 8z

au point ~p0 = (1, 2,−1).

Solution. On vérifie que le point ~p0 satisfait à l’équation, donc qu’on a
vraiment ~p0 ∈ S. Si ~n est un vecteur perpendiculaire à la surface en ~p0,
alors la droite normale est donnée sous forme paramétrique par

t 7→ ~p0 + t~n.

Il suffit donc de trouver ~n. A cette fin, notons que S est l’ensemble de
niveau N0 de la fonction

f(x, y, z) := x2yz + 3y2 − 2xz2 + 8z.

Comme gradf(~p0) est un vecteur perpendiculaire à S en ~p0, on peut
prendre ~n = gradf(~p0). Calculons

gradf(x, y, z) = (2xyz − 2z2, x2z + 6y, x2y − 4xz + 8)

~n = gradf(1, 2,−1) = (−6, 11, 14).

La droite normale est donc donnée par

t 7→ (1, 2,−1) + t(−6, 11, 14) = (1− 6t, 2 + 11t,−1 + 14t).
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Chapitre 11

Extrema des fonctions à
plusieurs variables

Considérons une fonction f : D → R définie sur D ⊆ Rn. La valeur f(~a) est
le maximum (global) de la fonction f dans D si pour tout point ~x ∈ D on a
f(~x) ≤ f(~a). On dit alors que f possède un maximum en ~a. De même, f a un
minimum (global) en ~a si f(~x) ≥ f(~a) pour tout ~x ∈ D. Un extremum (pluriel :
extrema ou extremums) de f est un maximum ou un minimum.

On dit que f possède un maximum local en ~a s’il existe une boule Bδ(~a) autour
de ~a telle que la restriction de f à cette boule possède un maximum en ~a ; plus
explicitement, si on a f(~x) ≤ f(~a) pour tout ~x ∈ Bδ(~a) ∩D.

Rappelons qu’un point ~x est dit un point intérieur d’un ensemble D ⊆ Rn s’il
existe une rayon r > 0 tel que la boule Br(~x) ⊆ D.

Théorème. (Condition nécessaire pour un extremum local.) Soit f : D → R
une fonction qui possède un extremum local au point ~a ∈ D. Si ~a est un point
intérieur de D et si le gradient gradf(~a) existe, alors

gradf(~a) = ~0. (11.1)

Un point ~a qui satisfait à (11.1) s’appelle un point critique de la fonction f . On a
donc un système (en général non-linéaire) de n équations pour les composantes
a1, . . . , an de ~a :

∂f

∂x1
(a1, a2, . . . , an) = 0

∂f

∂x2
(a1, a2, . . . , an) = 0

...
∂f

∂xn
(a1, a2, . . . , an) = 0 .

Preuve du théorème. La fonction d’une variable

t 7→ f(t, a2, . . . , an)
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est définie sur une voisinage de a1 et possède un extremum local en t = a1. Par
conséquent,

∂f

∂x1
(a1, . . . , an) =

d

dt

∣∣∣
t=a1

f(t, a2, . . . , an) = 0.

De la même manière on voit que
∂f

∂xj
(a1, . . . , an) = 0 pour j = 2, . . . , n.

Remarquons que la question de l’existence d’un maximum ou minimum
d’une fonction f sur un ensemble D n’est pas triviale. On peut montrer :

Théorème. Toute fonction continue sur un ensemble D ⊆ Rn compact
possède (au moins) un maximum et un minimum.

Ici D est dit compact si D est borné (c’est-à-dire contenu dans une boule)
et fermé (c’est-à-dire que le complément Rn\D est un ensemble ouvert).
Par exemple, toute boule fermée B̄r(~a) = {~x ∈ Rn | ||~x− ~a|| ≤ r} est un
ensemble compact. Dans ce cours nous n’insistons pas sur ces notions et
sur la question d’existence.

Selon le théorème précédent, un extremum de f : D → R peut intervenir seule-
ment en trois sortes de points :

• points intérieurs avec gradf(~x) = ~0 (points critiques),

• points intérieurs où gradf(~x) n’existe pas,

• points ~x ∈ D sur le bord de D.

Le théorème fournit donc une stratégie pour trouver le maximum (et de manière
analogue le minimum) d’une fonction dans un domaine D :

Trouver les points intérieurs de D avec gradf(~x) = ~0 ou dans
lesquels gradf(~x) n’existe pas. Evaluer f en ces points. Compa-
rer avec les valeurs de f sur le bord de D, et prendre la plus
grande valeur ainsi trouvée.

Exemples

1. Soit f : R2 → R la fonction

f(x, y) = x4 + y4 − x3 − 2y3.

Déterminer si f possède un maximum et/ou un minimum sur D = R2. Si
c’est le cas, les trouver.

Solution. Montrons que f(x, y) → +∞ quand r := ||(x, y)|| → ∞. Par
conséquent, f n’a pas de maximum dans R2. A cette fin, écrivons f en
coordonnées polaires x = r cos θ, y = r sin θ :

f(x, y) = r4(cos4 θ + sin4 θ)− r3(cos3 θ + 2 sin3 θ)

= r4
(
A− B

r

)
→ +∞ quand r → +∞
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car

A = cos4 θ + sin4 θ ≥ 1

2
(cos2 θ + sin2 θ)2 =

1

2
et

|B| = | cos3 θ + 2 sin3 θ| ≤ 1 + 2 = 3.

(On a utilisé l’inégalité a2 + b2 ≥ 1
2 (a+ b)2 pour a, b ∈ R, que l’on vérifie

aisément à partir de l’inégalité (a− b)2 ≥ 0.)

Puisque f est continue et comme f(x, y)→ +∞ quand r := ||(x, y)|| tend
vers +∞, il est plausible que f possède un minimum. En fait f(0, 0) = 0,
et à l’extérieur d’une boule Br(~0) de rayon r suffisamment grand on a
certainement f ≥ 1 (disons), donc on doit avoir un minimum de valeur
≤ 0 dans un point intérieur de Br(~0). Comme le gradient de f existe
en tout point de R2, les seuls candidats pour le minimum sont les points
critiques. On calcule

gradf(x, y) =

(
∂f

∂x
,
∂f

∂y

)
= (4x3 − 3x2, 4y3 − 6y2).

Les points critiques sont donc les solutions du système

x2(4x− 3) = 0

y2(4y − 6) = 0 .

On trouve les points critiques (0, 0),
(3

4
, 0
)
,
(

0,
3

2

)
et
(3

4
,

3

2

)
. Les valeurs

de f en ces points sont

f(0, 0) = 0, f
(3

4
, 0
)

= − 27

256
, f
(

0,
3

2

)
= −27

16
= −1, 6875

et f
(3

4
,

3

2

)
= −459

256
= −1, 79296 . . .

Résultat : f n’a pas de maximum dans R2 ; l’unique minimum de f est

f
(3

4
,

3

2

)
= −459

256
.

Graphe de f , lignes de niveau et gradient
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2. Montrons que la fonction f(x, y, z) = xy + yz − xz n’a pas d’extremum
local dans D = R3. Comme le gradient de f existe partout dans R3, et
puisque tout point de R3 est un point intérieur de R3, les seuls candi-
dats pour un extremum local sont les points critiques de f . La condition
gradf(x, y, z) = ~0 équivaut au système

y − z = 0

x+ z = 0

y − x = 0,

dont la seule solution est (0, 0, 0). Ce point critique n’est pas un extremum
local : on a f(0, 0, 0) = 0 mais f(t, t, 0) = t2 > 0 et f(t, 0, t) = −t2 < 0
pour tout t 6= 0. Ainsi dans tout voisinage de (0, 0, 0) il y a des points où
f prend une valeur positive, et d’autre points où f est négative. Donc f
n’a pas d’extremum local en (0, 0, 0).

3. Considérons la fonction f : R2 → R donnée par

f(x, y) =
√
x2 + y2.

La valeur f(x, y) est la distance du point (x, y) au point (0, 0). Donc f
possède le minimum f(0, 0) = 0 et pas de maximum dans R2. Le point
(0, 0) n’est pas un point critique, mais un point où le gradient n’existe pas.

4. Trouver les maxima et minima de la fonction

f(x, y) = xy − x− y + 3

dans le triangle D ⊆ R2 de sommets A = (0, 0), B = (2, 0) et C = (0, 4).

Solution. Le gradient de f existe partout dans R2. Les candidats pour le
maximum et le minimum sont donc les points critiques intérieurs à D et
les points du bord de D. On trouve (1, 1) comme seul point critique de f ,
et la valeur correspondante est f(1, 1) = 2. Examinons maintenant f sur
le bord du triangle, c’est-à-dire sur les segments AB, AC et BC.

• Le segment AB est l’ensemble AB = {(x, y) | 0 ≤ x ≤ 2 et y = 0}.
Pour la fonction f on obtient sur AB les valeurs f(x, 0) = −x + 3
avec 0 ≤ x ≤ 2. Cette expression est maximale pour x = 0 avec
f(0, 0) = 3 et minimale pour x = 2 avec f(2, 0) = 1.
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• Le segment AC est l’ensemble AC = {(x, y) | x = 0 et 0 ≤ y ≤ 4}.
Pour la fonction f on obtient sur AC les valeurs f(0, y) = −y+3 avec
0 ≤ y ≤ 4. Cette expression est maximale pour y = 0 avec f(0, 0) = 3
et minimale pour y = 4 avec f(0, 4) = −1.

• Le segment BC se trouve sur la droite y = −2x + 4, en fait BC
est l’ensemble BC = {(x, y) | 0 ≤ x ≤ 2 et y = −2x + 4}. Pour la
fonction f on obtient sur BC les valeurs

f(x, y) = f(x,−2x+ 4) = −2x2 + 5x− 1

avec 0 ≤ x ≤ 2. Par conséquent, le maximum de f restreint au
segment BC est le maximum de la fonction g(x) = −2x2 +5x−1 sur
l’intervalle 0 ≤ x ≤ 2, et de même pour le minimum. Cherchons donc
les extrema de g sur [0, 2]. On a g′(x) = −4x + 5 qui s’annule pour
x = 5/4, et on trouve g(0) = −1, g(2) = 1 et g(5/4) = 17/8 = 2,125.
Le maximum de f sur BC est donc f(5/4, 3/2) = g(5/4) = 17/8 et
le minimum f(0, 4) = g(0) = −1.

Résumons les candidats pour le maximum et le minimum de f sur D :

f(1, 1) = 2, f(0, 0) = 3, f(2, 0) = 1, f(0, 4) = −1, f
(5

4
,

3

2

)
=

17

8
.

Résultat : le maximum de f est f(0, 0) = 3, le minimum f(0, 4) = −1.

Dérivées partielles d’ordres supérieurs

Pour une fonction partiellement différentiable dans D, c’est-à-dire en tout point
de D, les dérivées partielles ∂f/∂xk sont des fonctions sur D. Lorsque ces
fonctions sont partiellement différentiables, on définit les n2 dérivées partielles
d’ordre 2,

∂2f

∂xj ∂xk
:=

∂

∂xj

(
∂f

∂xk

)
= ∂xj

(∂xk
f) = ∂j(∂kf) .

Pour j= k, on utilise la notation

∂2f

∂x2
k

=
∂2f

∂xk ∂xk
= ∂2

xk
f = ∂2

kf.
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En prenant les dérivées partielles de ces dérivées partielles, on obtient les dérivées
partielles d’ordre 3, 4, etc. La fonction est dite m-fois continûment différentiable
si toutes ses dérivées partielles d’ordre ≤ m existent et sont continues.

Remarquons qu’il existe des fonctions f pour lesquelles l’ordre des dérivées
successives n’est pas indifférent : il arrive que ∂xj

(∂xk
f) 6= ∂xk

(∂xj
f). Mais en

pratique, c’est plutôt une exception :

Théorème de Schwarz. Si f : D → R est deux fois continûment différentiable,
c’est-à-dire si les dérivées partielles d’ordre deux existent et sont continues,
alors

∂2f

∂xj ∂xk
=

∂2f

∂xk ∂xj
.

En appliquant ce théorème plusieurs fois, on conclut que, si f est m-fois continû-
ment différentiable, alors pour chaque dérivée partielle d’ordre ≤ m de f l’ordre
des dérivées successives est indifférent.

Exemple

5. Vérifions le théorème de Schwarz pour la fonction f(x, y) = sin(xy2) :

∂2

∂x ∂y
sin(xy2) =

∂

∂x

(
cos(xy2) · 2xy

)
= − sin(xy2) · y2 · 2xy + cos(xy2) · 2y

= −2xy3 sin(xy2) + 2y cos(xy2)

∂2

∂y ∂x
sin(xy2) =

∂

∂y

(
cos(xy2) · y2

)
= − sin(xy2) · 2xy · y2 + cos(xy2) · 2y
= −2xy3 sin(xy2) + 2y cos(xy2)

et on a bien
∂2f

∂x ∂y
=

∂2f

∂y ∂x
.

La formule de Taylor

Rappelons1 la formule de Taylor pour une fonction ϕ : I → R d’une variable
réelle (m+ 1)-fois différentiable (voir p. 35) :

ϕ(t) = ϕ(0) + ϕ′(0) t+
1

2!
ϕ′′(0) t2 + . . .+

1

m!
ϕ(m)(0) tm +Rm+1 (11.2)

avec le reste de Lagrange

Rm+1 =
1

(m+ 1)!
ϕ(m+1)(ϑ) tm+1 (11.3)

pour un ϑ entre 0 et t.

1Si vous trouvez cette section indigeste, continuez avec la version simplifiée (11.6) de la
section suivante.
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Considérons maintenant une fonction f : D → R de n variables qui soit (m+ 1)-

fois continûment différentiable. Fixons un point ~x ∈ D et un vecteur ~h ∈ Rn, et
supposons que le segment entre ~x et ~x + ~h, donné par ~x + t~h (0 ≤ t ≤ 1), soit
contenu dans D. Alors la fonction ϕ : [0, 1]→ R

ϕ(t) := f(~x+ t~h)

est (m+ 1)-fois différentiable, et on peut appliquer la formule (11.2). Calculons
les dérivées de ϕ en utilisant la règle de la châıne plusieurs fois :

ϕ(t) = f(~x+ t~h)

ϕ′(t) =

n∑
i=1

∂if(~x+ t~h)hi

ϕ′′(t) =

n∑
i,j=1

∂i∂jf(~x+ t~h)hihj

ϕ′′′(t) =

n∑
i,j,k=1

∂i∂j∂kf(~x+ t~h)hihjhk

et donc pour t= 0

ϕ(0) = f(~x)

ϕ′(0) =

n∑
i=1

∂if(~x)hi

ϕ′′(0) =

n∑
i,j=1

∂i∂jf(~x)hihj

ϕ′′′(0) =

n∑
i,j,k=1

∂i∂j∂kf(~x)hihjhk .

Afin d’écrire le terme général, il est préférable de désigner les indices d’une
manière systématique, par exemple j1, j2, j3 . . . au lieu de i, j, k, . . .. On arrive
alors à

ϕ(k)(t) =

n∑
j1,...,jk=1

∂j1∂j2 . . . ∂jkf(~x+ t~h)hj1hj2 . . . hjk .

En substituant ces résultats dans (11.2) et en posant t= 1 nous obtenons la
formule de Taylor pour les fonctions de n variables :

f(~x+~h) = f(~x)+

n∑
i=1

∂if(~x)hi+
1

2!

n∑
i,j=1

∂i∂jf(~x)hihj+ . . .+Rm+1(~h) (11.4)

A l’aide de la formule (11.3), on trouve

lim
~h→~0

Rm+1(~h)∣∣∣∣~h∣∣∣∣m = 0. (11.5)

La valeur f(~x+~h) s’écrit donc comme polynôme de degré m dans les n variables
h1, . . . , hn plus un reste Rm+1. Notons que pour m= 1 cette formule se réduit
a l’égalité (10.9).

129



Le second terme du côté droit de (11.4) nous est bien connu :

n∑
i=1

∂if(~x)hi =
〈
gradf(~x),~h

〉
= df~x(~h) ,

la différentielle de f en ~x, appliquée au vecteur ~h (voir (10.3)).
Le troisième terme est un exemple d’une forme quadratique dans le sens de
l’algèbre linéaire, c’est-à-dire une fonction de la forme

q(h1, . . . , hn) =

n∑
i,j=1

aijhihj .

On appelle le système des n2 coefficients aij , i, j = 1, . . . , n la matrice de la
forme quadratique. Dans notre cas c’est la matrice

∂i∂jf(~x) =
∂2f

∂xi ∂xj
(~x)

des dérivées partielles d’ordre 2, appelée matrice hessienne de f en ~x, d’après le
mathématicien Ludwig Otto Hesse (1811–1874). Elle est symétrique (aij = aji)
en raison du théorème de Schwarz.

Formule de Taylor et extrema locaux

Pour simplifier la discussion, considérons maintenant des fonctions de deux va-
riables f(x1, x2) = f(x, y) et la formule de Taylor (11.4) dans le cas particulier
m = 2. Cette formule s’écrit maintenant, avec la notation abrégée ∂xxf = ∂x∂xf
et, en utilisant le théorème de Schwarz, ∂xyf = ∂x∂yf = ∂yxf ,

f(x+h, y+ k) = f(x, y)

+ ∂xf(x, y)h+ ∂yf(x, y)k (11.6)

+
1

2

(
∂xxf(x, y)h2 + 2∂xyf(x, y)hk + ∂yyf(x, y)k2

)
+ R3(h, k) .

avec

lim
(h,k)→(0,0)

R3(h, k)

h2 + k2
= 0. (11.7)

La dernière égalité dit que, pour (h, k)→ (0, 0), le reste R3(h, k) tend vers zéro
plus vite que h2 +k2. Donc aux points (x+h, y+k) d’un voisinage suffisamment
petit de (x, y), la fonction f est bien approchée par un polynôme de degré ≤ 2
dans les variables h, k.

On peut utiliser la formule de Taylor afin de décider si un point critique (x, y)
de f est un extremum local. Dans un tel point, on a

∂xf(x, y) = 0

∂yf(x, y) = 0

et la formule (11.6) se simplifie. Ecrivons pour le moment

a = ∂xxf(x, y), b = ∂xyf(x, y) et c = ∂yyf(x, y),
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afin d’alléger la notation. Alors

f(x+ h, y + k) = f(x, y) (11.8)

+
1

2

(
ah2 + 2bhk + ck2

)
+R3(h, k) .

Si le terme
1

2

(
ah2 + 2bhk + ck2

)
+R3(h, k) (11.9)

est positif pour tout (h, k) suffisamment proche de (0, 0), alors on a

f(x+ h, y + k) ≥ f(x, y)

pour de tels (h, k), et donc f possède un minimum local en (x, y). S’il est négatif,
f possède un maximum local en (x, y). Et si dans tout voisinage de (0, 0) il
existe des points (h, k) où le terme prend une valeur strictement positive, et
d’autre points où il est strictement négatif, alors f n’a pas d’extremum local en
(x, y). Il faut donc comprendre le signe de l’expression (11.9) pour tout (h, k)
�suffisamment proche� de (0, 0).

Comme R3 est �petit� pour (h, k) proche de (0, 0), c’est le terme

q(h, k) := ah2 + 2bhk + ck2

qui devrait déterminer le signe dans (11.9), sauf dans certains cas dégénérés
comme a = b = c = 0. Supposons que a 6= 0. Alors

q(h, k) = a

(
h2 +

2b

a
hk +

c

a
k2

)
= a

((
h+

b

a
k

)2
+

(
c

a
− b2

a2

)
k2

)

= a

(
ξ2 +

ac− b2

a2
k2

)
avec ξ = h+ b

a
k. On voit qu’il y a plusieurs cas :

• si ac− b2 > 0 et a > 0, alors q(h, k) > 0 pour tout (h, k) 6= 0 ;

• si ac− b2 > 0 et a < 0, alors q(h, k) < 0 pour tout (h, k) 6= 0 ;

• si a 6= 0 et ac − b2 < 0, alors q(h, k) prend des valeurs positives et
des valeurs négatives dans tout voisinage de (0, 0).

On peut montrer que, sous la condition ac − b2 6= 0, le reste R3 n’a pas
d’influence sur le signe de l’expression (11.9) pour les (h, k) suffisamment
proches de (0, 0). On obtient ainsi le théoreme suivant :

Théorème. (Condition suffisante pour un extremum local.) Soit (x, y) ∈ R2

un point critique de la fonction f , et soit f deux fois continûment différentiable
dans un voisinage de (x, y). Soit

∆ := ∂xxf ∂yyf − (∂xyf)2. (11.10)

• si au point critique (x, y) on a ∆ > 0 et ∂xxf > 0, alors f possède un
minimum local en (x, y) ;
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• si au point critique (x, y) on a ∆ > 0 et ∂xxf < 0, alors f possède un
maximum local en (x, y) ;

• si au point critique (x, y) on a ∆ < 0, alors f ne possède pas d’extremum
local en (x, y).

Remarques

1. Le terme ∆ = ∂xxf ∂yyf − (∂xyf)2 est le déterminant de la matrice hes-
sienne de f :

Hessf :=

(
∂xxf ∂xyf

∂yxf ∂yyf

)
.

2. Si ∆ = 0, alors le théorème ne permet pas de conclusion sur la nature du
point critique.

3. On peut étendre le théorème aux fonctions d’un nombre arbitraire n de
variables, donnant des conditions suffisantes pour un extremum (ou non-
extremum) en termes de la matrice hessienne de f .

Exemples

6. f(x, y) = xy.

Le seul point critique est (0, 0) avec ∆(0, 0) = −1 < 0. Donc f ne possède
pas d’extremum local dans R2.

7. f(x, y) = sinx · sin y.

Recherche des points critiques :

∂xf = cosx · sin y = 0

∂yf = sinx · cos y = 0 .

Il y a deux cas : si x est tel que sinx= 0, alors cosx 6= 0 et donc sin y= 0.
Mais si x est tel que sinx 6= 0, alors cos y= 0, donc sin y 6= 0 et cosx= 0.
Donc (x, y) est un point critique si et seulement si sinx= sin y= 0 ou
cosx= cos y= 0. Par conséquent, les points critiques sont les points

(mπ, nπ) et
((
m+

1

2

)
π,
(
n+

1

2

)
π
)

avec m,n ∈ Z. On trouve

∂xxf = − sinx · sin y

∆(x, y) = sin2 x · sin2 y − cos2 x · cos2 y .

Considérons les points critiques :

∆(mπ, nπ) = −1 < 0,

donc il n’y a pas d’extremum local en (mπ, nπ) ;

∆
((
m+

1

2

)
π,
(
n+

1

2

)
π
)

= 1 > 0

∂xxf
((
m+

1

2

)
π,
(
n+

1

2

)
π
)

= −(−1)m+n;
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donc en
((
m+ 1

2

)
π,
(
n+ 1

2

)
π
)

il y a un maximum local si m et n ont la

même parité, et un minimum dans le cas contraire.

8. f(x, y) = x4 + y2.

Le seul point critique est l’origine (0, 0), et on trouve que ∆(0, 0) = 0.
Le théorème ne permet pas de conclusion. Mais comme f(0, 0) = 0 et
f(x, y) > 0 pour (x, y) 6= (0, 0), il y a un minimum local (même global) en
(0, 0).

9. f(x, y) = (y − 2x2)(y − x2) = y2 − 3x2y + 2x4.

Recherche des points critiques :

∂xf = 8x3 − 6xy = 0

∂yf = 2y − 3x2 = 0 .

On voit facilement que (0, 0) est le seul point critique, et on trouve que
∆(0, 0) = 0. Le théorème ne donne pas de conclusion.

La fonction est positive à l’intérieur de la parabole {y = x2} et à l’extérieur
de {y = 2x2}, et elle est négative entre les deux paraboles. Dans chaque
voisinage de (0, 0) on trouve donc des points où la valeur de f est négative,
et d’autres où elle est positive ; par conséquent f n’a pas d’extremum local
en (0, 0). Mais si l’on restreint f à une droite passant par (0, 0), on trouve
toujours un minimum local en (0, 0). Il ne suffit donc en général pas de
contrôler f seulement sur les droites passant par un point critique.

Niveau de la mer en z = 0

Multiplicateurs de Lagrange

Revenons aux fonctions de n variables f : D → R, D ⊆ Rn. Souvent on est
amené à chercher un extremum de f parmi les points ~x ∈ D satisfaisant à
une contrainte de la forme g(~x) = 0 pour une autre fonction g : D → R. On
cherche donc le maximum ou le minimum de la restriction f |N0 : N0 → R de f
à l’ensemble de niveau

N0 := {~x ∈ D | g(~x) = 0} .

Supposons que f et g soient continûment différentiables dans D.
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Théorème. Soit ~a ∈ N0 un point intérieur de D tel que f |N0
possède un extre-

mum local en ~a. Si grad g(~a) 6= ~0, alors le gradient grad f(~a) est un multiple de
grad g(~a), c’est-à-dire il existe λ ∈ R tel que

grad f(~a) = λ grad g(~a) . (11.11)

Le nombre λ s’appelle multiplicateur de Lagrange.

Idée de la preuve. Nous avons vu (p. 122) que grad g(~a) est orthogonal
à l’ensemble de niveau N0 au point ~a. Montrons que c’est aussi le cas
pour grad f(~a). Soit ~γ : I → N0 une courbe différentiable arbitraire dans
N0 avec γ(0) = ~a. Alors la fonction (d’une variable réelle) t 7→ f(~γ(t))
possède un extremum local en t = 0, donc sa dérivée s’annule, et avec la
règle de la châıne (10.12) on obtient

0 =
d

dt

∣∣∣∣
t=0

f(~γ(t)) = 〈 gradf(~a), ~̇γ(0) 〉.

Donc gradf(~a) est orthogonal au vecteur ~̇γ(0).

Comme les deux vecteurs grad f(~a) et grad g(~a) sont orthogonaux à
l’ensemble N0, ils doivent avoir la même direction, et ainsi grad f(~a) =
λ grad g(~a) pour un certain λ ∈ R.

Le théorème fournit une méthode pour trouver les extrema d’une fonction f
dans un domaine D sous la contrainte g(~x) = 0. On a en tout n+ 1 equations
pour n + 1 inconnues, les n coordonnées a1, . . . , an du point cherché ~a, et le
multiplicateur de Lagrange λ :

∂f

∂x1
(a1, . . . , an)− λ ∂g

∂x1
(a1, . . . , an) = 0

... (11.12)

∂f

∂xn
(a1, . . . , an)− λ ∂g

∂xn
(a1, . . . , an) = 0

g(a1, . . . , an) = 0

Exemple

10. On cherche le maximum de la fonction

f(x1, . . . , xn) = n
√
x1 . . . xn

pour x1 > 0, . . ., xn > 0 sous la contrainte x1 + . . . + xn = c, avec une
constante c > 0.

Calculons d’abord

∂

∂x1

n
√
x1 . . . xn =

∂

∂x1
(x1 . . . xn)

1
n

=
1

n
(x1 . . . xn)

1
n−1

x2 . . . xn

=
1

n

n
√
x1 . . . xn
x1

.
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Avec g(x1, . . . , xn) = x1 + . . .+ xn − c, le système (11.12) s’écrit

1

n

n
√
a1 . . . an
a1

− λ = 0

...
1

n

n
√
a1 . . . an
an

− λ = 0

a1 + . . .+ an − c = 0 .

On trouve une seule solution a1 = . . . = an = c/n. Elle donne le maximum
de f ,

f(
c

n
, . . . ,

c

n
) =

c

n
.

Par conséquent, on a l’inégalité arithmético-géométrique

n
√
x1 . . . xn ≤

x1 + . . .+ xn
n

pour tout x1, . . . , xn > 0. Elle dit que la moyenne géométrique n
√
x1 . . . xn

de nombres positifs est plus petite ou égale à leur moyenne arithmétique
(x1 + . . .+ xn)/n.
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Chapitre 12

Intégrales multiples

Il serait trop ambitieux de présenter ici une introduction rigoureuse au calcul
intégral de fonctions de plusieurs variables. Mais étudions de quoi l’on parle et
comment on peut calculer certaines intégrales. Nous nous restreignons au cas
d’une fonction de deux variables f : D → R où le domaine D a une forme
�simple�.

Intégration sur un rectangle

Commençons avec le cas où le domaine est un rectangle

R = [a, b]× [c, d] = {(x, y) ∈ R2 | a ≤ x ≤ b, c ≤ y ≤ d}

dans R2. Pour une fonction f : R → R à valeurs positives, l’intégrale, dénotée
par ∫∫

R

f(x, y) dA ou

∫∫
R

f(x, y) dx dy,

doit représenter le volume du corps solide compris entre le domaine R dans le
plan x, y et le graphe de la fonction f . Afin de définir cette intégrale en général,
subdivisons R en sous-rectangles R1, . . . , RN et choisissons un point pi dans
chaque Ri.

Comme dans le chapitre 5, appelons une telle subdivision du domaine R avec
des points pi ∈ Ri une subdivision décorée :

∆ = (R1, . . . , RN ; p1, . . . , pN ) .
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Alors la somme

S(f,∆) :=

N∑
i=1

f(pi) · aire(Ri)

s’appelle somme de Riemann de f associée à la subdivision décorée ∆.

Le pas d’une subdivision (décorée), noté h(∆), est défini comme le plus grand
diamètre de toutes les sous-rectangles Ri.

Définition. La fonction f : R → R est dit intégrable (sur R, au sens de Rie-
mann) si pour toute suite ∆1,∆2,∆3, . . . de subdivisions décorées ∆m avec
h(∆m)→ 0 pour m→∞, la limite des sommes de Riemann associées S(f,∆m)
existe. Si c’est le cas, alors cette limite ne dépend pas de la suite (∆m)m∈N
choisie, et on définit l’intégrale de f comme limite des sommes de Riemann :∫∫

R

f(x, y) dA := lim
m→∞

S(f,∆m).

De manière plutôt symbolique, on écrit cette définition sous la forme∫∫
R

f(x, y) dA = lim
pas(∆)→ 0

∑
i

f(pi) aire(Ri).

On peut montrer que toute fonction continue est intégrable sur R.

Intégrales doubles

On peut calculer l’intégrale d’une fonction intégrable f sur un rectangle R
comme une intégrale itérée :∫∫

R

f(x, y) dA =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy

Donc en premier lieu, on fixe y et on calcule l’intégrale de la fonction

x 7→ f(x, y)
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sur x ∈ [a, b]. Le résultat
∫ b
a
f(x, y) dx dépend de y. Ensuite on prend l’intégrale

de la fonction

y 7→
∫ b

a

f(x, y) dx

sur y ∈ [c, d]. On arrive au même résultat si l’on prend les intégrales dans l’ordre
inverse, c’est-à-dire∫∫

R

f(x, y) dA =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx

ou, plus brièvement,∫∫
R

f(x, y) dA =

∫ d

c

∫ b

a

f(x, y) dx dy =

∫ b

a

∫ d

c

f(x, y) dy dx. (12.1)

On peut comprendre l’égalité (12.1), comme suit. Considérons des subdi-
visions décorées pour les intervalles [a, b] et [c, d] dans le sens du chapitre
5 (p. 45) : nous avons donc

x0, . . . , xm; ξ1, . . . , ξm pour [a, b]
y0, . . . , yn; η1, . . . , ηn pour [c, d]

avec a = x0 < x1 < . . . < xm = b, ξj ∈ [xj−1, xj ] et de manière analogue
pour les yk et ηk. Ces deux subdivisions nous donnent une subdivision du
rectangle R en m · n sous-rectangles (numérotés avec un double-indice)
Rjk (j = 1, . . . ,m, k = 1, . . . , n) définis par

Rjk = [xj−1, xj ]× [yk−1, yk].

Prenons les points pjk := (ξj , ηk) ∈ Rjk comme �décoration� de cette
subdivision de R. Alors la somme de Riemann correspondante s’écrit

S(f,∆) =

n∑
k=1

m∑
j=1

f(ξj , ηk) aire(Rjk)

=

n∑
k=1

m∑
j=1

f(ξj , ηk) (xj−xj−1)(yk−yk−1)

=

n∑
k=1

(
m∑
j=1

f(ξj , ηk) (xj−xj−1)

)
(yk−yk−1).

Fixons pour le moment la subdivision de l’intervalle [c, d], mais laissons le
pas de la subdivision de [a, b] tendre vers 0. Alors

m∑
j=1

f(ξj , ηk) (xj−xj−1) −→
∫ b

a

f(x, ηk) dx

et par conséquent

S(f,∆) −→
n∑
k=1

(∫ b

a

f(x, ηk) dx

)
(yk−yk−1).

Mais cette dernière expression est une somme de Riemann pour la fonction

y 7→
∫ b

a

f(x, y) dx,
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et si maintenant le pas de la subdivision de [c, d] tend vers 0, alors cette
somme de Riemann tend vers l’intégrale∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

Donc ∫∫
R

f(x, y) dA = lim
pas(∆)→0

S(f,∆) =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

Dans ce calcul, on peut changer l’ordre d’intégration puisque on peut
changer l’ordre de sommation :

n∑
k=1

(
m∑
j=1

f(ξj , ηk) (xj−xj−1)

)
(yk−yk−1)

=

m∑
j=1

(
n∑
k=1

f(ξj , ηk) (yk−yk−1)

)
(xj−xj−1)

Domaines plus généraux

Comment définir l’intégrale d’une fonction f : D → R sur un domaine D ⊆ R2

qui n’est pas un rectangle ? Admettons que D soit borné. Alors on considère un
rectangle R = [a, b] × [c, d] qui contient D, et on étend la fonction f �comme

zéro� en une fonction f̂ : R→ R définie sur R, c’est-à-dire

f̂(x, y) :=

{
f(x, y) si (x, y) ∈ D

0 si (x, y) /∈ D.

La fonction f est dite intégrable sur D si la fonction étendue f̂ est intégrable
sur le rectangle R, et dans ce cas on définit∫∫

D

f(x, y) dA =

∫∫
R

f̂(x, y) dA. (12.2)

Remarquons que en général la fonction f̂ n’est pas continue même si f

l’est : il y a un � saut� sur le bord de D. Cependant on peut montrer

que, sous des hypothèses assez faibles sur le domaine D (le bord de D doit

être un ensemble �négligeable�), toute fonction f qui est continue sur

D est intégrable sur D. Pour une fonction f : D → R à valeurs positives,

l’intégrale représente le volume du corps solide compris entre le domaine

D dans le plan x, y et le graphe de la fonction f . Les points (x, y) ∈ R à

l’extérieur de D ne contribuent pas de volume puisque f̂(x, y) = 0.

Afin de calculer l’intégrale (12.2), supposons maintenant que le domaine D soit
de la forme

D = {(x, y) ∈ R2 | c ≤ y ≤ d, ϕ(y) ≤ x ≤ ψ(y)}

avec deux fonctions continues ϕ et ψ. (Dans cette description de D, les rôles de
x et y peuvent être interchangés.)
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Choisissons deux constantes a, b avec a ≤ ϕ(y) et ψ(y) ≤ b pour tout y ∈ [c, d].
Alors D est contenu dans le rectangle R = [a, b]× [c, d].

Avec les formules (12.2) et (12.1) on obtient∫∫
D

f(x, y) dA =

∫∫
R

f̂(x, y) dA

=

∫ d

c

(∫ b

a

f̂(x, y) dx

)
dy.

Or

f̂(x, y) =

{
f(x, y) pour x ∈ [ϕ(y), ψ(y)]
0 pour x /∈ [ϕ(y), ψ(y)] .

Par conséquent,
∫ b
a
f̂(x, y) dx =

∫ ψ(y)

ϕ(y)
f(x, y) dx et donc

∫∫
D

f(x, y) dA =

∫ d

c

(∫ ψ(y)

ϕ(y)

f(x, y) dx

)
dy. (12.3)

Pour une fonction f positive, on peut interpréter le résultat (12.3) comme
suit : on coupe le corps solide entre le domaine D et le graphe de f en
� tranches� y= const. La tranche obtenue en fixant y a l’aire A(y) =∫ ψ(y)

ϕ(y)
f(x, y) dx et on obtient le volume du corps en intégrant cette aire

(�principe de Cavalieri�) :

volume =

∫∫
D

f(x, y) dx dy =

∫ d

c

A(y) dy =

∫ d

c

(∫ ψ(y)

ϕ(y)

f(x, y) dx

)
dy.
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Dans le raisonnement conduisant à (12.3), les rôles de x et y peuvent être inter-
changés. On arrive ainsi à la formule correspondante pour les domaines D de la
forme

D = {(x, y) ∈ R2; a ≤ x ≤ b, ϕ(x) ≤ y ≤ ψ(x)},

∫∫
D

f(x, y) dA =

∫ b

a

(∫ ψ(x)

ϕ(x)

f(x, y) dy

)
dx . (12.4)

Exemples

1. Soit D = {(x, y) ∈ R2 | 0 ≤ y ≤ 1, y2 ≤ x ≤ y} et f(x, y) = x + y. On
applique la formule (12.3) avec ϕ(y) = y2 et ψ(y) = y :

∫∫
D

f(x, y) dx dy =

∫ 1

0

(∫ y

y2
(x+ y) dx

)
dy =

∫ 1

0

([
1

2
x2 + xy

]y
y2

)
dy

=

∫ 1

0

(
3

2
y2 − y3 − 1

2
y4

)
dy =

[
1

2
y3 − 1

4
y4 − 1

10
y5

]1

0

=
3

20
.

2. Soit le disque unité D = {(x, y) ∈ R2 | x2 + y2 ≤ 1} et soit f : D → R
la fonction f(x, y) = x2. Alors D peut être décrit par les inégalités −1 ≤
y ≤ 1 et

−
√

1− y2 ≤ x ≤ +
√

1− y2.
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Par conséquent,

∫∫
D

f(x, y) dx dy =

∫ 1

−1

(∫ +
√

1−y2

−
√

1−y2
x2dx

)
dy =

∫ 1

−1

[1

3
x3

]+
√

1−y2

−
√

1−y2

 dy

=

∫ 1

−1

2

3
(1− y2)3/2dy =

4

3

∫ 1

0

(1− y2)3/2dy.

Cette dernière intégrale est évaluée au moyen de la substitution y = sinϕ
pour 0 ≤ ϕ ≤ π/2. A l’aide de l’identité

cos4ϕ =
1

8

(
cos(4ϕ) + 4 cos(2ϕ) + 3

)
on obtient finalement∫∫

D

f(x, y) dx dy =
4

3

∫ π/2

0

cos4ϕdϕ = . . . =
π

4
.

Le même résultat est obtenu si l’on change l’ordre de l’intégration :∫∫
D

f(x, y) dx dy =

∫ 1

−1

(∫ +
√

1−x2

−
√

1−x2

x2dy

)
dx = 4

∫ 1

0

x2
√

1− x2 dx .

Un calcul utilisant de nouveau la substitution y = sinϕ donne le résultat
π/4.

Changement de variables

Pour certaines intégrales, un changement de coordonnées peut simplifier le cal-
cul. Le théorème suivant donne la �règle de substitution� pour les fonctions de
deux variables.

Théorème. Soit T : D̂ → D une application bijective définie par deux fonctions
continûment différentiables :

T (u, v) =
(
T1(u, v), T2(u, v)

)
=:
(
x(u, v), y(u, v)

)
.

Alors, pour tout f : D → R continue,∫∫
D

f(x, y) dx dy =

∫∫
D̂

f(x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv . (12.5)
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Ici
∂(x, y)

∂(u, v)
est le déterminant jacobien de f , défini par

∂(x, y)

∂(u, v)
:= det

(
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
. (12.6)

La preuve de ce théorème n’est pas simple, mais la présence du facteur
(12.6) s’explique comme suit. Supposons que D̂ soit un rectangle. Choisis-

sons une subdivision decorée (R1, . . . , RN ; p1, . . . , pN ) de D̂ avec un pas
très petit. Soit Qi l’image du rectangle Ri sous l’application T , c’est-à-dire
Qi = T (Ri), et soit qi = T (pi).

On peut montrer que, pour un rectangle Ri suffisament petit, l’image Qi
est presque un parallélogramme avec

aire(Qi) ≈
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ (pi) · aire(Ri) .

Alors ∫∫
D

f(x, y) dx dy ≈
∑
i

f(qi) · aire(Qi)

≈
∑
i

f(T (pi)) ·
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ (pi) · aire(Ri)

≈
∫∫
D̂

f(T (u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ (u, v) du dv .

Exemple : Coordonnées polaires

Considérons un cas particulier. Pour intégrer une fonction sur un disque D =
{(x, y) ∈ R | x2 + y2 ≤ R}, l’utilisation de coordonnées polaires r, ϕ est souvent
pratique :

x = r cosϕ

y = r sinϕ .

Dans ce cas, l’application T : D̂ → D du théorème est donnée par

T (r, ϕ) = (x(r, ϕ), y(r, ϕ)) = (r cosϕ, r sinϕ)
avec

D̂ = {(r, ϕ) ∈ R2 | 0 ≤ r ≤ R, 0 ≤ ϕ ≤ 2π} .
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Pour le déterminant jacobien on obtient

∂(x, y)

∂(r, ϕ)
= det

(
∂x
∂r

∂x
∂ϕ

∂y
∂r

∂y
∂ϕ

)
= det

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
= r

et, par conséquent, la formule (12.5) devient∫∫
D

f(x, y) dx dy =

∫ 2π

0

∫ R

0

f(r cosϕ, r sinϕ) r dr dϕ. (12.7)

Dans la dérivation de (12.7) nous avons d’ailleurs triché en appliquant le

théorème : T n’est pas une application bijective de D̂ sur D. (Par exemple,
on a T (r, 0) = T (r, 2π) pour tout r ∈ [0, R], donc T n’est pas injective.)
Pour rendre l’argument rigoreux, on remarque que l’application T devient
bijective quand on enlève les ensembles N1 ⊆ D̂ et N2 ⊆ D suivants :

N1 := {(r, ϕ) ∈ D̂ | r = 0 ou ϕ = 2π}
N2 := {(x, y) ∈ D | y = 0 et x ≥ 0}

On peut donc appliquer le théorème à T : D̂\N1 → D\N2, où D̂\N1

dénote l’ensemble D̂ privé de N1. Mais les ensembles N1 et N2 sont
�négligeables� pour l’intégration car ils ont une aire égale a zéro. Donc

l’intégrale d’une fonction sur D̂ a la même valeur que l’intégrale sur D̂\N1,

et de même pour D et D\N2. Ainsi l’on arrive à (12.7).

On peut facilement adapter la formule (12.7) pour qu’elle s’applique à d’autres
domaines que des cercles centrés à l’origine. Par exemple, le domaine

D = {(x, y) ∈ R2 | R1 ≤ x2 + y2 ≤ R2, y ≥ 0}

correspond au rectangle R1 ≤ r ≤ R2, 0 ≤ ϕ ≤ π en coordonnées polaires. Donc∫∫
D

f(x, y) dx dy =

∫ π

0

∫ R2

R1

f(r cosϕ, r sinϕ) r dr dϕ.
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Exemples

3. Reprenons l’intégrale
∫∫
D
x2 dx dy, où D est le disque unité. En coor-

données polaires, cette intégrale se calcule comme suit :∫∫
D

x2dx dy =

∫ 2π

0

∫ 1

0

(r cosϕ)2r dr dϕ =

∫ 2π

0

[
1

4
r4

]1

0

cos2ϕ dϕ =
π

4
.

4. Il n’existe pas de primitive de e−x
2

composée de fonctions élémentaires.
Voici cependant un calcul astucieux de l’intégrale

∫∞
0

e−x
2

dx utilisant une
intégrale double. Soit le quadrant D = {(x, y) ∈ R2 | x ≥ 0, y ≥ 0}. Alors(∫ ∞

0

e−x
2

dx

)2

=

(∫ ∞
0

e−x
2

dx

)
·
(∫ ∞

0

e−y
2

dy

)
=

∫ ∞
0

(∫ ∞
0

e−x
2

dx

)
e−y

2

dy

=

∫ ∞
0

(∫ ∞
0

e−x
2

e−y
2

dx

)
dy

=

∫∫
D

e−(x2+y2)dx dy

=

∫ π/2

0

∫ ∞
0

e−r
2

r dr dϕ

=
π

2

[
−1

2
e−r

2

]∞
0

=
π

4
.

L’intégrale cherchée est donc∫ ∞
0

e−x
2

dx =

√
π

2
.
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Chapitre 13

Séries de Fourier

Une fonction f : R → R est dite périodique de période T lorsque f(x + T ) =
f(x) pour tout x ∈ R. Les fonctions périodiques servent à la description des
phénomènes naturels périodiques, tels que les ondes mécaniques (comme le
son) ou électromagnétiques (comme la lumière), les marées, les mouvements
de planètes, le rythme cardiaque et les ondes cérébrales.

Polynômes trigonométriques

Pour étudier des fonctions périodiques on peut se restreindre à la période 2π :
donnée une fonction périodique f de période T , la fonction g(x) := f( T2πx) est
de période 2π. Les fonctions de période 2π les plus simples sont

sin(kx) pour k = 1, 2, 3, . . .

cos(kx) pour k = 0, 1, 2, 3, . . .

et leurs combinaisons linéaires avec des coefficients constants ak, bk ∈ R, ap-
pelées polynômes trigonométriques :

p(x) =
a0

2
+

n∑
k=1

ak cos(kx) +

n∑
k=1

bk sin(kx). (13.1)

(On verra plus tard pourquoi on écrit le terme constant sous la forme a0/2 au
lieu de a0.)

Produit scalaire

Le produit scalaire de deux fonctions 2π–périodiques (continues) est défini par

〈f | g〉 :=
1

π

∫ 2π

0

f(x) g(x) dx . (13.2)

Comme dans la géométrie euclidienne on a une notion de norme et de distance
associée à ce produit scalaire : la norme d’une fonction est définie comme

||f || :=
√
〈f | f〉 =

√
1

π

∫ 2π

0

(f(x))2 dx, (13.3)

et la distance entre deux fonctions f, g est définie par

dist(f, g) := ||f − g||. (13.4)
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On dit qu’une suite (fn)n∈N de fonctions converge en moyenne quadratique vers
une fonction f si la distance entre fn et f tend vers zéro pour n→∞, c’est-à-
dire si

||fn − f || → 0 pour n→∞ .

Il y a plusieurs manières de définir une distance entre des fonctions. La

norme et la distance que nous venons d’introduire (sans ou avec un fac-

teur 1/π ou 1/(2π)) s’appellent la norme et la distance � de moyenne

quadratique� ou �L2 � , d’après Henri Lebesgue (1875–1941) et à cause

de l’exposant 2 sous l’intégrale dans (13.3). Mais il existe aussi des normes

Lp pour p 6= 2, entre autres. Chaque concept de distance donne lieu à sa

propre notion de convergence.

Relations d’orthogonalité. Pour k = 1, 2, 3, . . . soient ck la fonction x 7→
cos(kx) et sk la fonction x 7→ sin(kx). Soit c0 la fonction constante c0 ≡ 1√

2
.

Alors un calcul explicite des intégrales montre que

〈cj | ck〉 = 〈sj | sk〉 = δjk et 〈cj | sk〉 = 0 (13.5)

où δjk est le symbole de Kronecker δjk :=

{
1 si j = k
0 si j 6= k .

Vérifions la première égalité de (13.5) pour j, k ≥ 1 : avec l’identité

cosα cosβ =
1

2
(cos(α− β) + cos(α+ β))

on obtient

〈cj | ck〉 =
1

π

∫ 2π

0

cos(jx) cos(kx) dx

=
1

2π

∫ 2π

0

(
cos((j − k)x) + cos((j + k)x)

)
dx,

et comme ∫ 2π

0

cos(mx) dx =

{
0 si m ∈ Z,m 6= 0

2π si m = 0,

l’identité 〈cj | ck〉 = δjk s’ensuit.

Remarquons que le facteur 1/π est introduit dans la définition du produit

scalaire afin d’obtenir les relations (13.5). En termes d’algèbre linéaire on

peut décrire la situation comme suit : soit V l’espace vectoriel de toutes les

fonctions continues 2π–périodiques. Alors V muni du produit scalaire 〈· | ·〉
est un espace euclidien (ou préhilbertien). Les � relations d’orthogona-

lité� (13.5) signifient que le système de fonctions c0, c1, c2, . . . , s1, s2, . . .

est un système orthonormal dans cet espace.

La série de Fourier d’une fonction

Une série trigonométrique est une série de la forme

S(x) =
a0

2
+

∞∑
k=1

ak cos(kx) +

∞∑
k=1

bk sin(kx). (13.6)
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Les sommes partielles d’une telle série sont donc des polynômes trigonométriques
(13.1)

Sn(x) :=
a0

2
+

n∑
k=1

ak cos(kx) +

n∑
k=1

bk sin(kx), (13.7)

et la série converge vers une fonction f en un point x ∈ R si Sn(x)→ f(x) pour
n→∞. Outre ce concept de convergence ponctuelle, aussi appelée convergence
simple, on a également la notion de convergence en moyenne quadratique vers
f :

||Sn − f || → 0 pour n→∞ .

Il se trouve que toute fonction 2π-périodique raisonnable est la limite d’une
certaine série trigonométrique, la série de Fourier de f .

Afin de motiver la définition de cette série, supposons que f soit la limite

f(x) =
a0

2
+

∞∑
k=1

ak cos(kx) +

∞∑
k=1

bk sin(kx),

c’est-à-dire que

f =
a0

2
+

∞∑
k=1

akck +

∞∑
k=1

bksk,

et déterminons les coefficients ak et bk par un calcul formel : si l’on prend
le produit scalaire avec la fonction cj on obtient pour j = 1, 2, . . . à l’aide
des relations (13.5)

〈f | cj〉 =

〈
a0

2
+

∞∑
k=1

akck +

∞∑
k=1

bksk

∣∣∣∣ cj
〉

(∗)
= 〈a0

2
| cj〉+

∞∑
k=1

ak〈ck| cj〉+

∞∑
k=1

bk〈sk| cj〉

= 0 + aj + 0 = aj .

Donc les coefficients ak satisfont

ak = 〈f | ck〉 =
1

π

∫ 2π

0

f(t) cos(kt) dt (∗∗)

pour k = 1, 2, . . .. Des calculs similaires donnent 〈f | sj〉 = bj et

a0 =
1

π

∫ 2π

0

f(t) dt =
1

π

∫ 2π

0

f(t) cos(0t) dt,

si bien que la formule (∗∗) est juste aussi pour k = 0. (C’est la raison

pour laquelle on écrit le terme constant sous la forme a0/2 au lieu de a0.)

Remarquons qu’il faudrait justifier l’égalité marquée par (∗), car il s’agit

des � sommes infinies�. Mais si l’on admet le résultat, on voit que les

coefficients ak et bk sont uniquement déterminés par f . Ils s’appelent les

coefficients de Fourier de f .

Définition. Soit f : R → R une fonction 2π-périodique dont la restriction à
l’intervalle [0, 2π] soit intégrable. Alors les coefficients de Fourier de f sont les
nombres
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ak =
1

π

∫ 2π

0

f(t) cos(kt) dt pour k = 0, 1, 2, . . .

bk =
1

π

∫ 2π

0

f(t) sin(kt) dt pour k = 1, 2, . . . .

(13.8)

La série de Fourier de f est la série trigonométrique

a0

2
+

∞∑
k=1

ak cos(kx) +

∞∑
k=1

bk sin(kx)

dont les coefficients sont les coefficients de Fourier de f .

Le théorème suivant dit que la série de Fourier converge vers f dans le sens de
la moyenne quadratique.

Théorème. Soit f : R → R une fonction 2π-périodique dont la restriction à
l’intervalle [0, 2π] est intégrable. Alors sa série de Fourier converge en moyenne
quadratique vers f , c’est-à-dire que ses sommes partielles Sn satisfont à ||Sn −
f || → 0 pour n→∞.

Explicitement, on a donc∫ 2π

0

(
f(x)−

(a0

2
+

n∑
k=1

ak cos(kx) +

n∑
k=0

bk sin(kx)
))2

dx −→ 0

pour n → ∞. Le théorème implique en particulier que f peut être approchée
aussi précisément que l’on veut dans le sens de la distance L2 par des polynômes
trigonométriques.

La question de la convergence ponctuelle de la série de Fourier – i.e. pour tout
point x ∈ R – est beaucoup plus délicate. Pour cela il faut ajouter des hypothèses
sur f :

Théorème. Soit f : R → R une fonction 2π-périodique dont la restriction à
l’intervalle [0, 2π] est continûment différentiable par morceaux, c’est-à-dire telle
qu’il existe des points 0 = x0 < x1 < . . . < xN = 2π tels que f est continûment
différentiable sur chacun des intervalles [xj , xj+1] et que les limites à gauche et
à droite de f(x) et de f ′(x) existent aux points x0, . . . , xN . Alors

• la série de Fourier converge vers f(x) pour tout point x différent de
x0, . . . , xN ;

• aux points x0, . . . , xN , la série converge vers la moyenne

1

2

(
lim
x↗xk

f(x) + lim
x↘xk

f(x)
)

des limites de f à gauche et à droite.

Notons que, si f est continue au point xk, alors

lim
x↗xk

f(x) = lim
x↘xk

f(x) = f(xk),

et par conséquent la série converge vers f(xk). En particulier, si f est continue
et continûment différentiable par morceaux, alors la série converge vers f(x)
pour tout x ∈ R.
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Exemple

Pour le calcul pratique des coefficients de Fourier, remarquons que, pour une
fonction 2π-périodique, l’intervalle d’intégration [0, 2π] peut être remplacé par
[a, a+ 2π] avec n’importe quel a ∈ R. En effet,∫ 2π

0

f =

∫ a

0

f +

∫ 2π

a

f

=

∫ a

0

f +

∫ 2π

a

f +

∫ a+2π

2π

f −
∫ a+2π

2π

f

=

∫ a+2π

a

f

puisque
∫ a

0
f =

∫ a+2π

2π
f si la fonction f est 2π-périodique.

Soit maintenant f : R → R la fonction 2π-périodique qui satisfait à f(x) = x
pour x ∈ [−π, π[. Les valeurs f(x) pour x /∈ [−π, π[ sont alors déterminées par
la condition de 2π-périodicité f(x+ 2π) = f(x).

Pour les coefficients de Fourier ak on trouve

ak =
1

π

∫ 2π

0

f(t) cos(kt) dt =
1

π

∫ π

−π
f(t) cos(kt) dt = 0,

puisque f(t) cos(kt) est une fonction impaire ; et par intégration par parties on
obtient

bk =
1

π

∫ 2π

0

f(t) sin(kt) dt = (−1)k+1 2

k
.

La série de Fourier de f est donc
∑∞
k=1(−1)k+1 2

k sin(kx). D’après le théorème
elle converge vers f(x) pour tout x en lequel f est continue. Par conséquent,

f(x) =

∞∑
k=1

(−1)k+1 2

k
sin(kx)

=
2

1
sin(x)− 2

2
sin(2x) +

2

3
sin(3x)− 2

4
sin(4x)± . . .

pour tout x /∈ {±π,±3π,±5π, . . .}. Si on divise cette identité par 2 et pose
x = π/2, on obtient une formule de Leibniz (1682) (qui apparâıt cependant déjà
vers 1400 chez le mathématicien indien Madhava) :

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
∓ . . .
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Voici les graphes des sommes partielles Sn(x) =

n∑
k=1

(−1)k+1 2

k
sin(kx) pour

n = 1, 2, 3, 4, 7 and n = 20 :
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Notation complexe

En admettant des coefficients complexes, on peut écrire les séries trigonométriques

S(x) =
a0

2
+

∞∑
k=1

ak cos(kx) +

∞∑
k=1

bk sin(kx)

et leurs sommes partielles

Sn(x) =
a0

2
+

n∑
k=1

ak cos(kx) +

n∑
k=1

bk sin(kx)

sous une forme plus simple : à l’aide de

cos(kx) =
1

2

(
eikx + e−ikx

)
sin(kx) =

1

2i

(
eikx − e−ikx

)
on obtient

ak cos(kx) + bk sin(kx) =
1

2
(ak − ibk) eikx +

1

2
(ak + ibk) e−ikx

= cke
ikx + c−ke

−ikx

avec

ck :=
1

2
(ak − ibk) c−k :=

1

2
(ak + ibk)

pour k = 1, 2, . . .. Si on définit encore c0 :=
a0

2
, alors

S(x) =

∞∑
k=−∞

cke
ikx

Sn(x) =

n∑
k=−n

cke
ikx .

C’est la notation complexe pour les séries trigonométriques. Inversément, on
peut revenir à la forme réelle en remplaçant eikx par cos(kx) + i sin(kx).
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