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Avant-Propos

Ces notes accompagnent le cours d’algebre linéaire propédeutique donné au semestre
d’automne des années 2017-2018 a 1’Université de Fribourg.

Le but du cours est double. Il vise principalement de familiariser les étudiants avec
I’algébre linaire, en accentuant les aspects pratiques comme le calcul matriciel, la résolution
des systémes linéaires et les notions de valeur et de vecteur propres. Un deuxiéme but est de
faire découvrir aux étudiants le fonctionnement des mathématiques, & savoir la construction
d’une théorie a partir d’axiomes. Ce processus vise a créer un cadre abstrait qui permet
de décrire des problémes issus de la réalité. Trouver un cadre abstrait, général, plutdét que
d’en créer un pour chaque probléme rencontré, cela nous permet d’apercevoir des connexions
entre différents problémes et d’en offrir des solutions plus robustes.

Enfin, dans le développement de toute science, arrive un moment ou, pour dépasser les
approches ad-hoc, il est nécessaire de construire un cadre théorique qui permet une étude
systématique. Les sciences plus “mathématiques” comme la physique ou l'informatique tra-
vaillent déja dans un tel cadre. Dans les sciences traditionnellement plus empiriques (biologie,
médecine, économie etc.) ce cadre est en train de se former par les travaux de modélisation
de plus en plus fréquentes. Ainsi, il est essentiel pour les scientifiques en formation de se
confronter & une construction abstraite, comme celle présentée dans ce cours.

Ce polycopié n’est pas censé remplacer le cours donnée en classe; il se veut plutot un
complément, qui permet aux étudiants de revoir certains points. Dans la version présente, il
contient également beaucoup de compléments qui sont facultatifs et s’adressent aux étudiants
qui veulent approfondir certains points. La plupart des résultats sont prouvés, ce qui n’est
pas usuel dans un cours propédeutique. De plus, le premier chapitre (pas traité en classe)
consiste d'un résumé des bases des mathématiques ainsi que d’une liste des notations et
méthodes utilisés dans le cours.

Les exercices sont destinés & offrir une compréhension plus profonde du cours; ils sont
facultatifs et de difficulté hautement variable. Ils sont différents des exercices des séries qui
consistent surtout en exemples concrets.

Une version abrégée, plus proche de ce qui est fait en classe, est aussi disponible.
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Chapter O

Eléments de base des mathématiques

0.1 Les ensembles

La notion peut-étre la plus basique des mathématiques est celle d’ensemble. Un ensemble
est une collection d’objets sans répétition et sans ordre.
On dit que les éléments d’un ensemble appartiennent & I’ensemble et on écrit ¢a en utilisant
le symbole €:
élément € ENSEMBLE.

On dit qu’un ensembles A est contenu dans un ensemble B (ou que A est un sous-ensemble
de B), et on Iécrit A C B, si

pour tout x € A, x € B.

Ainsi, quand il faut montrer qu’un ensemble A est contenu dans un ensemble B, il est souvent
utile de montrer qu’un élément générique de A appartient a B.

Deux ensembles A et B sont dit égaux si et seulement si A C B et B C A. Ainsi, quand
il faut montrer une égalité d’ensembles, il est souvent utile de montrer la double inclusion.

L’existence de certains ensembles est garantie par les axiomes les plus basiques des mathé-
matiques. En particulier, un axiome déclare I'existence d’un ensemble (unique) ne contenant
aucun élément. Cet ensemble est noté () et est appelé 'ensemble vide. De plus, on peut
définir des ensembles d’objets qu’on peut écrire explicitement, comme

{a,b,c}; {1,2}; {4,a,G,Q}.

Les opérations les plus courantes sur les ensembles sont 1'union (notée U) et 'intersection
(notée N). Pour deux ensembles A et B on définie I'union et I'intersection de A et B par

xr € AU B si et seulement six € Aouz € B,
r € AN B sietseulement siz € Aetx € B.

L’union et I'intersection peuvent étre appliquées & un nombre quelconque d’ensembles, fini ou
infini. L’existence de ces opérations est aussi le sujet d’axiomes de la théorie des ensembles.

()Menge
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Si P est une certaine propriété et A un ensemble, on peut définir I’ensemble des éléments
de A qui satisfont la propriété P. Il s’écrit

{zreA: P(x)}.

En fin, pour deux ensembles A et B, on définit le produit cartésien de A et B comme
I'ensemble des couples (a,b) avec a € A et b € B. 1l est noté A x B. Comme pour les
nombres, pour n € N, on écrit A” pour le produit cartésien de A avec lui méme n fois:

A"=Ax-.-x A.
N————

n fois

Ainsi A" est 'ensemble des n-uplets d’éléments de A:
A" ={(a1,...,ay) : ag,...,a, € A}.

Les ensembles les plus courants sont ceux des nombres naturels, entiers, rationnels, réels
et complexes. Ils sont notés N, 7Z, Q, R et C, respectivement. Ils sont inclus les un dans les
autres comme suit:

NcZcQcRcC.

On va supposer connues les propriétés basiques de ces ensembles (& l'exception de C) ainsi
que les opérations usuelles d’addition et multiplication.

Comme déja mentionné, les éléments d'un ensemble n’ont pas d’ordre, ni de multiplicité.
Un concept plus évolué, qui admet plusieurs fois le méme élément et dans lequel les éléments
sont ordonnés, est celui de famille®™. Une famille finie, contenant n éléments z1, ..., z,, est
aussi appelée n-uplet@ et est notée (x1,...,1,).

Meéme si ce nouveau concept nous semble peut-étre plus naturel que celui d’ensemble,
c’est les ensembles, par leur nature trés basiques, qui sont plus adaptés aux constructions
mathématiques.

0.2 Les fonctions

Une autre notion centrale dans les mathématiques est celle de fonction.

Définition 0.1. Une fonction®™ est un triplet formé de deux ensembles A et B et d "une
lot f qui associe a chaque élément de A un élément de B. L’ensemble A est appelé le
domaine de définition™de la fonction; B est le domaine d’arrivé™). Pour un élément
x € A, lélément de B associé par f a x est noté f(x).

Une telle fonction est souvent écrite f : A — B. Cela se lit "une fonction f de A dans

(i) Familie
(i) p-Tuple
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B". Une notation qui inclut la loi qui associe les éléments de B a ceur de A est

f:A—B
z— f(z)

Quand on parle d’une fonction f : A — B, on appelle souvent la fonction tout simplement
f. Cela peut suggérer qu'un fonction est uniquement une loi qui associe & un élément un
autre. Il est important de se rappeler que la notion de fonction contient tout autant les
domaines de définition et d’arrivé, que la loi d’association.

Définition 0.2. Soient A et B deux ensembles et f : A — B.

o On dit que f est une fonction injective si pour tout y € B il existe au plus un x € A
tel que f(x) =vy.

e On dit que f est une fonction surjective si pour tout y € B il existe au moins un
x € A tel que f(x) =vy.

e On dit que f est une fonction bijective si pour tout y € B il existe exactement un
x € A tel que f(z) =y.

Soient A, B deux ensembles et f: A — B. Alors la fonction f est injective si et seulement si

si x,y € A sont tels que f(x) = f(y), alors z = y.

Attention! Les notions d’injectivité, surjectivité et bijectivité sont trés sensibles aux do-
maines d’arrivé et de définition.

Exemple: Prenons les fonctions:

f R —[0,+00) g:[0,+00) - R h :[0, +00) — [0, +00)

J]l—)flfz JI'-)Z‘Q (IH-)IQ

On s’apergoit que f est surjective mais pas injective, que g est injective mais pas
surjective et que h est bijective.

En effet, pour chaque y € [0, 4+00), il existe au moins un x € R (a savoir /)
tel que f(z) = y. Ainsi f est surjective. Par contre, f(1) = f(—1) = 1, donc f
n’est pas injective.

(i) Funktion oder Abbildung
(") Definitionsmenge
(Vi) Zielmenge
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Composition; inverse Soient A, B et C trois ensembles, f: A — Bet g: B — C. Alors
on définit la composition de g et f comme la fonction go f: A — C ou

(go f)(x) =g(f(z)), pour tout z € A.

Attention! Pour composer deux fonctions, il faut que le domaine de définition de la premiére
soit le domaine d’arrivée de la deuxiéme. Si ce n’est pas le cas, la composition
n’est pas définie.

Quand f : A — B est une fonction bijective (et seulement dans ce cas), on peut définir
Uinverse de f comme la fonction f~': B — A ou, pour y € B, f~!(y) est I'unique élément
xr € Atel que f(z) =y.

De plus, quand f : A — B est bijective, f~! est la seule fonction de B dans A telle que

(flof)a)=a,Vz €A et (fof ")y =y, VyeB.

Exercice 0.1.
Soient E, F, G trois ensembles et f: F' — G et g : F — F' deux fonctions.

(a) Montrer que si f o g est injective, alors g est injective. Donner un exemple ou f o g est
injective mais f ne l'est pas.
(b) Donner un exemple ou g est injective, mais f o g ne 'est pas.

(c) Montrer que si f o g est surjective, alors f est surjective. Donner un exemple ou f o g
est surjective mais g ne l'est pas.

(d) Donner un exemple ou f est surjective, mais f o g ne l'est pas.

0.3 Les énoncés mathématiques

Les mathématiques sont un ensemble d’énoncés (qu’on appelle souvent théorémes, proposi-
tions, corollaires etc.) qui découlent de ce qu’on appelle les aziomes par des raisonnements
mathématiques qu’on appelle des preuves. On dit souvent que ces énoncés sont vrais; il serait
plus précis de dire qu’ils sont prouvable a partir des axiomes. Toutefois, on va s’autoriser cet
abus de langage.

Un axiome est un énoncé qu’on considére vrai, sans avoir besoin de preuve. Les mathé-
matiques sont fondées sur une liste fixe d’axiomes qui sont communément acceptées. On peut
dire que tous les mathématiciens se sont mis d’accord a considérer certaines choses vraies, et
qu’ils travaillent pour en déduire des conséquences.

Cela peut paraitre étrange de fonder une science entiére sur certains principes qui sont,
a priori, arbitraires. Pourtant, ceci est plus ou moins le cas de toute science théorique. De
plus, les axiomes mathématiques sont trés naturelles, elle seraient considérées des évidences
par une personne non-avisée.

En plus des énoncés de type théoréme, proposition etc., on rencontre aussi en mathéma-
tique des définitions. Une définition ne fait que attribuer un nom & un certain type d’objet
mathématique; ainsi une définition n’est pas a prouver, il s’agit tout simplement d’une con-
vention.
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Tout comme un phrase en francais, un énoncé mathématique, avant qu’il soit "vrai" ou
"faux", doit avoir un sens. Cela est garanti par certaines régles de syntaxe, tout comme les
régles de syntaxe du langage courent. Il est donc important, avant de se soucier de la validité
d’un énoncé, de s’assurer qu’il suit les régles de la syntaxe mathématique. Pourtant, les régles
formelles de la syntaxe mathématique sont compliques et donnent lieu a des énoncés difficile
a lire. Ainsi, on va suivre une régle approximative qui est la suivante.

Tout énoncé mathématique, lu a voit haute,
doit former une phrase qui a un sens en langage courent!

On mentionnent que toutes les symboles mathématiques ont une interprétation précise en
frangais. On donne ici quelques symboles communs et leur interprétation (pour d’autres
voir [3]):

V  pour tout, 4 il existe,
= implique que, < est équivalent &,
xr €A 1z appartient a A, A C B A est contenu dans B.

En allemand:

Va fiir alle Elemente zx,

dz es existiert mindestens ein Element x,

A= B aus Aussage A folgt Aussage B,

A& B Aussage A folgt aus Aussage B und umgekehrt,
reA das Element z ist in der Menge A enthalten,
ACB Aist echte Teilmenge von B.

0.4 Quelques éléments de logique

A chaque énoncé mathématique (et plus généralement a chaque énoncé dans un systéme de
logique) on associe une valeur de vérité VRAI (V) ou FAUX (F).

Les énonces peuvent étre combinés par des connecteurs logiques. Les connecteurs utilises
le plus souvent sont le et logique (symbolisé souvent par A), le ou logique (symbolisé souvent
par V), 'implication (écrite =) et I’équivalence (écrite <). Ainsi, si A et B sont deux
énoncés, on peut en créer d’autres: AANB, AVB, A= Bet A< B. La validité de
ces énonces est décidée directement de la validité de A et celle de B, sans avoir besoin de
connaitre la structure de A ou de B. La validité des quarte énoncés mentionnés ici est donnée
par le tableau suivant, qu’on appelle un tableau de vérité.

ANB AvVB A= B A& B

< <o
< =< =W
< <<
< mm<

< T =
<< <™
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Pour un (ou plusieurs) énoncé E composé d’énoncés A, B, C, ... par des connecteurs logiques,
le tableau de vérité est un tableau qui liste toutes les valeurs de vérité possibles pour
A,B,C,... (c-a-d. toutes les combinaisons de VRAI ou FAUX pour chaque) et donne
les valeurs de vérité correspondantes de E.

En plus de A,V,=,<, un connecteur logique commun est la négation, notée —. Elle
implique un seul énoncé: pour un énoncé A, I'énoncé —A a toujours la valeur de vérité
opposée a celle de A. Ainsi le tableau de vérité de la négation est le suivant:

Al -A
F|V
V| F

Les énoncés ainsi créés, peuvent étre encore combiner a l'aide des connecteurs logiques.
Pour illustrer 'ordre des connecteurs logiques, on utilise les parenthéses. En effet, les deux
énoncés suivants sont différents

(ANB)=B e ANA(B= B).

Pour observer cela, on écrit tableaux de vérité des deux énoncés (les troisiéme et cinquiéme
colonnes sont seulement la pour nous aider a calculer le résultat):

A B|AANB (AANB)=B|B=B AA(B= B)
F F| F v v F
F V| F \% \% F
V F| F \% \% \%
V V| V \% v \%

Une tautologie est une expression composée de un ou plusieurs énonces a 1’aide des con-
necteurs logiques, qui est vraie pour toute valeurs de vérité des énoncés impliqués.

Exercice 0.2.
Ecrire les tableaux de vérité des énoncés suivants pour montrer qu’ils sont des tautologies.
(a) A& A,
< [(=B) = (=4)],
(A< B)= (A= B),
(AN B)] < [(-4) vV (-B)],
(A= B)AN(B=C)]= (A= 0C),
(-mA) = (A= B).

0.5 La notion de preuve

Informellement, une preuve est un argument qui, a partir de faits établis, montre incon-
testablement un nouveau fait. C’est bien ce que une preuve mathématique est censée étre.
Au cours de I'évolution de la science, les mathématiciens ont donné a la notion de preuve
un sens trés précis. Ainsi, une preuve mathématique formelle est une liste d’énoncés (qu’on
considére prouvés) qui suit des régles spécifiques. Pour information, les régles sont (approx-
imativement) les suivantes,
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e A tout moment on peut écrire dans la liste un axiome,

e A tout moment on peut écrire dans la liste une tautologie,

e si la liste contient déja un énoncé A et un énoncé de la forme A = B, alors on peut
inclure dans la liste I’énoncé B.

Une preuve écrite suivant ces régles serait trés longue et difficile & déchiffrer. La facon com-
mune d’écrire des preuves mathématiques est donc d’écrire un argument dont tout mathé-
maticien peut facilement se convaincre qu’il peut étre traduit dans une preuve au sens formel.
Pour savoir plus sur ce sujet voir [2, pg. 17].

Ce qu’il faut retenir de cette partie est qu’une preuve mathématique est une démarche
réglementé. En particulier, il ne s’agit pas d’essayer de convaincre un interlocuteur par des
exemples variés, ou en réfutant différents contre-exemples proposés.

0.5.1 Conseils pour écrire une preuve
Quelques principes de base qui aide a la lisibilité d’une preuve:

e Surtout s’il s’agit d’une preuve plus complexe, il est utile d’annoncer ce qu’on commence
a prouver. Cela devient absolument nécessaire quand la conclusion n’est pas donnée
dés le départ, par exemple dans un exercice du type: "Prouver que tout z € A a la
propriété P, ou trouver un contre-exemple." Dans cette situation il est essentiel de
commencer la preuve en mentionnant si on montre Vx € A, P(z) ou si on exhibe un
contre exemple.

e A la fin d’une preuve ou d’une étape de preuve, il est conseillé de mentionner que la
preuve, ou I’étape, est achevée. On peut par exemple dire "Ainsi, P(z) est prouvé." ou
"Ce qui fini la preuve de ...".

e Ne jamais utiliser des variables qui n’ont pas étaient définies! Une erreur fréquente est
de parler d’une variable, disons x, sans I’avoir introduite. Cet type d’erreur peut venir
du fait que la variable en question est déja apparu, mais seulement localement.

Par exemple x peut apparaitre dans la définition d’un sous-ensemble B d’un certain
ensemble A, comme ceci: B = {z € A: P(x)}. Dans ce cas, il est important de retenir
que z est défini uniquement a l'intérieur des accolades, et qu’on ne peut pas parler de
x en dehors de le définition de B sans dire qui est x. Ainsi, si on veut utiliser x comme
élément générique de B, il faut écrire "soit x € B...".

Il est prudent de vérifier que toutes les objets dont on parle on était introduit plus tot
dans la preuve, ou qu’ils étaient fixés dans l'exercice / le théoréme / la proposition
qu’on est en train de prouver.

e On doit souvent démontrer des énoncés du type:

(a) pour tout z € A, on a P(x),
(b) il existe x € A, tel que P(z),

ou P est une certaine propriété.

Il est fortement conseillé de commencer la preuve de I’énoncé (a) par la phrase "Soit
x € A". Cela signifie qu’on choisit un élément générique de A qu’on note x, avec lequel
on peut travailler dans la suite de la preuve. On ne peut rien supposer sur cet élément,
a part les propriétés garanties par le fait qu’il appartient a A.

~10 -
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Pour I’énoncé (b) il suffit de trouver un exemple. Trés souvent on peut exhiber un
exemple d’élément = de A qui a la propriété désirée. On peut alors commencer par
"Posons x = ... ", ensuite démontrer que z € A et que x a bien la propriété P. Il n’est
pas formellement nécessaire d’expliquer comment on a trouvé cet élément!

Les preuves les plus simples sont directes: a partir des hypothéses données on se dirige
directement vers la conclusion. Néanmoins, dans des cas plus compliqués, certaines méthodes
de preuves peuvent aider. On va en donner quelques-unes.

La preuve par contraposée Supposons qu’on veut prouver un énoncé du type A = B.
La logique formelle (voir partie 0.4) nous dit que (=B = —A) = (A = B) est une tautologie.
Ainsi, pour prouver A = B, il suffit de prouver =B = —A. L’énoncé -B = —A s’appelle la
contraposée de A = B.

Si on décide de prouver A = B en prouvant =B = —A, il faut annoncer ce fait au début
de la preuve par une phrase comme par exemple "On va prouver A = B par contraposée”.

Exemple: Soit € N. Montrons que si 22 + 3z + 2 est impaire, alors z est impair.

Preuve: On va procéder par contraposée. Supposons que z est pair et écrivons x = 2k
avec k € N. Alors 22 + 3z + 2 = 4k? + 6k + 2 = 2(2k* + 3k + 1) est pair. [

La preuve par ’absurde Une méthode similaire a la preuve par contraposée est la preuve
par I’absurde. Supposons a nouveau qu’on veut montrer A = B. La logique (voir partie 0.4)
nous dit que A = B est faux seulement si A est vrai et B est faux. Ainsi, ce qu'on peut
faire, c’est de supposer que A et —B sont vrais, et arriver & une contradiction.

Tout comme pour la preuve par contraposée, il faut annoncer en début de preuve qu’on
va procéder ainsi.

Exemple: Montrons qu’il y a une infinité de nombres premiers.

Preuve: On va procéder par ’absurde. Supposons qu’il existe seulement un nombre fini

de nombres premiers et notons les p1,...,p,. Posons g = p1pa...pn+1. Alors
q n’est divisible par aucun des nombres p1, ..., p,, donc par aucun nombre
premier. Il est donc premier et différent de p1, ..., pn, ce qui contredit le fait
que p1, ..., P, sont tous les nombres premiers. ]

Vu que pour ces deux méthodes de preuve on utilise souvent la négation, il peut étre
utile de retenir la négation de certains types d’énoncés. Soient P et () deux énonces et A un
ensemble. Alors

o ~(Vz € A, P(z)) =3z € A, ~P(),
o ~(3x € A, P(z)) =Va € A, ~P(x),
° —\(A:>B):_|BetA.

— 11 —



CHAPTER 0. ELEMENTS DE BASE DES MATHEMATIQUES

La preuve par récurrence Supposons qu’on veut montrer un énoncé de la forme Vn €
N, P(n), ou P est une certaine propriété. On peut alors procéder par récurrence. La preuve
par récurrence a trois étapes:

(i) On démontre la propriété P(0). Ceci est le pas initial de la récurrence.
(ii) On montre que, pour tout n € N, P(n) = P(n+ 1).
(iii) On conclut en disant: "Par récurrence, P(n) est vrai pour tout n € N.

Le pas initial (i) est souvent une simple vérification. Néanmoins, il est essentiel au raison-
nement par récurrence et ne doit pas étre omit. Pour le pas (ii), on commence souvent par
"Soit n € N. Supposons P(n)...".

Différentes variantes de récurrence existent. Par exemple, dans le pas (ii), on peut sup-
poser que P(k) est vrai pour tout k£ < n pour démontrer P(n + 1).

Comme pour les méthodes précédentes, une preuve par récurrence doit étre annoncée. Il
est utile & ce moment la de dire quelle est la propriété P qu’on désire montrer pour tout
nombre naturel.

NB: Le fait que la preuve par récurrence démontre en effet I’énoncé désiré est le résultat
d’un axiome spécifique.

Exemple: Montrons que pour tout n € N, 2" > n + 1.

Preuve: On va montrer par récurrence P(n) pour tout n € N, ou P(n) est la propriété
2" > n.
Pour n = 0, P(0) s’écrit 2° = 1 > 1. Ainsi P(0) est vrai.
Soit n € N. Supposons que 2" > n + 1. Alors 2" "' =2.2" >2(n +1) >
n+2=(n+1)+1. Ainsi P(n+ 1) est vrai.
Par récurrence, on déduit que P(n) est vrai pour tout n € N. O
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Chapter 1

Espaces vectoriels

Alors que la notion de nombre nous semble trés naturelle, celle de vecteur peut nous paraitre
artificielle. Pourtant, la nécessité d’additionner des objets plus complexes que des simples
nombres apparait naturellement quand on essaye de modéliser mémes des phénomeénes sim-
ples. Les vecteurs (et la notion d’espace vectoriel) offre le cadre pour ce type d’opérations.

En physique, on travail avec des forces (ou encore avec des vitesses, accélérations, etc.)
qu’on peut additionner pour obtenir une force totale. Une telle force n’est pas un simple
nombre, elles est formé d’un nombre (le module) accompagné d’une direction spatiale; celle-
ci ayant une importance cruciale pour comprendre l'effet de la force. En effet, la somme
de deux forces de module 1 dépend fortement de leur directions. Suivant ’angle entre les
directions, la force totale peut avoir un module compris entre 0 et 2.

Un autre point de vu est le suivant: imaginons une situations ou plusieurs ressources
non-interchangeables sont disponibles. Dans cette situation, un avoir n’est pas un simple
nombre, mais une collection de nombres (un pour chaque ressource). Les avoirs de plusieurs
individus, comme les forces en physique, peuvent étre additionnés pour obtenir un avoir total,
lui aussi représenté par une collection de nombres.

Dans les deux exemples, on rencontre des quantités représentées par plus qu'un simple
nombre, mais qu’on peut additionner avec des régles similaires a celles qu’on utilise pour
additionner des nombres. De plus, dans les deux cas, on peut aussi multiplier les quantités
en questions par des nombres. Ces deux opérations (et les régles qui les accompagnes) sont
les spécificités des espaces vectoriels.

En plus de leur intérét comme outil de modélisation, les espaces vectoriels (avec la théorie
afférente de 'algébre linéaire) offre un cadre pour donner de solutions simples et élégantes a
différents problémes pratiques (voir les exemples a venir).

1.1 Définitions et exemples

On va étudier ici seulement les espaces vectoriels sur le corps des nombres réels R. On va
souvent appeler les nombres réels des scalaires.

Définition 1.1. Soient E un ensemble non-vide et + : E?> — E et - : Rx E — E des
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CHAPTER 1. ESPACES VECTORIELS

opérations (c.-a-d. des fonctions). On dit que E est un espace vectoriel® (e.v.) si les
propriétés suivantes sont satisfaites pour tous éléments x,y,z € E et A\, u € R:
(i) x+y=y+x (commutativité de +);
(it) (x+y)+z=x+ (y+ 2) (associativité de +);
(i1i) il existe un élément Og € E tel que u + 0p = u pour tout u € E;

(iv) pour chaque u € E, il existe un élément —u € E tel que u+ (—u) = 0g;

(v) Ao (p-z) = Ap) -z (associativité de -);
(vi) A+ p)-z=N-x+p-x (distributivité pour +);
(vii) Mz +y) = Ax + Ay (distributivité pour +);

(viti) 1-x = x.

Les éléments de E sont appelés vecteurs.

Proposition 1.2.
(a) L’élément Og est unique et on Uappelle I'élément neutre™) pour I'addition.
(b) Pour chaque x € E, l’élément —x qui satisfait la propriété (iv) est unique. On
Uappelle Vinverse™ de .

Preuve: (a) Notons u,v € E deux éléments avec la propriété (iii). Alors
U=U+V=vV+Uu=0,

ou la premiére égalité est donné par le fait que v satisfait (iii), et la derniére par le fait
que w satisfait (iii). Ainsi u = v.
(b) Soient z € E et deux éléments u,v € E tels que v +u =z +v = 0. Alors

v=v+0g=v+zxz+u=0g+u=u.

Proposition 1.3. (Quelques propriétés de base) Soient E un espace vectoriel, v € E et
A eR. Alors

(a) 0.2 =0g;
(b) (_1) T =T
(C) A OE = OE;

®Vektorraum

(i) Vektoren
(i) peutralen Elements
()inverses Element
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CHAPTER 1. ESPACES VECTORIELS

(d) si A\-x=0g, alors \ =0 ou x = 0.

Preuve: Soit z € Eet A€ R. (a) On a
0-2+0-2=(0+0)-2=0-2.
En additionnant le vecteur —(0 - x) a cette 'égalité on obtient
0-2=0-2+4+0-2+4+(-0-2)=0-2+ (-0-2) =0g.

(b) Par le point (viii) de la définition d’espace vectoriel, et par le point (a) déja démontré,
on a
() z+z=(-1)-z+1l-z2=(-1+1)-2=0-2=0g.

(¢) Si A =0, on a bien A0 = O par le point (a). On peut donc se limiter au cas A # 0.
Alors, pour y € E, on a

1 1 1
Bty Et+A-+y=A0p+3y) N Y=Y
ce qui prouve que A0g a la propriété définitoire de Og. Par unicité de Og on a bien
Mg =0g.
(d) Supposons que Az = 0g et que A # 0. Montrons alors que z = 0g. En effet, on a
Aex =

Tr = -OEZOE.

>| =

1
)
O

Remarque 1.4. Alors que les conditions de la définition 1.1, ainsi que leur conséquences
(propositions 1.2 et 1.3) peuvent sembler trop nombreuses et compliqués a retenir, ce dont
on doit se souvenir est:

Dans un espace vectoriel E on peut faire des sommes de vecteurs et on peut multiplier les
vecteurs par des nombres (qu’on appelle des scalaires). Les régles usuelles d’addition et
multiplication s’y appliquent.

Attention: Ce qu’on ne peut pas faire (pour A € R et z,y € F) est

e faire la somme entre un scalaire et un vecteur (ne jamais écrire \ + z);
e écrire un produit avec le scalaire a droite (ne pas écrire x\);
e faire un produit de deux vecteurs. Pour l'instant z - y n’as aucun sens.

Désormais, quand aucune ambiguité est possible, on supprime ’indice £ de Og.

1.2 Sous-espaces vectoriels
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CHAPTER 1. ESPACES VECTORIELS

Définition 1.5. Soit (E,+,-) un espace vectoriel. Un ensemble F' C E est appelé sous-
espace vectorielVde E si (F,+,-) est un espace vectoriel.

Attention! L’addition et la multiplication par une constante utilisées pour F' sont celles de
Uespace vectoriel (E, 4+, ).

Proposition 1.6. Soit (E,+,-) un espace vectoriel et F' C E un sous-ensemble non-vide
de E. Alors F est un sous-espace vectoriel de E si et seulement si les deux conditions
sutvantes sont vérifiées:

(a) pour tout x,y € F, x+y € F,
(b) pour tout x € F et A € R, Az € F.

De plus, les deux conditions peuvent s’écrire de fagon plus compacte comme:

pour tout v,y € F et \,u € R, A+ puy € F. (1.1)

Preuve: Soit (E,+,-) un espace vectoriel et I C E un sous-ensemble non-vide de E.

Si F' est un espace vectoriel, alors les conditions (a) et (b) sont évidement satisfaites.

Supposons maintenant que (a) et (b) sont satisfaites et montrons que F' est un espace
vectoriel. Les hypothéses (a) et (b) montrent que les opérations + et - sont bien définies
sur F. 11 suffit donc de vérifier les conditions de la définition 1.1.

Les conditions (i) (ii) (v) (vi) (vii) et (viii) sont des propriétés des opérations + et -,
elles restent donc valables sur F. Il reste a montrer (iii) et (iv)

Soit € F (un tel élément existe car F' # () par hypothése). Par (b) et la proposi-
tion 1.3, 0g = 0-x € F, ce qui prouve (iii). De méme —x = (—1) -z € F, donc (iv) est
aussi satisfait.

En fin, montrons que la condition (1.1) est équivalente a (a) et (b). En effet, supposons
que (a) et (b) s’appliquent a F. Soient z,y € F et A\, u € R. Alors, en appliquant (b) on
obtient Ax € F' et uy € F. En appliquant (a) & Ax et py, on obtient A\x + uy € F.

Inversement, supposons que (1.1) s’applique & F'. Alors, en écrivant cette relation pour
i =0, on obtient(b). De plus, en écrivant (1.1) pour A = = 1, on obtient (a). O

Remarque: si F' est un sous-espace vectoriel d’un espace vectoriel E, alors O0p € F' (voir la
preuve de la proposition pour 'explication de ce fait).

Exemples On donne ici quelques exemples d’espaces et sous-espaces vectoriels qu’on va
reprendre & plusieurs reprises plus tard dans le cours.

(V) Untervektorraum
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1. L’exemple le plus simple d’espace vectoriel qui vient & l'esprit est R? pour d > 1.
L’ensemble R? est I’ensemble des d-uplets de nombre réels. Plus précisément, un élé-
ment générique de R s’écrit (21, ..., 24) avec x1,..., 24 € R.

L’addition et la multiplication par un scalaire sont définies comme suit. Pour z =
(Ila"'vxd> eRd7y: (yla'”ayd) ERd et/\eR7

x4y =(r1+y,...,tq+ys) et Ar:=(Axy,..., A zg).

L’espace R3 s’identifie & 'espace de dimension 3 avec un systéme de coordonnées. En
effet, un point (z,y, 2) € R? correspond au point de coordonnées x,y et z. Voir image:

2. L’ensemble R[X] des polynomes a coefficients réels, munit de I'addition standard et de
la multiplication par une constante standard est un R-espace vectoriel.

3. Soit X un ensemble quelconque et F(X,R) I'ensemble des fonctions de X dans R.
L’addition dans F(X,R) est définie composante par composante. La multiplication
par un scalaire aussi. Ainsi, pour f,g € F(X,R) et A € R, les fonctions f+¢g: X — R
et A- f: X — R sont définies par

(f+9)(x)=flx)+g(x) e (A f)(z)=Af(x), pourtoutx e X.

Muni de ces deux opérations, F(X,RR) est un espace vectoriel.

4. Un cas particulier du point précédent est 'ensemble des suites £(R) = RN := F(N, R).
Une suite réelle, notée (a,)nen est une famille de nombre réels indexée par les nom-
bres naturels. L’addition et la multiplication par un scalaire se font composante par
composante, comme pour les fonctions.

5. Les suites définies par une relation de récurrence forment un sous-espace vectoriel de
((R) (voir section 1.4).

6. L’ensemble des solutions d’un systéme linéaire homogéne forment un espace vectoriel
(voir la partie 2.4). Considérons par exemple le systéme suivant

(1.2)

r+y+2z =0
r—2y—z =0,

a deux équations et trois inconnues z,y, z € R. L’ensemble S des solutions (z,y, z) est
un sous-espace vectoriel de R3. En effet, si (z,y,2) et (z/,y/,2') sont des solutions de
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(1.2), alors (z,y,2)+ (2/,y/,2) == (x+2',y+ ¥, 2+ 2') en est une aussi. De plus, pour
A € R, le triplet A(x,y, 2) := (Az, Ay, A\z) est aussi solution de (1.2).

On peut méme calculer S et donner la forme générale de ses éléments. En effet, en
soustrayant la premiére ligne a la deuxiéme, le systéme (1.2) devient

r+y+22 =0
—3y+3z =0,

On divise la seconde équation par —3 pour obtenir:

r+y+2z =0
y+z =0,

En fin, on soustrait deux fois la seconde équation a la premiére et on obtient

r+z =0

y+z =0,
Les opérations qu’on vient de faire ne change pas I’ensemble de solutions du systéme.
Ainsi, les solutions sont § = {(z,2,—2) € R®: 2z € R}.

Géométriquement, S est une droite de R3, plus précisément c’est la droite qui passe
par les points (0,0,0) et (1,1, —1). On verra par la suite que les sous-espaces vectoriels
(non-triviaux) de R? sont les droites et les plans passant par l'origine (0,0,0). Ce
premier exemple témoigne de la nature géométrique des espaces vectoriels.

7. En physique les forces, vitesses, accélérations etc. sont représentées par des fleches dans
I’espace usuel a trois dimensions. On on appelle ces fléches des vecteurs. Une fléche
entre deux points O et A est notée OA. On peut additionner les fléches par la régle du
parallélogramme. De plus, pour un scalaire A € R, on peut mu@lier la fleche O A par
le scalaire A € R. En effet A\OA est une fléche de longueur |A|-|OA|, de méme direction
que (721 et de méme sens si A > 0 ou de sens opposé si A < 0.

Fixons le point O et notons G, 'ensemble des fléches d’origine O.

Le nom de vecteur qu’on donne a ces fleches n’est pas accidentel. En effet, G, est un
espace vectoriel (les conditions (i-viii) sont facilement vérifiées).

Une fléche 1@ dont le point d’origine n’est pas O est identifiée a la fleche paralléle,
de méme longueur et méme sens, mais dont l'origine est bien O (en autre mots on

considére que B est la méme fleche que sont translaté). Ainsi, en pratique on peut
se limiter a I'espace vectoriel G2,

Exercice 1.1.
Prenons E = R3.

(a) Soit F' = {(x,y,2) € R®: 2 =0} C E. Montrer que F est un s.e.v. de E.
(b) Soit G = {(z,y,2) € R3: x+y+ 2 =0} C E. Montrer que G est un s.e.v. de E.
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Figure 1.1: L’addition des vecteurs peut se faire par la régle du parallélogramme. Dans
I'image de gauche, les cotes opposées du parallélogramme sont le méme vecteur. La mul-
tiplication par une constante se fait en gardant la méme direction, mais en multipliant la
longueur du vecteur. Si la constant est négative, la fleche change de sens.

(c) Soit H = {(x,y,2) ER®: z+y+2 =1} C E. Montrer que H n’est pas un s.e.v. de E.

Exercice 1.2.
Prenons £ = R[X].

(a) Soit FF={P € R[X]: P(
(b) Soit G = {P € R[X]: P(0) =1} C E. Montrer que G n’est pas un s.e.v. de E.
(c) Soit H={P € R[X]: degP <4} C E. Montrer que H est un s.e.v. de E.

(d) Soit I ={P € R[X]: deg P =4} C E. Montrer que I n’est pas un s.e.v. de F.

0) =0} C E. Montrer que F est un s.e.v. de E.
0

1.3 Base, dimension finie, dimension

1.3.1 Familles libres, génératrices

Fixons pour le reste du chapitre un espace vectoriel E. Dans cette partie on va considérer
a plusieurs reprises des familles finies de vecteurs z1,...,x, € E. Pour une telle famille, on
appelle combinaison linéaire™) de xy, ..., x, tout vecteur de la forme

Alxl +---+ )\nxna

ou Ap, ..., A\, € R sont des scalaires quelconques.
Définition 1.7. Soit x1,...,x, € E une famille finie de vecteurs. Le sous-espace vectoriel
de E engendré par (zy,. .., x,) " est

Vect(xy, ..., x,) = {1+ + XNyt A1, ..., Ay € R}

On dit que la famille (xq,...,x,) est génératrice (pour E) si Vect(zy,...,x,) = E.

(") Linearkombination
(ilineare Hiille von (x1,...,Z,), aussi notée span(zy, ..., T,)
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En autre mots, Vect(zy,...,x,) est 'ensemble formé de toutes les combinaisons linéaires
de z1,...,x,. La famille (z1,...,xz,) est dite génératrice si tout vecteur de E peut s’écrire
comme combinaison linéaire de x1,. .., x,.

L’ordre des vecteurs xq,...,z, n’affecte pas I'espace qu’ils engendre, donc ni le fait que
la famille soit génératrice ou pas.

Remarque 1.8. La définition de Vect(zy,...,x,) ci-dessus nécessite une preuve. En effet

Vect(xy, ..., x,) est défini comme un sous-ensemble de E, non-pas comme un sous-espace vec-

toriel. Il faut ainsi montrer (en utilisant la proposition 1.6 par exemple) que Vect(z1, ..., x,)

est un effet un sous-espace vectoriel de E.

Preuve du fait que Vect(z1,...,z,) est un s.e.v.: Prenons z1,...,z, € E une famille finie de
vecteurs. Alors, Op = 0-21+---+0-z, € Vect(x1,...,z,). En particulier Vect(z1, ..., x,)
n’est pas vide.

Soit u,v € Vect(x1,...,x,). Alors on peut écrire

U=ANx1+ -+ Tn e v=px1+ -+ fnn,
pour des scalaires A1,..., A\, € Ret p,..., uy, € R. Ainsi, pour tout v € R:

u+v=A+p) 21+ -+ An+ ln) - n € Vect(z1,...,2,) et
vu=vA - T+ -+ VA, - Ty € Vect(x, ..., xy).

Par la proposition 1.6, on conclut que Vect(xy,...,z,) est un sous-espace vectoriel de E.
O

Exemple: Dans l'espace vectoriel R? la famille ((0,1);(1,0)) est génératrice. En effet, tout
vecteur (a,b) € R? s’écrit (a,b) =b-(0,1) +a-(1,0).
Dans l'espace vectoriel R3, la famille ((1,1,0);(0,0,1)) n’est pas génératrice. En
effet, le vecteur (0, 1,0) ne peut pas s’écrire comme « - (1,0,0) + - (0,1,1) avec
a, B eR.
On peut voir que

Vect((1,1,0);(0,0,1)) = {(a,b,c) € R*: a = b}.

On peut aussi facilement se convaincre que Vect((1,1,0);(0,0,1)) est un s.e.v. de
R3. 11 s’agit du plan vertical qui passe par la diagonale z = 3 du plan horizontal.
Voir I'image.
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Définition 1.9. Soit xy,...,x, € E une famille finie de vecteurs. On dit que la famille
(z1,...,1,) est lite (ou lincairement dépendante)V) s’il existe des scalaires A1, ..., \, € R
non tous nuls, tels que

/\1{E1+"'+)\n$n20.

Une famille qui n'est pas lice est dite libre (ou linéairement indépendante)™).

En autre mots, une famille est liée s’il existe une combinaison linéaire non-triviale de ses
vecteurs qui vaut 0. Bien évidement, le fait qu’une famille de vecteurs est libre ou liée ne
dépend pas de 'ordre des vecteur.

Si on désire montrer qu'une famille (z1,...,x,) de vecteurs est libre, on peut considérer
des scalaires A1, ..., A\, € R tels que \jzq + -+ -+ Az, = 0 et déduire que Ay = --- =\, = 0.
Inversement, si on veut montrer que la famille est liée, le plus simple est d’exhiber une
combinaison linéaire non-triviale de z, ..., x, qui vaut 0.

Exemple: Dans l'espace vectoriel R? la famille ((0,1);(1,0)) est libre. En effet, si A\, u € R
sont tels que A - (0,1) 4+ - (1,0) = (A, 1) = (0,0), alors A = v = 0.
Par contre, la famille ((0,1); (1,0);(1,1)) est lie. En effet, on a

1-(0,1)4+1-(1,0)+ (=1)- (1,1) = (0,1) + (1,0) — (1,1) = (0,0).

Remarque 1.10. Le fait qu’une famille (xy,...,z,) de vecteurs d’'un espace vectoriel E est
libre est quelque chose qui dépend uniquement de x4, ..., x, pas de ’espace ambiant £. Plus
précisément, si F' est un s.e.v. de E et xy,...,x, € F, alors le fait que famille (zq,...,z,)

est libre ne dépend pas de si on la considére comme famille de F ou de F'. A l'opposé, le fait
qu'une famille est génératrice dépend essentiellement de I'espace global E. En effet, méme si
(x1,...,2,) nest pas génératrice pour F, elle est toujours génératrice pour Vect(zyq,...,x,).

Ainsi, dit tout simplement qu’une famille est libre ou liée, mais insiste souvent qu’une
famille est génératrice pour un espace E.

Le lemme suivant offre un critére pratique pour montrer qu'une famille de vecteurs est
lice.

Lemme 1.11. Soit (x4, ...,x,) une famille de vecteurs de E. Alors elle est liée si et seule-
ment si il existe un vecteur x; qui s’écrit comme combinaison linéaire des autres. Plus pré-
cisément si et seulement si il existe i € [1,...,n] et des scalaires Ay, ..., Ni—1, Nix1,---5An
tels que
T =M1+ F NaZion Ao+ ATy = Z A
J#i

(vii)) linear abhéngig
()]inear unabhingig
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Exemple: En général le fait qu’'une famille est libre ou liée n’implique pas le fait qu’elle est
génératrice ou pas. Donnons des exemples pour les quatre situations possibles;
on va se placer dans ’espace vectoriel R?:
La famille (1,0); (0, 1) est génératrice et libre.
La famille (1,0); (1,1); (0, 1) est génératrice et liée (car (1,1) = (1,0) + (0,1)).
La famille formée uniquement du vecteur (1,0) est libre mais pas génératrice.
La famille (1,0);(0,0); (2,0) n’est pas génératrice et est liée.

Exercice 1.3.
Démontrer le lemme 1.11

Exercice 1.4.
Montrer que dans un espace vectoriel £
(a) Toute famille de vecteurs contentant le vecteur O est liée.
(b) Toute famille de vecteurs contentant deux fois le méme vecteur est liée.

(c) Soit (xy,...,x,) une famille de vecteurs de E, i € [1,n] et A € R, A # 0. Alors les
affirmations suivantes sont équivalentes
(i) (x1,...,x,) est libre,
(ii) (z1,...,2, + x;) est libre,
(iii) (x1,...,Az,) est libre.

Exercice 1.5.

Montrer que pour une famille finie de vecteurs zy,...,x, € E, Vect(zy,...,x,) est le plus
petit sous-espace vectoriel de E contenant zq, ..., x,.
En autres mots, si F' est un sous-espace vectoriel de F contenant zq,...,x,, montrer que

Vect(zy,...,x,) C F.

Exercice 1.6.

Soit (x1,...,x,) une famille de vecteurs de E. Montrer que
(i) Si (1,...,x,) est libre, alors (z1,...,x,-1) est aussi libre;
(i) Si (z1,...,m,_1) est génératrice, alors (x1,...,x,) est aussi génératrice.
Plus généralement, montrer que Vect(z1, ..., x,_1) C Vect(xy,...,z,).
Exercice 1.7.
Soit (x1,...,2,) une famille génératrice de E. Montrer que, si x,, € Vect(xq,...,2,_1), alors
(x1,...,Tp_1) est aussi génératrice.

1.3.2 Dimension finie; théorémes essentiels

Définition 1.12. Un espace vectoriel E est dit de dimension finie™ | s’il existe une famille
finie de vecteurs de E qui soit génératrice pour E.

®endlich dimensional

— 22 —



CHAPTER 1. ESPACES VECTORIELS

Définition 1.13. Soit E' un espace vectoriel. On dit qu’une famille zq,...,x, € E est
une base®™de E si et seulement si (xy,...,x,) est libre et génératrice.

Exemple: Considérons 'espace vectoriel R? avec d > 1 et la famille de vecteurs & =
(e1,...,€eq) ou les composantes de e; sont toutes 0 a part la ¢ qui vaut 1:

0

—_

€; = +— 1°™¢ ligne

0

Alors, € est une base de R?. En effet
£ est génératrice car v = (z1,...,14) € RY, s'écrit x = x1e1 + -+ - + 2464
£ est libre car, si \jz; + -+ + A\grg = 0 avec Ay, ..., A\, € R, alors

0 A1

: = Aeg + -+ Ngeg = : )

0 i
donc \y =---=X\; =0.

Cette base est souvent appelée la base canonique de R?. Toutefois, cette base

n’est pas 'unique base de R%; pour tout d > 1, il existe une infinité de bases des
de R9.

Théoréme 1.14 (Théoréme de la base extraite). Soit E un espace vectoriel de dimension
finie et x1,...,x, € E, avec m > 0 une famille génératrice. Alors il existe n < m et des
indices iy, ... i, € [1,...,m] tels que (x;,...,x; ) soit une base de E.

En autre mots, tout famille génératrice finie de E contient une base.

Preuve: Dans le cas dégénéré ou E = {0}, la famille vide est une base de E, elle est donc contenue
dans toute famille génératrice. Supposons désormais que E # {0}.

On va procéder par 'absurde. Supposons qu’il existe au moins une famille génératrice

de E ne contenant pas de base de E. On peut alors fixer une telle famille z1, ..., z,, avec
un nombre m de vecteurs minimal. Comme E # {0}, on a m > 1.

(xi) Basis
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Par hypotheése la famille (z1, ..., x,,) n’est pas une base. Comme elle est génératrice,
elle est nécessairement liée. Ainsi, par le lemme 1.11 il existe un vecteur x; avec 1 < i <m
et des scalaires A1,..., Ay, tels que

T, — Z )\j.%'j.

J#1
On peut supposer sans perte de généralité que i = m.
Il s’en suit que z,, € Vect(x1,...,xm_1). Par I'exercice 1.7, la famille (z1,...,Zm—1)
est donc génératrice. De plus, comme il s’agit d’une sous famille de (z1,...,zy), elle ne

contient pas de base de E. Ceci contredit la minimalité de m, et la preuve est compléte. [
Une autre fagon de voir le preuve du théoréme 1.14 est d’éliminer des vecteurs de la famille

génératrice (z1,...,x,) jusqu'a ce qu’elle devienne libre. On va faire cela sur un exemple.

Exemple: L’espace vectoriel qu’on considére est Ro[X], 'espace des polynomes de degré au
plus 2. Soient P la famille formée des polynomes suivants de Ro[X]:
P(X)=X?*+2X +1, Q(X) = X*+2X +2,
R(X)=X?>+X +3, S(X) =2X +2, T(X)=0.
On va admettre pour I'instant que P est génératrice (on va le prouver plus tard).
Est-ce que P est libre? Ce n’est pas le cas, car P contient le vecteur nul (a
savoir 7). Eliminons ce vecteur de P. Ainsi, on pose P’ = (P,Q, R, S).

On se pose a nouveau la question: est-ce que P’ est libre? Ce n’est toujours pas
le cas. En effet

1
—2P(X)+3Q(X) — R(X) — ES(X)
=(24+3-1)X*+(-4+6—-1-1)X+(-2+6-3—-1)=0.
Ainsi, R € Vect(P,Q, S), on peut donc éliminer R de P’. On pose P" = (P, Q, S).

Montrons maintenant que (P,Q,S) est libre. Soient A, u,v € R tels que
AP(X) 4+ uQ(X) +vS(X) = 0. Cela revient a

A+ 1) X% 4+ (2N +2u 4+ 20) X + (A +2u + 2v) = 0.

Ca s’écrit de facon équivalente

A =0

2 +2pn+2v =0

A2u+2v  =0.
Ce systéme se résout facilement (on va le résoudre un peu plus bas en toute
généralité) et on obtient A = p = v = 0. Ainsi (P, Q,S) est une famille libre.

En fin, montrons que (P,Q,S) est génératrice. Pennons donc un élément

U € Ry[X]; U(X) = aX?+ bX + ¢ et montrons qu’il existe «, 3,7 € R tels que
aP(X)+ pQ(X) +vS(X) = U(X). Cela revient a

a+p =a

204+ 28 +2y =b

a+28+2y =c
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On résout le systéme comme suit. En soustrayant la troisiéme ligne a la deuxiéme

on se rameéne au systéme équivalent:

a+f =a
Q@ =b—c
a+28+2y =c

On soustrait la deuxiéme équation a la premiére pour trouver

I6] =a—-b+c
o =b—c
a+28+2y =c

En fin, cela est équivalent a

B =a—-b+c
a =b-c
04 :—a+%b.

Ainsi on trouve que le systéme admet une unique solution. L’existence des so-
lutions nous indique que (P, @, S) est génératrice pour Ry[X]; 'unicité indique

qu’elle est une base.

Corollaire 1.15. Tout espace vectoriel de dimension finie admet une base finie.

Preuve: Soit E un espace vectoriel de dimension finie et (x1,...,z,) une famille génératrice de
E (une telle famille existe par la définition de la dimension finie). Par le théoréme 1.14,

(21,...,xy,) contient une base de F.

O]

vecteurs Tyy1, - . ., Ty tels que la famille (1, ..., x,) soit une base de E.

Théoréme 1.16 (Théoréme de la base incompléte). Soit E un espace vectoriel de dimen-
sion finie et x1,..., T, € E, avec m > 0 une famille libre. Alors il existe n > m et des

Preuve: Soit by, ...,by une famille génératrice de E (I’existence d’une telle famille est garantie par

le fait que E est de dimension finie). On va décrire ici un algorithme pour trouver une
base & partir de (z1,...,ZTm).

Soit ig le plus petit indice i tel que b; ¢ Vect(xy,...,2y), si un tel indice existe, et
posons Tpm+1 = b;,. S’il n’existe pas de tel indice, ’algorithme est fini et on a by,...,bq €
Vect(z1, ..., Tm).

On reprend le processus. Ainsi, pour & > 1, soit i; le plus petit indice i tel que
b; ¢ Vect(x1,...,Tmyk), si un tel indice existe, et posons zp,+x+1 = b;,,. S'il n’existe pas
de tel indice, 'algorithme finit et on a by,...,b; € Vect(z1,...,Tmik)-
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Remarquons que cet algorithme finit bien en un nombre fini d’étapes. En effet, par
construction, la suite 4g,%1,... est strictement croissante, elle a donc au plus d éléments.
Soit k € [0,m] létape a laquelle 'algorithme finie (c.-a-d. c’est le plus petit k& pour
lequel ig, n’est pas défini). Alors by,...,bq € Vect(z1,...,Tmtk), dou E = Vect(by,...,bq) C

Vect(x1,. .., Zmek). En conclusion la famille x1, ..., x,,1x est génératrice.
Pour montrer qu’elle est une base de E il nous reste & montrer que z1,...,ZTntg est
libre. Supposons que ce n’est pas le cas et prenons Aj,...,Ap1r € R une famille de

scalaires non-tous nuls, tels que Az + - + Ak Tk = 0.

Soit j le plus grand indice tel que A; # 0. Il y a deux possibilités. Soit j < m. Dans
ce cas la, Myx1 + -+ + Az = 0, ce qui contredit le fait que z1,...,z,, est libre. Soit
j > m. Ecrivons alors j =m+ ¢+ 1, avec £ > 0. On a

- —-A
xj =b;, = —1:161 4+ 4 memH € Vect(x1, ..., Tmts).
Aj Aj
Cela contredit le choix de iy dans l'algorithme décrit ci-dessus. O

Théoréme 1.17. Toutes les bases d’un espace vectoriel de dimension finie ont le méme
nombre de vecteurs. Ce nombre est appelé la dimension de E et est noté dim(FE).

Le théoréme précédent est trés important. En effet, quand on pense & R? on dit na-
turellement qu’il s’agit d’'un espace de dimension d. Cela vient du fait qu’on pense a la base
canonique (eq, ..., eq) qui contient d vecteurs. 1l est en effet naturel de définir la dimension
comme le nombre de vecteurs d’une base. Pourtant, si on regarde R? comme espace vectoriel,
il n’y a pas de raison de distinguer la base (eq,...,e4) des autres bases. Ainsi, on a besoin
de savoir que le nombre de vecteurs des différentes bases d’un espace vectoriel ne dépend pas
de la base.

La preuve du théoréme qu’on donne ici est conceptuellement compliquée. Une preuve
basée sur le Pivot de Gauss (voir la partie 2.4.2) est plus facile & comprendre.

Preuve: On va procéder par l'absurde. Supposons qu’il existe un espace vectoriel E avec deux
bases ne contenant pas le méme nombre de vecteurs. Soit (x1,...,z,,) une base avec un
nombre minimal de vecteurs. Prenons une autre base (y1,...,y,) de E, avec strictement
plus de vecteurs, mais avec un nombre maximal de vecteurs en commun avec (Z1, ..., Zy,).

Sans perte de généralité, on peut supposer que les vecteurs communs de ces deux bases
sont 1 = y1,...,Tr = Y, pour un certain 0 < k < m.

Si k = m, alors, comme (x1,...,2,) est génératrice, ym+1 € Vect(z1,...,Tpy) =
Vect(y1, ..., ym). Cela contredit le fait que la famille (y1,...,y,) est libre.

Si k < m, on va construire deux bases de tailles différentes contentant & 4+ 1 vecteurs

en commun. Comme zj1 € Vect(yi,...,yy) il existe A1,..., A, € R tels que
The1 = AMY1+ -+ Ann. (1.3)
Soit Ay le dernier des Aj,..., A, qui est non-nul (il existe au moins un A; non-nul car

xp+1 # 0). Si € < k, alors

Tpe1 = Ay1 + -+ My = Ay + -+ Ay,
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ce qui contredit le fait que x1, ...,z est libre.

On peut donc se limiter au cas £ > k. Alors on peut écrire y, = )\i[(a:kﬂ - Zf;% Aili).
Ainsi y; € Vect(y1, .-+, Yr—1, Tht1, Yot1s-- -, Yn). Mais comme la famille (y1,...,¥ym) est
génératrice, on déduit que (y1,...,Yr—1,Tk+1,Ye+1,---,Yn) Lest aussi.

Montrons que la famille (y1,...,%—1, Tk+1, Yo+1,---,Yn) €st aussi libre, pour déduire
que c’est une base de F. Soit u1, ..., u, € R tels que

piyr+ - pe—1Ye—1 + peTrt1 + 1Yot + o+ pnYn = 0.
Alors, vu (1.3), on a
(1 + peA)yr + -+ (o1 + prede—1)ye—1 + predeye + per1yers + -+ pnyn = 0.
Vu que la famille (y1,...,yn) est libre, on a
Pt AT = = 1+ e Ae—1 = e = pepr = 0 = pi = 0.

Comme Ay # 0, on déduit que py = 0, puis que

On viens donc de montrer que (Y1, ..., Y¢—1, Tk+1,Ye+1, - - - » Yn) €st une base. De plus, elle
a k + 1 vecteurs en commun avec (z1,...,Zy), ce qui contredit la minimalité de k. O
Proposition 1.18. Soient E un espace vectoriel de dimensions d < oo et £ = (eq,...,€y)

une famille de vecteurs de E.
(i) Si & est libre, alors n < d. De plus, si n =d, alors € est une base de E.
(il) Si € est génératrice, alors n > d. De plus, si n = d, alors £ est une base de E.

Preuve: Commengons par le point (i). Supposons que €& = (e, ..., e,) est libre. Par le théoréme 1.16,
on peut compléter (e1,...,e,) en une base (e1,...,€ntm) pour un certain m > 0. Mais
le théoréme 1.17 indique alors que m + n est la dimension de E, & savoir d. Ainsi
n=d-—m <d.

De plus, si n = d, alors m = 0, donc la famille (ey,...,e,) est une base.
Passons au point (ii). Supposons que £ = (eq,...,e,) est génératrice de E. Par le
théoréme 1.14, (eq,...,e,) contient une base de E. De plus, par le théoréme 1.17, cette

base contient exactement d vecteurs. Ainsi d < n.
De plus, si d = n, la base contenue dans £ contient n vecteurs, donc est égale 4 £. [

Exercice 1.8.

Montrer qu’'un espace de vectoriel E n’est pas de dimension finie si et seulement s’il existe
une suite infinie de vecteurs xy, xo, ... telle que pour tout n, (z1,...,x,) est libre. (Dans ce
cas la on va dire que la famille infinie z1, 2, ... est libre)

Cet exercice donne un moyen de démontrer qu'un espace vectoriel n’est pas de dimension
finie.
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Exercice 1.9.

Quels des espaces suivants sont de dimension finie et quels ne le sont pas? (Pour ceux de
dimension finie, exhiber une famille génératrice finie; pour ceux de dimension infinie, exhiber
une famille libre infinie.)

(a

(b) L’espace ¢5(R) des suites a valeurs réelles stationnaires a 0

L’espace ((R) des suites a valeurs réelles

¢) L’espace R[X]| des polynomes a coefficients réels.

)
)
()
(d) L’espace Ry[X] des polynomes de degré au plus d.
e) L’sous-espace vectoriel £ de R[X] des polynémes qui s’annule en 0.
)

(
(f) Le sous-espace vectoriel F' de R? des vecteurs z = (z1,...,z4) tels que Y, z; = 0.
Exercice 1.10.

On se place dans l'espace vectoriel R?. Quelles des familles suivantes de vecteurs sont des
bases7 Motivez vos réponses

a) ((1,0,0);(0,1,0);(0,0,3))
(b) ((1,1,1);(0,2,0); (1,0,1))
(¢) ((1,0,0);(1,1,0);(0,1,0); (0,0,1))
(d) ((1,1,0);(0,0,1))
(e) ((1 1L,1);(x,y, 2); (x ,y2,22)) pour z,y,z € R (la réponse peut dépendre de x,y et z).

1.3.3 Sous-espaces vectoriels de dimension finie; rang

Soit F' un sous-espace vectoriel d’un espace vectoriel E, ce dernier n’étant pas forcement
de dimension finie. Par définition, F' est aussi un espace vectoriel, et les définitions de
dimension finie et dimension données au-dessus s’y applique également. Il est généralement
possible que F' soit de dimension finie, alors que E ne l'est pas. L’inverse n’est pas possible,
comme 'affirme la proposition suivante.

Proposition 1.19. Soit E un espace vectoriel de dimension finie et F un sous espace
vectoriel de E. Alors F est aussi de dimension finie et dim(F) < dim(FE).
De plus, si dim(F') = dim(E), alors F = E.

Preuve: Soit F' un s.e.v. d’un espace vectoriel E de dimension finie d. Soit (eq,...,e,) une
famille libre dans F. Alors (eq,...,ey,) est aussi une famille libre dans F, donc, par la
proposition 1.18, n < d.

Ainsi, F' ne contient pas de famille libre arbitrairement grande. Par la contraposée
de lexercice 1.8, F est de dimension finie. De plus, si (f1,..., fx) est une base de F,
alors c’est en particulier une famille libre, donc, comme expliqué avant k < d. Ainsi

dim(F) = k < d = dim(E).

Supposons maintenant que k = d. Alors (fi,..., fr) est une famille libre de F con-
tenant k = dim(F) vecteurs. Par le proposition 1. 18 (a), (f1,..., fx) est une base de E.
Ainsi F' = Vect(f1,..., fr) = E. O
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Ainsi, 'espace vectoriel R? admet des sous-espaces de dimension 0, 1,2 et 3. Les uniques
espaces de dimension 0 et 3 sont {(0,0,0)} et R3 respectivement. Les sous-espaces de
dimension 1 sont les droites passant par 0; ceux de dimension 2 sont les plans passant par 0.

La terminologie s’étend aux espaces de dimension plus grande: si F est un espace vectoriel
de dimension finie d, ses sous-espaces vectoriels de dimension 1 sont appelés des droites et
ceux de dimension d — 1 sont appelés des hyperplans.

Exercice 1.11.
Utiliser les exemples de I'exercice 1.9 pour illustrer les affirmations suivantes.

e Un espace qui n’est pas de dimension finie admet des sous-espaces vectoriels qui ne sont
pas de dimension finie.

e Un espace qui n’est pas de dimension finie admet des sous-espaces vectoriels de dimen-
sion finie.

e Un espace de dimension finie admet des sous-espaces de dimension finie.

Définition 1.20. Soit x1,...,x, € E une famille de vecteurs. Le rang®™Vde (x,...,x,)
est noté rang(zy, ..., x,) et est défini par rang(zy, ..., x,) = dim(Vect(xy, ..., z,)).
Corollaire 1.21. Soit x1,...,x, € E une famille de vecteurs. Alors
(i) rang(zy,...,z,) < n. De plus, rang(xy,...,x,) = n si et seulement si la famille est
libre.
(ii) rang(xy,...,x,) < dim(F). De plus, rang(zy,...,z,) = dim(FE) si et seulement si
la famille est génératrice pour E.

Preuve: Soit x1,...,x, € FE une famille de vecteurs. Alors, x1,...,2z, est génératrice pour
Vect(x1,...,x,), donc par proposition 1.18, n > dimVect(z1,...,z,) = rang(z,...,Ty).
En outre, si n = rang(z1,...,x,), alors le proposition 1.18 indique que (z1,...,%y,)

est une base de Vect(zy,...,x,), donc qu’elle est libre.
Inversement, si (z1,...,x,) est libre, alors elle est une base de Vect(z1,...,z,) (on
a déja mentionné qu’elle est génératrice pour Vect(z1,...,xy,)). Ainsi rang(zi,...,z,) =
dimVect(x1,...,2,) =n O

1.3.4 Représentation d’un vecteur dans une base

Une base d'un espace vectoriel E sert essentiellement & décomposer les vecteurs de E dans
cette base. La proposition suivante donne un sens précis a la décomposition d’un vecteur
dans une base.

(xii) Rang
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Proposition 1.22. Soit E un espace vectoriel de dimension finien et B = (eq,...,e,) une
base de E. Alors, pour tout x € E, il existe une unique famille de scalaires Ay, ..., A\, € R
telle que

xr = )\161 —+ ... s )\nen. (14)

Preuve: Soit x € E. Comme B est une base de E, x € Vect(B) = E. Ainsi, il existe A1,..., A\, € R
tels que x = Aje; + ..., \pen.
Maintenant qu’on a prouvé l'existence de la famille de scalaires désirée, montrons aussi
son unicité. Soit A1, ..., Ap, t1, - - -, o € R tels que

T=Ae1+ ..., \nep = 11 + ..., [hnCn.

Alors, (A1 —p1)er + -+ (Ap — pin)en, = Op. La famille ey, .. ., e,, étant libre, cela implique

Al —p1 == Ay — tp = 0. En autre mots, les familles (A\1,...,\,) et (u1,..., ty) sont
égales, ce qui prouve 1'unicité. ]
A chaque x € E on associe le vecteur Vg(z) := (A,...,A,) € R", ou Ay,..., A\, sont les

scalaires tels que (1.4) soit vérifie. Pour des raisons qu’on va voir plus tard, on va désormais
écrire V() verticalement, a savoir:

At

On appellera le vecteur Vz(x) l'écriture de x dans la base B.

Proposition 1.23. Pour tout espace vectoriel E avec B une base, v,y € E et A\ € R.
Notons
T Y1
Ve(x) = | : et Vs(y) =
Tn Yn
Alors:
1+ ATy
Ve(z +y) = Va(x) + Va(y) := : et Vp(Ar) = AVp(x) := [
Tn + Yn AT,
De plus, la fonction Vg : E — R"™ est une bijection.

Rappel: le fait que Vg est bijective revient a dire que, pour tout vecteur X € R”, il existe
un unique vecteur z € E tel que Vz(z) = X.
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Ainsi, les vecteurs de F et ceux de R™ sont en correspondance exacte par la fonction
Vi. De plus cette fonction est cohérente avec les opérations d’espace vectoriel: somme
et multiplication par scalaires. On s’apercoit donc que E et R™ ont exactement la méme
structure.

Toutefois, la correspondance entre E et R? dépend de la base B de £ qu’on a choisi.

Preuve: Soient, E, B = (b1,...,b,), x et y comme dans I’énoncé. Alors

n n
=) b et y=> yibi,
i=1 i=1

donc
n

n
x+y= Z:(a:Z +y)b; et Ax= Z Ax;b;.
i=1 1=1

Par unicité de ’écriture dans la base B de x4y et de Az on obtient les expressions désirées
pour V(x4 y) et Va(Ax), respectivement.

Montrons maintenant que Vg est bijective. Pour cela on va montrer qu’elle est surjec-
tive, puis qu’elle est aussi injective.

Soit

a1

A= | eR"™
an
Considérons le vecteur u = a1by + - - - + aby,. Par 'unicité de ’écriture de u dans la base
B, Va(u) = A. Ainsi Vj est surjective.
a1
Prenons u,v € E tels que Vg(u) = Vg(v) = | : |. Alors, u =) " ; ayb; = v, donc

7%
Vg est injective.
O

Exemple: Evidement, on peut décomposer un méme vecteur dans deux bases différentes.

Pour R?, on dispose de la base canonique £ = (e, e3) = ( ((1)) , (g) ) Mais on

peut égalément considérer la base F = (f1, f2) ou

() = ()

(On vérifie facilement que F est en effet une base de R?.) Le vecteur z = (g)

se décompose alors dans les bases £ et F comme suit

(i) = 361 + 762 = 5f1 — 2f2

Ainsi
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1.4 Application: suites définies par récurrence

Le modéle de Fibonacci (1202) Fibonacci a proposé un modéle pour décrire le développe-
ment d'une population de lapins. Il admet les hypothéses suivantes:

e Les lapins sont immortels et vivent fidélement en couples qui sont formés a la naissance.
Les partenaires d’un couple ont donc le méme age et nous parlerons de I’age du couple.

e Deés I'age de 2 mois chaque couple donne naissance, chaque mois, a un nouveau couple.

e le temps t est discret, 'unité étant le mois. A ¢ = 0, la population consiste d’un unique
couple de nouveau-nés.

Le probléeme est de trouver une formule simple pour le nombre de couples aprés ¢ mois.
Notons u; le nombre de couples a temps t. Alors on a

Upyo = Upy1 + Uy,  pour tout t > 0 et (1.5)

uozl,ulzl.

En effet, (1.5) s’explique comme suit. Juste avant le moment ¢ + 2, le nombre de couples
de lapins en vie est u; 1. Pour obtenir u; 2, on doit y rajouter les couples nées au moment
t + 2. Chaque couple de lapins 4gé d’au moins deux mois au moment ¢ + 2 en crée un. Les
couples agés d’au moins deux mois sont exactement les couples en vie au moment ¢; il y en
a donc wu; tels couples. Ainsi, le nombre total de couples de lapins au moment ¢ + 2 est égal
& ugyq + uyg, ce qui donne (1.5).

Au moment initial il y a un seule couple, qui pendant le premier mois est trop jeune pour
procréer. Ainsi ug = u; =1, d’ou (1.6).

Comment faire pour déduire de (1.5) et (1.6) une forme générale pour u;?
On rappelle que RY, 'ensemble des suites & valeurs réelles, a une structure de R-espace
vectoriel (voir la section 1.1). Posons:

S = {(vn)nen € R" ¢ (v,) satisfait (1.5)}.

Une premiére observation est que S est un sous-espace vectoriel de RY de dimension 2.
Montrons ce fait.

Par la proposition 1.6, pour montrer que S est un sous-espace vectoriel, il suffit de montrer
que pour (Up)peny € S, (Wp)neny € S et A € R, (v, + Wy )nen € S et (Avy)neny € S. 11 s’agit
d’une simple vérification qu’on laisse en exercice. Il faut en outre montrer que § est non-vide.
Pour cela on observe que la suite nulle (0,0,...) est bien un élément de S.

Montrons maintenant que dim(S) = 2. Posons (a,)nen €t (b, )nen les suites définies par

(pio = Qpi1 + A, et bpi2 = b1 +0b, pourtoutt>0et (1.7)
ag = 1,&1 = 0, bo = O,bl =1. (18)

On prétend que la famille formée des suites (a,) et (b,) est une base de S (donc qu’elle est
libre et génératrice).
Montrons que ((a,), (b,)) est libre. Soit A, n € R tels que A-(a,) + - (b,) = 0. Ce dernier
fait signifie que
Aa, + b, = 0, pour tout n € N.
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En particulier
Aag + pbg = A =0 et da; + puby = pu=0.

Ainsi A = g = 0 donc la famille est bien libre.
Montrons maintenant que ((an), (b)) est génératrice pour S. Soit (¢,) € S. On va
montrer que la suite (¢,) est égale a la suite ¢ - (a,,) + ¢1 - (by,), & savoir que

Cn = Coly + C1by, pour tout n € N. (1.9)

Montrons (1.9) par récurrence sur n.
Pour n = 0,1 on a bien

Coag + Clbo = C et coai + Clbl = Cy.

Soit n > 1 et supposons que ¢, = coay + ¢1b pour tout k£ < n. Alors

Cnil = Cp + Cp car (c,) vérifie (1.5)
= coQy, + C1b,, + CoGp_1 + C1bp—1 par ’hypothése de récurrence
= Colpi1 + C1bnyi1 car (ay) et (b,) vérifient (1.5).

Ainsi, par récurrence (1.9) est vrai, donc (¢,) € Vect((an), (b,)). On a donc montré que
((an), (bn)) est une base de S. En particulier dim(S) = 2.

Malheureusement ((a,), (b)) n'est pas une base de S qui s’écrit de fagon confortable. Il
est plus intéressant de chercher des suites géométriques qui forment une base de S.

Soit « et (8 les deux solutions de I’équation

2t =x+ 1. (1.10)

Plus précisément, o = %5 et B = %5 On va montrer que les suites (@")pen et (8" )nen

appartiennent a S et qu’elles en forment une base.
Montons que (a™)en €t (8")nen vérifient (1.5). Soit n € N. On a

" g " =(a*—a—1)a" =0 et

Bn+2_ﬂn+l_ﬁn:(52_5_1>ﬁn20’

ce qui monte bien (1.5) pour (a™),en et (5")nen-
Vu que S est de dimension 2, pour montrer que la famille ((a")neN, (ﬁ”)neN) est une base,
il suffit de montrer qu’elle est libre. Soient A\, u € R tels que

A" + puf" =0  pour tout n € N.

En particulier on a

A+ p+ VB — p)
2

M+l =a+8=0 et Nat+pp= = 0.

On en déduit
A+pu=0 e A—p=0,
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dou A =0et u=0. Donc ((a”)neN, (ﬁ”)neN) est libre, donc une base.
En fin, vu que la suite (u,) qui nous intéresse depuis le début fait partie de S, on peut
écrire

(un)nen = A(Q")nen + B(B" )nen, (1.11)

pour une certaine (unique) parie de scalaires A, B € R.
Trouvons A et B en utilisant (1.6). Si on écrit (1.11) pour n = 0,1 on trouve

upy=1=A+B et u1:1:A+B+\/g(A_B).

2
Ce systéme se résout facilement et on trouve A = 1;:/‘? = \% et B = \25\/—51 = —\%. Ainsi,
an+1 BnJrl
Up = —— — ——, for all n € N.
SRRV
Suites récurrentes générales
Exercice 1.12.
Soit a,b € R et considérons la suite définie par
Upy1 = al, + bu,_1, pour tout n > 1 (1.12)

et avec conditions initiales ug, u; données (par exemple uy = 0,u; = 1). Le but c’est de
déterminer un algorithme général pour évaluer w,,.

(i) Considérons ’équation quadratique
r? —ar —b=0. (1.13)

Donner la condition pour que cette équation ai deux solutions réelles oy # as.

(ii) Supposons que I'équation (1.13) admet deux solutions réelles a; # . En s’inspirant
de I'exemple précédent, donner une forme générale des suites qui satisfont (1.12). Ex-
pliquer comment exprimer (u,),>o en termes des puissances de «a; et as.

(iii) Supposons que ’équation (1.13) admet une solution double réelle o. En s’inspirant
de T'exemple précédent, donner une suite qui satisfait (1.12). Vérifier que la suite
(na™) >0 = (0, a, 20,33, .. .) satisfait également (1.12). Conclure.

(iv) Que faire si (1.13) n’admet pas de solutions réelles? Remarquer que I’équation admet
quand méme deux solutions complexes. Pouvez vous conclure?

(v) Donner une stratégie générale pour trouver la forme des suites définie par récurrence
de tout ordre, c.-a-d. les suites de la forme

Up = AQ1Up_1 + AUy _9 + -+ + ayU,_, pour tout n > k,

ou ai,...,a, sont des nombres fixés.
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A retenir

e Un espace vectoriel (e.v.) FE est un ensemble pour lequel on peut additionner les
éléments entre eux et multiplier les éléments par des nombres. Ces opérations suivent
des régles intuitives.

e Les éléments d’un e.v. sont appelés des vecteurs; les nombres sont appelés des scalaires.

e Un sous-espace vectoriel (s.e.v.) F de E est un sous ensemble de F stable par les
opérations de E (addition et multiplication par scalaire).
Un sous-espace vectoriel contient nécessairement le vecteur nul Og.

e Pour une famille (z1,...,x,) de vecteurs de E, Vect(z1,...,x,) est le sous-espace vec-
toriel de E engendrée par xq, ..., x,. Il est composé de toutes les combinaisons linéaires
de x1,...,x,.

Si Vect(zy,...,z,) = E on dit que x1, ..., x, est génératrice pour E.

e Une famille (zy,...,x,) de vecteurs de E est dite liée (ou linéairement dépendante) si
un des vecteur s’écrit comme combinaison linéaire des autres.
Si elle n’est pas liée, la famille est dite libre (ou linéairement indépendante).

e Une base d'un e.v. E est une famille finie de vecteurs qui est libre et génératrice.

e Un e.v. E est dit de dimension finie s’il admet une famille génératrice finie.
Si c’est le cas, alors E' admet des bases et tout ses bases ont le méme nombre de vecteurs.
On appelle ce nombre la dimension de E et on I'écrit dim(F).

e Dans un espace vectoriel de dimension finie d:

(i) une famille libre a au plus d vecteurs;
(ii) une famille génératrice a au moins d vecteurs.

e Pour une famille zy, ..., z, on défini le rang de la famille par
rang(zy, ..., x,) = dim(Vect(zy, ..., z,)).
On a rang(z1,...,z,) < n.
e Si B =(ey,...,eq) est une base de E, alors tout vecteur x € E s’écrit de fagon unique
comme combinaison linéaire de eq,...,e,:
l’:)\1€1+"'+)\d€d, avec)\l,...,)\dER.
On écrit alors
A1
Ve(z) = | :
Ad
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Zu wissen

e Ein Vektorraum FE ist eine Menge, deren Elementen konnen addiert und mit Zahlen
multipliziert werden konnen. Diese Operationen folgen elementaren Regeln.

e Die Elemente eines Vektorraums heissen Vektoren; eine Zahl heisst ein Skalar.

e Ein Untervektorraum F von E ist eine Untermenge von F, die beziiglich der Vektorad-
dition und der Skalarmultiplikation abgeschlossen ist.
Ein Untervektorraum enthéalt notwendigerweise den Nullvektor Og.

e Fiir eine Familie (z1,...,x,) von Vektoren aus F, definiert man Vect(z1,...,x,) (oder
Span(xy,...,x,)) als die lineare Hiille von (xy,...,x,). Es besteht in allen Linearkom-
binationen von x1, ..., x,; es ist der Untervektorraum von E den von x4, ..., x, erzeugt
ist.

Wenn Vect(xy,...,z,) = F, sagt man, dass z1,...,x, E erzeugt.

e Eine Familie (z1,...,z,) von Vektoren im E sind linear abhdingig, wenn sich irgendein

Vektor aus (z1,...,x,) als Linearkombination der anderen Vektoren schreiben lésst.

Sonst ist die Familie linear unabhdngig.

e Fine Basis eines Vektorraumes F ist eine endliche Familie von Vektoren die linear
unabhéngigen ist und die erzeugt F.

e Ein Vektorraum FE heisst endlich-dimensional, falls er von einer endlichen Familie
erzeugt wird.
In diesem Fall, gibt es Basen von E. Alle Basen enthalten gleichviel Vektoren. Diese
Zahl ist die Dimension von E und wird durch dim(E) beschrieben.

e In einem endlich dimensionalen Vektorraum von Dimension d:

(i) eine lineare unabhéngige Familie enthélt hochstens d Vektoren;
(ii) eine erzeugende Familie enthdlt mindestens d Vektoren.

e Der Rang einer Familie von Vektoren xy, ..., x, ist definiert durch
rang(zy, ..., x,) = dim(Vect(zy, ..., z,)).

Es gilt rang(z1,...,x,) < n.

e Falls B = (ey,...,eq) eine Basis von E ist, dann lassen sich alle Vektoren z € E als
eindeutige Linearkombinationen von eq, ..., e,:
= A\ep+ -+ Neg, mit Aq,..., \g € R.
Man schreibt dann
A
VB(LE) =
Ad
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Applications linéaires et matrices

2.1 Applications linéaires: généralités

Définition 2.1. Soient E et F' deux espaces vectoriels et u : E — F une fonction. On dit
que u est une application linéaire®de E dans F si les conditions suivantes sont satisfaites

(i) pour tout z,y € E, u(z +y) = u(z) + u(y).
(ii) pour tout v € E et A € R, u(Axr) = Au(x).

L’ensemble des applications linéaires de E dans F est noté L(E, F).

Tout comme pour vérifier qu’un sous-ensemble est un sous-espace vectoriel, on dispose
d’une formule abrégée pour vérifier qu'un application est linéaire.

Lemme 2.2. Soient E et F' deuz espaces vectoriels et u : E — F une fonction. Alors u
est une application linéaire si et seulement si

uAx 4+ py) = Au(x) + pu(y) pour tout x,y € E et A\, u € R.

Exercice 2.1.

Soient E et F' deux espaces vectoriels. Montrer que pour u € L(E, F')
(a) uw(0g) = Op,
(b) pour tout x € E, u(—z) = —u(x).

Exercice 2.2.
Prouver le lemme 2.2.

Dans la suite les applications linéaires d'un espace vectoriel E dans lui-méme vont jouer
un role plus important. On les appelle des automorphisme de E et on note I’ensemble des
automorphisme de F par L(E) := L(E, E).

() Lineare Abbildung oder Vektorraumhomomorphismus
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Exemple: Pour d > 1, les applications suivantes de R? dans R sont linéaires, c.-a-d.
appartiennent a £(R?). Pour z = (x4,...,7,) € R™

( ) ( T1,T2 . xn)a
g(x) = (21,225 .. nxn)
( ) (xl+x2am2+x37"‘7‘rn—l+xn7xn+xl>-
Par contre, I'application i : R* — R"™ définie par i(x) = (x; + 1, 29, ..., 2,) n’est

pas linéaire.
Les applications suivantes sont linéaires, de R" dans R:

jl@)y=xz+---+z,

k(x) = x1 — xs.
Par contre ¢,m : RY — R définies par £(z) = max{xy, Ty, ..., 7, } et m(z) = |z,
ne sont pas linéaires.
Prenons maintenant un espace vectoriel de dimension infinie. Pour a = (a,,)nen €
((R) posons
(a) =a; € R,
v(a) = (ay — ag,as — aq,...) € {(R),
(a) (CLl,CLQ,...) Eg(R>,

oqs(a) = (0,a9,a1,...) € ((R). (2.1)

Alors u € L({(R),R) et v,04,04 € LI{(R)).

ula

Og

Exercice 2.3.
Soit E un espace vectoriel, x € F un vecteur et A € R un scalaire. Quelles des deux
applications suivantes sont linéaires?

u:F— F v:E—F
y—y+zx Y = Ay.
Exercice 2.4.

Soient E, F' deux espaces vectoriels et u € L(E, F). Montrer que, si G est un sous-espace
vectoriel de E, alors u(G) = {u(x) : x € G} est un sous-espace vectoriel de F.

Exercice 2.5.
Quelles parmi les fonctions suivantes sont linéaires? Motivez vos réponses.

f R? - R? g :R* = R? h:R?* = R?

a b a a+b a a+1

b)) \a b)) 7 \a—b b)) " \b—-1
u:RX] =R v:R[X] =R w:R[X] =R

P~ P(1) P — P(0)+ P(1) P mnax P(t)
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L’ensemble £ comme espace vectoriel et algébre Fixons pour la suite de cette partie
deux espaces vectoriels £, F'.I’ensemble L(FE, F') est lui-méme munit d’une structure d’espace
vectoriel, héritée de F'. La multitude d’espaces vectoriels peut créer des confusions dans une
premiére phase; ainsi on va re-introduire briévement l'indice pour le 0 qui marque 1’espace
vectoriel au quel il appartient.

Les opérations d’addition et multiplication par une constante sont naturellement définies
sur L(E, F') comme suit. Soient u,v € L(E,F) et A € R. On définit les fonctions u + v et
Au de E dans F' par

(u+v)(z) =ulx)+v(x) et (Au)(x)=AIu(z), pourtoutx € E.

Il est facile de vérifier que les applications ainsi définies sont en effet des applications linéaires,
donc des membres de L(E, F)).

Avec ces opérations, L(FE, F') est un espace vectoriel. La preuve est simple et on la laisse
en exercice. On mentionne uniquement que I’élément neutre est la fonction nulle 0, définie
par

Oz(x) =0p pour tout x € E.

Exercice 2.6.
Montrer que, pour u,v € L(E,F)et \€ R,onau+wv € L(E,F) et A\u € L(F, F). Montrer
que (L(FE,F),+,-) est bien un espace vectoriel.

Si on se restreint de plus aux automorphisme d’espaces vectoriels (a savoir a £(FE)), on
voit apparaitre une structure encore plus riche.

Pour u,v € L(E) on peut définir la composition des deux fonctions, qu’on note wov. On
rappelle qu’il s’agit de la fonction de E dans E définie par

(uov)(z) =wu(v(xz)) pour tout x € .

On peut facilement vérifier que u o v est une application linéaire de F dans F.

Ainsi L(E) est muni de trois opérations: I’addition +, la multiplication par un scalaire -
et la composition o. En plus des propriétés d’espace vectoriel, L(E) a les propriétés suivantes.
On dit que L(E,+,-,0) est une algébre.

Proposition 2.3.
(i) Pour tout u,v,w € L(E) on auo(v+w) =uov+uow et (u+v)ow =uow+vow;
(i) pour tout u,v € L(E) et A € R on a AM(uowv) = (Au) ov =wuo (Mv);
(ili) pour tout u € L(E) on auo0z =0gz0u=0g;
(iv) il existe un unique élément de L(E) qu’on note id tel que pour tout u € L woid =
idou = u.

Mentionnons que le I’élément neutre pour la composition est application id € L(FE)
définie par

id(z) = z, pour tout = € E. (2.2)
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Preuve: On commence par le point (i). Soient u,v,w € L(E). Alors, pour x € E, par linéarité de
u, on a:

[wo (v+w)l(r) = ulv(z) +w(x) = u(v(z)) + u(w(z)) = (uov)(z) + (uow)(x),

ce qui prouve ().

(73) Solent u,v € L(E) et A € R. Alors, pour z € E, par linéarité de u, on a:
[ue (A)](x) = u(Av(z)) = du(v(z)) = Au o v)(z) = [(Au) 0 v](z),

ce qui prouve (ii).
(797) Soit w € L(F) et z € E. On a

(uoOr)(x) =u(0g(z)) =u(0g) =0 et (Ogou)(x)=0s(u(z)) =0g,

ce qui prouve (ii7).
(tv) On prend id € L(E) défini par (2.2). Alors, pour tout u € L(E) et x € E,

(uoid)(z) = u(id(z)) =u(x) et (idow)(x)=idu((x)) = u(z),

ce qui prouve (iv). O

2.1.1 Image et noyau

Définition 2.4. Soit u € L(E, F).
(i) On appelle I'image™ de u le sous-ensemble de F

Im(u) := {u(z) : x € E}.
(ii) On appelle le noyau' de u le sous-ensemble de E

Ker(u) :=={z € E: u(x) = 0r}.

Proposition 2.5. Soit uw € L(F,F). L’mage et le noyau de u sont des sous-espaces
vectoriels de F' et de E, respectivement.

() Bjld
(i) Kern
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Preuve: Commengcons par I'image. Comme u(0g) = 0 (voir 'exercice 2.1), 'image de u n’est pas

vide. Soit y1,y2 € Im(u) et A € R. Par la définition de I'image, il existe z1, 22 € E tels
que u(x1) = y1 et u(xe) = yo. Alors, par linéarité de u,

u(xy +x2) =u(xr) +ul(ze) =y1 +y2 et u(Axry) = Au(xy) = g

On en déduit que y1 + y2 € Im(u) et A\y; € Im(u). Par la proposition 1.6, Im(u) est un
sous-espace vectoriel de F'.

Passons a Ker(u). On a u(0g) = O, donc O € Ker(u), et en particulier Ker(u) n’est
pas vide. Soit x1,z2 € Ker(u) et A € R. On a

u(zy +x2) = u(z1) +u(ze) =0rp et u(Az1) = Au(z1) = 0F,

donc x; + w2 € Ker(u) et Az; € Ker(u). Par la proposition 1.6 encore, Ker(u) est un
sous-espace vectoriel de FE. O

Bien évidement, u € L(E, F) est surjective si et seulement si Im(u) = F. Un critére
similaire pour l'injectivité est donné par la proposition suivante.

{0g}.

Proposition 2.6. Soit u € L(E,F). Alors u est injective si et seulement si Ker(u) =

Preuve: Supposons pour commencer que u est injective. Il est toujours vrai que u(0g) = Op,

2.1.2

et comme u est injective, il n’y a pas d’autre élément x € E tel que u(z) = Op. Ainsi
Ker(u) = {0g}.

Inversement, supposons que Ker(u) = {Og}. Soient z,y € E tels que u(z) = u(y).
Afin de montrer que u est injective, il faut montrer que x = y. Par linéarité de u,

u(z —y) = u(r) —u(y) = OF,

donc x — y € Ker(u). Ainsi z —y = 0p, dou z = y. O

Inverses des applications linéaires

Soit uw € L(FE,F). Rappelons-nous que u est avant tout une fonction, il existe donc une
notion d’inverse de u en tant que fonction. On va utiliser cette méme notion d’inverse dans
le cadre des applications linéaires.

Comme toute fonction, u admet un inverse si et seulement si elle est bijective. On dira
souvent que u est inversible pour dire simplement que w est bijective. Si u est inversible,

I’application inverse de u, notée u~

L. F — E, est définie par:

pour tout y € F, u™'(y) est le seul vecteur de E tel que u(u"'(y)) = .
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Proposition 2.7. Siu € L(E,F) est inversible, alors u™" € L(F, E).

Preuve: Soit u € L(F, F) inversible. Prenons z,y € F' et A € R. On veut montrer que
~1 _ -1 ~1 -1 oyl
u(z+y)=u (x)+u (y) et u (Axr)=Au"(x).
Pour cela il suffit d’observer que, par linéarité de u,

u(u™ (@) +u” () = u(u (@) +u(uT () =z +y et
u()\u_l(:n)) = )\u(u_l(g:)) = \z.

Mais u est inversible, donc u=!(z + y) est I'unique élément e de E tel que u(e) = x + y.

De méme, il existe un unique élément f € E tel que u(f) = Az, & savoir u~!(A\z).
Comme on vient de voir que v~ *(z) + u~1(y) et Au~!(z) remplissent ces conditions,

on conclut que u=(z +y) = u=H(z) + ul(y) et u(Ax) = A~ (). O

Il peut étre utile de se souvenir de ce lemme qui montre comment les fonctions inversibles
agissent sur les familles génératrices / libres de vecteurs.

Lemme 2.8. Soit w € L(E,F) une application linéaire inversible et soit eq,..., e, € E.
Alors,
(i) (e1,...,e,) est génératrice pour E si et seulement si (u(ey),...,u(e,)) est génératrice
pour F';
(i) (e1,...,en) est libre si et seulement si (u(ey), ..., u(e,)) est libre.

Exercice 2.7.
Prouver le lemme 2.8.

Exercice 2.8.
Soit u,v € L(F) et supposons que u est bijective. Monter que

(a) Ker(uowv) = Ker(v),
(b) Im(v ou) = Im(v),

Exercice 2.9.
On se place sur 'espace des polynomes a coefficients réels R[X]. Soit D : R[X] — R[X] qui
associe a chaque polynome P € R[X] sa dérivée par rapport & X. (Par exemple D(X3+2X) =
3X?%+2).

(a) Montrer que D € L(R[X]).

(b) Trouver Ker(D) et Im(D). Est-ce que D est injective/surjective/bijective?

(c) Et si on se restreint aux polynémes de degré au plus n, R,[X]? Plus exactement, soit

D, : R,[X] — R,[X] défini comme D (noter que c’est une fonction différente de D,

car les domaines de départ et d’arrivée ne sont pas les mémes). Trouver Ker(D,,) et
Im(D,,).
(d) Est-ce que D est inversible?
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(e) Trouver une application linéaire I € L(R[X]) telle que Dol =id (c.-a-d. D(I(P)) =P
pour tout P € R[X]).
Pourquoi cela n’implique pas que D est inversible? (Indication: Calculer I(D(P)) pour
P e R[X].)

2.1.3

Applications linéaires en dimension finie

Fixons deux espaces vectoriels E, F. On va supposer que E est de dimension finie. Le
théoréme suivant est un outil trés puissant pour 1’étude des applications linéaires.

Théoréme 2.9 (Théoréme du rang). Soit u € L(E, F). Alors

dim(Ker(u)) + dim(Im(u)) = dim(FE).

Preuve:

Soit eq,...,er une base de Ker(u). Par le théoréme 1.16, on peut compléter ey, ..., ex
en une base eg,...,e, de E (oun > k est la dimension de E).
Alors on prétend que la famille (u(eg41),...,u(ey)) est une base de Im(u), donc que

dim(Im(u)) =n — k = dim(E) — dim(Ker(u)), ce qui est la conclusion désirée.

Montrons que Vect(u(egt1), ..., u(e,)) = Im(u). Le fait que Vect(u(egt1),...,u(e,)) C
Im(u) est évident, on va donc se concentrer sur 'inclusion inverse.
Soit y € Im(u). Alors on peut écrire y = u(z) pour un certain z € E. De plus, on peut
écrire x = Ajep + - -+ 4+ Apen avec Aq, ..., A, € R. Ainsi, par linéarité de u,

y=u(x) = Z Aiu(e;) = Z Aiu(e;),
i=1

i=k+1

car les premiers k termes de la premiére somme sont nuls. On a donc prouvé que y €
Vect(u(€eg41), - - -, u(en)), donc que Vect(u(ext1),-..,ule,)) = Im(u).
Montons maintenant que (u(ex+1),...,u(e,)) est libre. Soient Agy1,..., A, € R tels
que
Aerru(ers1) + -+ Aqulen) = u(Agr1€k+1 + -+ Anen) = 0.

Ainsi Agp1€p41 + -+ -+ Anen € Ker(u). Comme e, . .., e, est une base de Ker(u), il existe
Al, .-, Ak € R tels que

Akt1€k+1 + -+ Anen = Areq + -+ + Ageg.

Mais cela revient a

Arer + o+ Agegp — Agt1€k41 — - — Anen = 0p,
et comme eq,...,e, est libre, & Ay = --- = A, = 0. On vient donc de prouver que
(u(eg+1),-..,u(ey)) est libre, ce qui finit la preuve du théoréme. O

Un corollaire immédiat du théoréme du rang est le suivant.

— 43 —



CHAPTER 2. APPLICATIONS LINEAIRES ET MATRICES

Corollaire 2.10. L’image de u est de dimension finie et dim(Im(u)) < dim(E).

La dimension de Im(u) est souvent appelée le rang de u et est notée
rang(u) := dim(Im(u)).

Deux conséquences qui témoignent de la puissance du théoréme 2.9 sont les suivantes

Corollaire 2.11. S’il existe une application linéaire inversible w € L(E, F), alors dim(E) =
dim(F).

Preuve: Soit u € L(E, F) inversible. Alors dim(E) = dim(Ker(u)) + dim(Im(u)) = dim(F), car
Ker(u) = {0}, donc dim(Ker(u)) =0 et Im(u) = F, donc dim(Im(u)) = dim(F). O

Corollaire 2.12. Soit u € L(E). Alors on a équivalence de:
(1) w est injective;

(ii) w est surjective;

(iii) u est inversible.

Preuve: Evidement (iii) = (7) et (iii) = (4¢). On va montrer les deux implications inverses.
Soit u € L(E) injective. Alors dim(Ker(u)) = 0, donc par le théoréme 2.9, dim(F) =
dim(Im(u)). Mais Im(u) est un s.e.v. de E; la proposition 1.19 implique alors que Im(u) =
E, donc que u est surjective. Ainsi u est surjective et injective, donc bijective.
Supposons maintenant que u € L(E) est surjective. Alors le théoréme 2.9 dit que
dim(F) = dim(Ker(u))+dim(Im(u)) = dim(Ker(u))+dim(E), donc que dim(Ker(u)) = 0.
En autres mots Ker(u) = {Og}, ce qui veut dire que u est injective, donc bijective. O

Exercice 2.10.
Soit E = R? et soient u,v : R® — R3 définies par

a 3a + 2c¢ a 3a + 2¢
ulb|l=a+b+c et v|b|l=|a+b+c],
c c—a c b+ 2c

pour a,b,c € R.
(a) Montrer que u,v € L(R?)

(b) Est-ce que u ou v est inversible?
Indication: Chercher & voir si le noyaux est réduit a {0}.
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2.2 Introduction aux matrices

Les matrices sont des objets omniprésentes dans les différentes domaines des mathématiques.
De plus elles sont trés souvent utilisées dans les applications des mathématiques. Une de leur
utilisations essentielles est la description des applications linéaires.

On commence par donner une descriptions des matrices et des opérations s’y appliquant,
ensuite on va aborder le lien avec les applications linéaires.

Définition 2.13. Soient m,n € N. Une matrice A de taille m X n a coefficients dans R
est une famille (a;j)1<i<m d’éléments de R. Elle est représenté par un tableau rectangulaire

1<j<n
a1 Qi2 - Qinp
A Q21 Q22 - QG2n
Am1 Gm2 " Gmn

)

L’indice i est 'indice des lignes et ["indice 7 est celui des colonnes.
L’ensemble de matrices de taille m x n a coefficients dans R est noté M, »(R).

2.2.1 Opérations sur les matrices

Les matrices peuvent étre additionnées, multipliées par des constantes et dans certains cas

multipliées entre elles.
Soient m,n € N et deux matrices A = (a;;) et B = (b;;) de M,,, ,(R). De plus, soit
A € R. On défini les matrices A+ B € M,;, o(R) et A- A € M,,, ,(R) par

ai+big - a1, +bip Aajg o Aary,
avB=| i e AA—| ~
Am,1 + bm,l R i bm,n )\am,l s )\am,n

Proposition 2.14. L’ensemble M,, ,(R) avec les opérations définies au-dessus est un
espace vectoriel. L’élément neutre est la matrice

0 --- 0

)

Exercice 2.11.
Démontrer la proposition 2.14. (Il s’agit simplement de vérifier que les conditions de la

définition 1.1.)
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Soient m,n,p € N. Pour A = (a;x) € Mpun(R) et B = (by;) € M, ,(R) on définit le
produit des matrices A et B comme la matrice AB = (¢;;) € M, ,(R) (aussi notée A x B)
dont les entrées sont données par

n
Cij = Zai,kbk’j pour 1 <i<metl<j<p.
k=1

Attention! pour des matrices A, B dont les tailles ne sont pas compatibles (comme dans la
définition au-dessus) le produit de A et B n’est pas définit.

La multiplication matriciélle suit des régles intuitives, similaires aux régles de la multi-
plication des nombres. Elles sont décrites dans la proposition suivante.

Proposition 2.15. Soient m,n,p,q € N.
(i) Pour tout A € My, »(R) et B,C € M, ,(R) on a A(B+C)=AB+ AC.
(ii) Pour tout A,B € M, o,(R) et C € M,,,(R) on a (A+ B)C = AC + BC.
(iii) Pour tout A € M, »(R) et B € M, ,(R) et C € M, ,(R) on a (AB)C = A(BC).
(iv) Pour tout A € My, ,(R) et B,C € M, ,(R) et A € R on a A\(AB) = (AM)B =
A(AB).

On va surtout utiliser la multiplication des matrices pour les matrices carrées, a savoir
les matrices de M,, ,(R) pour un n € N. On écrira M, (R) a la place de M,, ,(R) pour
raccourcir la notation. La proposition 2.15 est surtout importante dans ce contexte; on la
compléte par propriété suivante.

Proposition 2.16. Soit n € N. Alors la matrice

10 -0
In: .
0 0 - 1

est l'unique matrice de M,,(R) telle que, pour tout A € M, (R),
Al, = I,A=A. (2.3)

On appelle I,, la matrice identité de taille n.
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Preuve: Commengons par montrer que 2.3 est satisfait pour tout A € M, (R). Par la régle de
multiplication des matrices, pour une matrice A = (a; ;) € My(R), on a

a1l a2 v G1n 10 -+ 0 a1 ai2 v Gin
a1 G2 -+ Q2p o1 .- 0 a1 a2 -+ G2n

A-I, = . ) . 2 = ) . ) = A
an,1 Qan2 - Adnn o0 - 1 Gn,1 QGn2 " QGnn

De méme I, - A = A.

Montrons maintenant l'unicité de la matrice I,,. Soit J € M, (R) telle que A-J =
J - A= A pour tout A € M,(R). En appliquant cela & A = [,,, et en utilisant (2.3) on
trouve

O]

Attention! Généralement la multiplication des matrices n’est pas commutative. En effet,
pour n > 2 il existe A, B € M,,(R) tels que AB # BA.

Exercice 2.12.
Trouver pour tout n > 2 des matrices A, B € M, (R) tels que AB # BA.

2.2.2 Matrices inversibles

Définition 2.17. Soit n € N et A € M,(R). On dit qu’une matrice B € M,,(R) est un
inverse de A si AB = BA = I,,. Si une telle matrice existe, on dit que A est inversible().

L’étude des matrices inversibles est particuliérement intéressant. On donne une premiére
proposition les concernant; on va y revenir dans les parties 2.3.3 et 2.3.4.

Proposition 2.18.
(i) Si A est inversible, alors il existe un unique inverse qu’on note A~

(ii) Soient A, B € M, (R) deuz matrices inversibles. Alors AB est une matrice inversible
et (AB)™' =B 1AL

Exercice 2.13.
Démontrer la proposition 2.18.

Exercice 2.14.
Soient A, B € M, (R) telles que AB = 0. Montrer que A et B ne sont pas inversibles.

Exemple: Calculer
0 0 o 01
0 1 00

Déduire des exemples de matrices non-nulles mais non-inversibles.

(iV)Regulire Matrix
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2.2.3 La transposition

Une opération spécifique aux matrices est la transposition. Elle consiste a échanger les lignes
et les colonnes d’une matrice. On peut aussi la voir comme une réflexion de la matrice suivant

sa diagonale.

1<j<n

1<j<m.

Définition 2.19. Soient m,n € N et A = (a;;)1<i<cm € My n(R). La transposée de A

est la matrice AT = (a];) 1<i<n € My m(R) définie par af; = a;; pour tout 1 <i < n et
“1<<m ’

Donnons quelques exemples pour illustrer la notion.

123T_ ;L abT_ac
4 5 6) 6’cd_bd'

W N =

Proposition 2.20. Soit A, B € M, (R). Alors (AB)T = BT AT.

Preuve: Montrons I'égalité élément par élément. Notons A = (a;;)1<ij<n €t B = (bij)1<ij<n. On

va aussi noter a;fj =a;; et b;fj = bj; les entrées de AT et BT,

Soient k, ¢ € [1,n]. L’entrée de la ligne k et la colonne ¢ de (AB)? est égale a I'entrée

de la ligne /¢ et la colonne k de AB. Il s’agit donc de
(AB){y = agibig + -+ + agnbpk-
D’autre part, 'entrée de la ligne k et la colonne ¢ de BT AT est
(BTAT Yo = bl al j+ -+ bl pal = by gagy + - + by pagn.

Ainsi (AB)T = BT AT,

O]

Corollaire 2.21. Soit A € M, (R). Alors A est inversible si et seulement si AT l’est. Quand

les deuz sont inversibles, (AT)™1 = (A=HT.

Preuve: En utilisant la proposition 2.20 on vérifie que si A est inversible
(Afl)TAT — (AAfl)T — In — (AflA)T — AT(Afl)T'
Donc AT est inversible et (AT)~! = (4~1)T.

Exercice 2.15.
Trouver toutes les matrices A € M,,(R) telles que

(a) A= AT.
(b) A= —AT.
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2.2.4 Formes particuliéres

Il est souvent commode d’écrire une matrice comme une collection de lignes ou de colonnes.
Soit A = (a;;) € My, »(R). On peut alors écrire

Ly
A=|C... Cn = ,
L,
ou C1,...,C, sont les colonnes de A et Lq,..., L, sont les lignes. Plus précisément, pour
1<i<metl1<j<n,
At
Li = (CLZJ, Ce ,am) € Ml,n et Cj == € MmJ.
Am,j

Pour les matrices carrées, certaines formes de matrices sont particuliérement intéressantes.

Définition 2.22. Soit A = (a;;) € M,(R). On dit que A est une matrice triangulaire
supérieure si a; ; = 0 pour tout i > j, et triangulaire inférieure, si a; ; = 0 pour tout i < j.
On dit que A est une matrice diagonale si a; ; = 0 pour tout 1 # j.

Les formes générales des matrices triangulaires supérieures, triangulaires inférieures et diag-
onales, respectivement, sont:

a1x a2 ... Qinp a1 0 e 0 a1 0 e 0
0 Q22 ... QA2p 921 29 ... 0 0 29 ... 0
; : ;
0 0 ... apn p1 Q2 ... Qg 0 0 ... app

2.2.5 Puissance des matrices

Soit A € M, (R). Comme pour les nombres, on peut multiplier A par elle méme plusieurs
fois pour obtenir les puissances de A. Ainsi on pose, pour kK € N, k£ > 1:

AP =4 A.
—

k fois

On pose aussi par convention A° = I,,.
Certaines propriétés des puissances des nombres sont conservées. Pour k,/ € N on a bien

AR AL — AR o (Ak)f — Akt
D’autres ne le sont pas. ..

Exercice 2.16.
Trouver trois solutions distinctes A € My(R) de I'équation A? = A.
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Formule du binéme pour les matrices.

Lemme 2.23. Soient A, B € M, (R) telles que AB = BA (on dit que A et B commutent).
Alors

(A+B)" = i (Z) Ak gk, (2.4)

k=0

Attention! Si A et B ne commutent pas, I’équation (2.4) n’est plus valable.

Exercice 2.17.
Soient

0
A=10
1

coo
oo o
@
-+
s
I
oo o
oo~
oo

Calculer (A + B)? et A2 +2AB + B2
Proposer une forme générale pour le carré de la somme de deux matrices. Pouvez vous la
généraliser a la puissance n“"¢ de deux matrices?

Matrices nilpotentes

Définition 2.24. Une matrice A € M,,(R) est dite nilpotente s’il existe k € N tel que
AF =0.

La notion de nilpotent n’existe pas pour les nombres. En effet, il n’existe pas de x € R
(ou x € C) non-nul tels que z* = 0. Ca vient essentiellement du fait que tout nombre non-nul
admet un inverse; ce n’est pas le cas pour les matrices.

Exemple: Soit
010
N=|[0 01
000

On peut alors calculer les puissances successives de la matrice NV:

00 1 000
N2=1[0 0 0 et N>*=10 0 0
000 000
Ainsi, N3 = N*=... = 0.

Exercice 2.18.
Prenons toujours la matrice N de I'exemple précédent. A 'aide du la formule du binéme,
calculer (I3 + N)™ pour n € N. (Motivez bien les étapes du calcul).
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Exercice 2.19.
Soit A € M,,(R) une matrice triangulaire supérieure avec 0 sur la diagonale. Plus précisément
A est de la forme

0 Q2 ... Qip
0 0 - Qop
A=\ . .
0 0 ... 0
Calculer A2, A3, .... Que pouvez vous déduire sur A*? Montrez que A" = 0

Puissance des matrices diagonales Soit A € M, (R) une matrice diagonale:

a1 0 Ce 0
A 0 &.22 0
0 0 Anom

aft, 0 ... 0
. 0 a3 ... 0
A= . A .|, pour tout k€ N. (2.5)
0 0 Ay

Exercice 2.20.
Montrer la formule (2.5) par récurrence sur n.

Exercice 2.21 (difficile).
Soit n € N et A € M, (R). Montrer que la famille (1,, A, A%, ... ,A”z_l) est liée.

Le calcul des puissances d'une matrice est un probléme trés intéressant d’un point de vu
pratique. On a vu quelques exemples ou le calcul est possible, mais en général, il s’agit d’un
probléme compliqué. Illustrons son utilité par un exemple.

2.2.6 Les matrices comme outil de modélisation

On a déja vu comment l’algébre linéaire peut étre utile pour la résolution d’équations de
récurrence comme celle de Fibonacci (voir partie 1.4). En utilisant les matrices on peut décrire
(et résoudre, comme on va le voir plus tard) des équations de récurrence plus complexes.

Exemple: population de deux types de bactéries Supposons qu’on a une population
de bactéries de deux types A et B. A chaque instant, une bactérie de type A donne naissance
a une bactérie de type A et quatre de type B, puis meure. Une bactérie de type B donne
naissance & une bactérie de type A et une de type B. Quelle est la population aprés n étapes,
sachant qu’on commence par une seule bactérie de type A?
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On peut modéliser cela comme suit. Notons a,, et b, le nombre de bactéries de type A et
B, respectivement, a I’étape n. Alors on a la formule suivante:

pi1 = ap+b, et by =4a, + b, (2.6)

De plus la condition initiale est ag = 1 et by = 0.
La population totale de bactéries aprés n étapes s’écrit p,, = a,, + b,. Remarquons qu’on
n’a pas une simple équation de récurrence pour p, comme celles traitées dans la partie 1.4.

Qn

by,
anp+b, \ (1 1
K1 = (4% +bn> - (4 1) Xn.

o) 0= (00) (o)

Malheureusement il n’est pas evident de deviner la forme générale de la matrice

Par contre, si on note X, = ( ) pour chaque n € N, on observe que

Ainsi

n

11
4 1
On va voir dans la partie 3 une technique pour le faire. Il se trouve que dans le cas présent,
si on pose ¢, = 2a, — b, et d,, = 2a,, + b,, pour tout n, alors

Cny1 = —C, et  dpi =3d,, VYnelN.

e\ (-1 O\"[(co\ _[((=D"c\ _[2-(=1)"
d,] \0 3 dy) 3"dy N 2.-3" )
Cela suffit de retrouver a,, et b, car

1 1 1
ay, = Z(cn +d,) = 5(3” +(=D") et b,= é(dn —c,) =3"—(—1)".

Ainsi

Matrices d’adjacente et matrices stochastiques. Un graphe est un couple d’ensembles
G = (V, E) ou les éléments de V sont les sommets de G et E C V' x V représente les arétes de
G. 1l symbolise un réseau avec des arétes orientées (ou pas, suivant la définition exacte) entre
certains de ses sommets. Pour un graphe fini G (c.a-d. avec V fini), on définit sa matrice
d’adjacente comme suit.

On commence par noter V = {vy,...,v,}. La matrice d’adjacence A = (a;;)1<ij<n €
M, (R) est définie par

a;; = 1 si et seulement si (v;,v;) € E,

donc si et seulement si il y a une aréte de v; vers v;. Sinon, on pose a; ; = 0. Ainsi la matrice
d’adjacence décrit parfaitement le graphe G.

Si de plus le graphe G a un poids positif w, associé & chaque aréte e € E, on peut rajouter
cette information a la matrice A, en posant

S L si (v;,v5) € E,
" 0 si (Ui,Uj) ¢ E.
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Un vecteur colonne X € M, ;(R) (avec des entrées positives) peut étre interprété comme
une attribution de “masse” a chaque sommet: chaque sommet v; a une masse x;.

Imaginons la dynamique suivante: a chaque étape, chaque sommet v; transfére une pro-
portion a; ; de sa masse au sommet v;. Pour que cela ai un sens, il faut que

Y a;=1, Vi<i<n (2.7)
j=1

Alors, si on commence par une attribution de masse X, aprés une étape, on aura une distri-
bution de masse Y, ou

X = , Y= Ouyj:Zai,jxi, Vl<j<n.

Tn, Yn =1

On peut écrire cela de facon plus compacte comme Y = AT X. Plus généralement, aprés k
étapes, on aura une distribution (AT)*X.

La condition (2.7) garantie qu’il y a conservation de la masse totale dans le graphe. Si
cette condition est satisfaite, on dit que A est une matrice stochastique & gauche et AT une
matrice stochastique a droite.

Cette dynamique décrit une marche aléatoire sur le graphe G (un cas particulier d’une
chaine de Markov). Imaginons qu’'on dispose d’un kilo de sable. On se donne un vecteur
colonne X = (z;)1<i<n € M,,1 avec

x; >0, pourtout 1 <7 <n et Z:pizl.
i=1

Pour chaque 7, on place z; kilos de sable au sommet v; de G. On lance ensuite la dynamique
décrite avant: le sable de v; est distribué entre ses voisins, v; recevant de v; une proportion
a;j de sable.

Supposons qu'un grain de sable est coloré en rouge et qu’on le suit pendent cette évolution.
Alors, a chaque étape, si le grain se trouve & v;, il a une probabilité a; ; d’étre envoyé au
sommet v;. On va supposer que cette dynamique est markovienne, c.a-d. que I'évolution
future du grain de sable dépend uniquement de sa position actuelle, pas de son évolution
passée.

Ainsi, la positon du grain rouge aprés k étapes est décrite par le vecteur

Y1
| = (AT)’“X :

Yn
En effet, il y a une quantité y; de sable au sommet v;, donc une probabilité y; que le grain
rouge s’y trouve.
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Exemple: la parade nuptiale des bourdons. Comme discuté avant, les matrices peu-
vent étre utilisées pour décrire certaines évolutions aléatoires appelées des chaines de Markov.
On va illustrer cela par un exemple concret.

L’accouplement des bourdons suit une procédure a plusieurs étapes. Celles-ci peuvent
étre classées comme suit:

(App) Approche: un male se dirige vers la reine. Il s’approche a courte distance de la reine,
et peut continuer la parade, ou se retirer (c’est le plus souvent la cas).

(IF) Inspection de la femelle: le maéle suit la reine avec ses antennes tendues vers elle.
Il inspecte souvent la reine au niveau de la téte (région ou se trouvent les glandes
produisant les phéromones sexuelles), mais parfois au niveau de I’'abdomen.

(T) Tentative d’accouplement: le méale s’approche de la reine, il s’accroche a elle. 11 frotte
de ses pattes antérieures I'extrémité de I'abdomen de la femelle. Il sort ses génitalias
(appareil reproducteur) et tente de pénétrer la reine.

(Acc) Accouplement: lors de I’accouplement, le comportement du méle se caractérise par des
mouvements de battements des pattes sur 'extrémité de 'abdomen de la reine.

Pour observer la séquence, on place 80 bourdons dans un milieu favorable, et on les observe
pendant 15 minutes. Les bourdons passent par les différentes phases de la parade nuptiale.
On observe chaque bourdon chaque minute pour déterminer les phases par les quelles il passe.
On rajoute quelques états dans notre tableau:

(D) depart: la situation de depart.
(AA) Accouplement accompli: le méle quitte la séance aprés accouplement.
(AM) Abandon du male: lors de la séquence, le bourdon méle peut adopter un comportement
indifférent vis-a-vis de la reine; il sort de la parade nuptiale et n’y revient jamais.

Les observations sont classées dans le tableau suivant:

Vers

De | |App |IF | T | Acc | AM | Total
D 80 | 0[0]| O 0 80
App | 102 |51 10| 0 | 41 | 204
IF 16 | 6 28| 0 7 57
T 6 |00 22|10 | 38

Si on suppose I’évolution des bourdons markovienne, on peut estimer & partir de ces obser-
vations les probabilités de passage d'une phase a une autre. Elles sont obtenues en divisant
chaque ligne du tableau précédent par le nombre total d’observations y correspondent. Ra-
joutons les transition & partir des états Acc, AM et AA:

App IF T Acc AM AA
D 1 0 0 0 0 0
App ;l—g;j =0.5 % =0.25 ;@({48 =0.05 0 2—914 =02] 0
IF 5 = 03| £=01| £2=05 . 0 5= 0.1 0 (2.8)
T |&=015 0 0 Z-06|82=025| 0
Acc 0 0 0 0 0 1
AM 0 0 0 0 1 0
AA 0 0 0 0 0 1
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Cette évolution peut étre décrite par le graphe suivant
0.5 0.2

La matrice associé a ce graphe (en ignorant I’état D) est

05 025 005 0 02 O 05 03 015 0 0 O

03 01 05 0 01 O 025 01 0 0 0 O

1 015 O 0 06 025 0 r |1 005 05 0 00O
A= 0 0 0 0 0 1 et A= 0 0 06 00O
0 0 0 0 1 0 02 01 025 0 1 0

0 0 0 0 0 1 0 0 0 101

Exercice 2.22.

Verifier que les matrices A et AT sont stochastiques (a gauche et a droite, respectivement).
Si on suppose que les bourdons se comportent de facon markovienne, donner une distribution,
minute par minute, des bourdons entre les différents états de la parade nuptiale. Pour
cela, prenons Xy le vecteur colonne avec 80 en premiére coordonnée et 0 ailleurs, et posons
X1 = ATX,, pour k > 0. Alors X, contient le nombre moyen de bourdons dans chaque
état de la parade aprés k£ minutes.

Est-ce que les observations sont cohérentes avec les simulations? Pour cela il faut voir si le
nombre total (sur toutes les étapes de 'algorithme) de bourdons observés dans chaque état
est le méme dans notre simulation que dans le tableau (2.8).

Exemple: Page rank algorithm. Comment décider quelles pages internet sont plus
importantes que d’autres lors une recherche? Le contenu individuel de chaque page (par
exemple le nombre de fois que le mot recherché y apparait) n’est évidement pas un bon
indicateur. On peut par contre considérer que plus il y a de liens vers une page, plus cette
page est importante. Cette observation est a l'origine des algorithmes utilisés par les moteurs
de recherche.

Imaginons 'internet comme un graphe G' = (V, E) dirigé, chaque sommet étant une page
internet, et chaque aréte symbolisant un lien. Posons n = |V/| et donnons pour commencer
une importance égale a chaque page:
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Figure 2.1: Un graphe avec les proportions transmise par chaque aréte. A gauche une
commence avec chaque sommet ayant une importance égale, a savoir 1/5. Aprés un pas de
redistribution, on obtient X, décrit a droite.

Cette attribution d’importance n’est pas réaliste. On va donc considérer en premiére ap-

proximation, que chaque page est aussi importante, qu’il y a d’arétes pointant vers elle. On

consideére ainsi que chaque page v; distribue son importance uniformément parmi ses voisins.
Notons d(v;) le nombre d’arétes sortantes de v; et posons

{ﬁ si (v;,v) €E

0 sinon.

A= (a;;) € M,(R) avec a; ; =

La matrice A est stochastique a gauche. L’importance de chaque sommet v; est alors donné
en cette premiére approximation par X; = AT Xj.

Cette facon de classer les pages n’est pas parfaite non-plus: une page devrait étre plus
importante si d’autres pages importantes y sont reliées. Ainsi on pose

XQ = ATXl, X3 = ATXQ, etc.

Prenons 'exemple du graphe de la figure 2.1. Dans ce cas la matrice A s’écrit

01100 0030
£ 00 % 3 . 10001
A=10 00 1 0 et A"=|[3 00 0 0
000 1% 0%1(1)0
01000 05030

Si on applique AT de facon répétée on trouve

X | ATX | (AT)2X | (ATYX | (ATYAX | (ATYX | (ATYSX | (AT)7X | (AT)SX
v |20% | 17% | 23% | 18% | 20% | 21% | 19% | 20% | 20%
vy |20% | 30% | 26% | 35% | 28% | 30% | 31% | 29% | 31%
vs [20% | 10% | 8% | 12% | 9% | 10% | 10% | 10% | 10%
vy | 20% | 27% 20% 17% 23% 18% 20% 21% 19%
vs | 20% | 17% 23% 18% 20% 21% 19% 20% 20%
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2.3 Applications linéaires et matrices

Fixons pour l'intégralité de cette partie deux espaces vectoriels E, F' de dimension finie n et
m respectivement. De plus, soient £ = (ey,...,¢,) un base de F et F = (f1,..., fn) une
base de F.

2.3.1 Représentation des applications linéaires par des matrices

On rappelle que tout vecteur x € E admet une écriture dans la base & qu’on a noté Vg (z).
(Voir la partie 1.3.4.) De plus, on a fait la convention d’écrire Ve (z) verticalement, ainsi
Ve(x) € Mua(R).

Dans la partie précédente on a vu que M,, ;(R) admet une structure d’espace vectoriel.
Dans le langage des applications linéaires, la proposition 1.23 nous dit que la fonction Vg :
E — M, 1(R) est une application linéaire bijective.

Dans cette partie, on va voir que les applications linéaires admettent une représentation
similaire par des matrices.

Définition 2.25. Soit u € L(E,F). La matrice Matr¢(u) = (a;;) € Mpyn(R) définie
par

= Vr(ulej)),  pour tout j € [1,n], (2.9)

am hj

est la matrice de u dans les bases £, F.

Le plus souvent on va traiter le cas des automorphisme de E. Dans ce cadre il est naturel
d’utiliser la méme base pour I'espace d’arrivée et de départ. Ainsi, pour u € L(E), on écrit
Matg(u) = Mat&g(u) S Mn(R)

Théoréme 2.26. Soit u € L(E,F) et x € E. Alors
Vr(u(z)) = Matze(u) Ve (z). (2.10)

De plus Matz ¢(u) est lunique matrice qui a cette propriété.

Preuve: On va commencer par montrer (2.10) pour les vecteurs de la base £. Soit e; un vecteur
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de &£. Alors

0
0
Ve(ej) = |1
0
0

ou ’entrée 1 est sur la j¢"¢ ligne. Ainsi,
al?]

Mat]:,g(u)Vg(ej) = = V]:(u(ej)). (2.11)

am?J

La premiére égalité vient de la régle de multiplication des matrices, la deuxiéme vient de
la definition de Matr ¢(u)

Montrons maintenant (2.10) pour un vecteur quelconque z. Soit € E. Comme & est
une base de E, il existe des scalaires Aq,..., A, € R tels que £ = Aje; + - - - + \pe,. Alors,
par la linéarité de u, u(x) = Mu(er) + - -+ + Apu(e,). Ainsi

Matr g (u)Ve(z
= Matr g(u) ()\1Vg(el) 4+ )\an(en)) par linéarité de Vg
= MMatrg(u)Ve(er) + -+ ApMatr g(u) Ve (ep) par linéarité de multip. matricielle
= MVr(u(er)) + -+ MVre(ule))) par (2.11)
= Vr(Mu(er) + -+ + Aulen)) par linéarité de Vr
= V]:(u(/\161 4 )\nen)) par linéarité de u
= Vr(u(z)).

En fin, observons que Matr ¢(u) est 'unique matrice qui satisfait (2.10) pour tout
x € E. En effet si on applique (2.10) au vecteur e; de la base £, on obtient (2.9). Ainsi
(2.9) n’est qu’un cas particulier de (2.10). O

Quand E = F on utilise par défaut la méme base pour I'espace de depart et celui d’arrivé.
Ainsi, pour u € L(E) et £ une base de E, on écrit

Matg (u) = Mat&g (U) .

Exemple: Considérons les transformations suivantes du plan R?: wu est la rotation autour
de 0 d’angle 6 (pour un certain 6 € [0, 27]) et soit v la réflexion par rapport a la
diagonale principale de R? (voir fig. 2.2) Les deux sont des applications linéaires.
On peut calculer leur matrices dans la base canonique € de R?, & savoir la base
formée de e; = (1,0) et e = (0,1). On a

u(er) = <Z?§g) = cos fe; + sin e, u(esy) = <—Cs;1199> = —sinfe; + cos fes,

ot v(ey) = (g’) —er v(er) = (109) — e
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Figure 2.2: L’effet des transformations u et v.

Ainsi

Mate (1) = <C059 ‘51“9) ot Mate(v) — ((1) [1))

sinf  cosf

On peut également essayer d’écrire les mémes transformations dans une autre
base. Posons fi = e; + ey et fo = —e; + e, Alors il est facile de voir que
F = (f1, f2) est une base de R?. Un calcul rapide nous montre que

Matr(u) = (COSQ —sm@) et Matr(v) = <(1) _01) :

sinff cosf

Exercice 2.23.
Soient A, B € M, »(R). Montrer que si AX = BX pour tout X € M, 1(R), alors A = B.

2.3.2 Addition et multiplication par un scalaire

On voit ici une paralléle se créer entre les application linéaires et les matrices. De plus, on
a vu que les applications linéaires de L(E, F) et les matrices de M,, ,(R) ont toutes les
deux une structure d’espace vectoriel. Il n’est pas surprenant que ces deux structures sont
équivalentes.

Proposition 2.27. L’application Matre : L(E, F) — M, »(R) est linéaire et bijective.
Plus précisément, pour u,v € L(E, F) et A € R,

(a) Matrg(u +v) = Matze(u) + Matzg(v),

(b) Matzgc(Au) = AMatz ¢ (u),

(c) Matrg(u) =0 si et seulement si uw =0,

(d) pour toute matrice M € My, n(R), il existe w € L(E, F) telle que Matz ¢(w) = M.
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Preuve:
Montrons (a). Soient u,v € L(E, F'). Alors, pour tout z € E,

Vr((u+v)(@) = Vr(u(z) +v())
= Vr(u(z)) + Vr(v(z))
= Matr g (u)Ve(z) + Matr g (v) Ve ()
= (Matzg(u) + Matr g(v)) Ve(z).

Ainsi Matr ¢(u) + Matr ¢(v) satisfait (2.10) pour u + v, donc
Matr ¢ (u +v) = Matr g(u) + Matr g(v).

Le méme raisonnement fonctionne pour montrer le point (b).

Passons au point (c). Supposons que u est telle que Matr ¢(u) = 0. Alors, pour tout
reFl,

Vr(u(z)) = Matr e (u)Ve(z) =

Mais Vr est une fonction injective, donc u(x) = 0. Comme x était choisi arbitrairement
dans E, u est 'application nulle. L’implication inverse (c.a-d. le fait que Matz £(0) = 0)
est evident par la linéarité de Matr ¢.

Comme Matr g : L(E,F) = My, n(R) est linéaire (on vient de le montrer au points
(a) et (b)), le fait que Ker(Matr ¢) = {0} (ce qu’on a montré au point (c)) nous indique
que Matr ¢ est injective.

Montrons la surjectivité, notamment (d). Soit M € My, ,(R). On a vu déja que
la fonction Vr : F' — My, 1(R) est bijective (proposition 1.23). Ainsi on peut définir
w: E — F par

w(z) =Vz (MVg(z)), VreE.

La linéarité de V- L V& et de la multiplication matricielle nous montre que w € L(E,F).
Il est évident que w satisfait

Vr(w(z)) = MVeg(z), Vzx € E,
donc que Matr ¢(w) = M. O

Exercice 2.24.
De la proposition 2.27 et du corollaire 2.11 on déduit que L(E, F') et M,,, »(R) ont la méme
dimension. Trouver leur dimension et exhibant une base de M., ,,(R).

2.3.3 Composition vs. multiplication; inverse

Introduisons un troisiéme espace vectoriel G de dimension p et une base G = (g1,...,0p)
de G.

Dans certaines situations, on peut composer des applications linéaires. De méme, si elles
ont la bonne taille, on peut multiplier deux matrices. Les deux opérations sont intimement
liées.
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Proposition 2.28. Soit u € L(E, F) et v e L(F,G). Alors,

Matg ¢ (v o u) = Matg r(v)Mat r g(u).

Preuve: Soit z € E. Alors, par (2.10) appliqué trois fois,

Matg r(v)Matr ¢ (u) Ve (z) = Matg, 7 (v)Vr (u(z))
= Vg (v(u(x)))
= Matg g(v o u)Ve(x).
On a déja mentionné que la matrice satisfaisant (2.10) est unique. Ainsi Matg r(v)Matr ¢(u) =

Matg g (v o u). O

Dans le cadre de L(F) on a vu que certaines applications linéaires accepte des inverse.
Cette notion est bien sur reliée a celle d’inverse de matrice.

Proposition 2.29. Soit u € L(E). Alors u est inversible si et seulement si Matg(u) est
wversible. Dans le cas ou les deux sont tnversibles, on a

Mate (u™") = Matg(u) ™"

Preuve: Supposons pour commencer que Matg(u) est inversible. Comme Matg : L(E) — M, (R)
est bijective, il existe v € L(E) telle que

Matg(v) = Matg(u)_l.
Alors
Matg (v o u) = Matg(v)Matg (u) = I,,, = Matg (u)Matg (v) = Matg (u o v).

En utilisant encore une fois le fait que Matg est bijective, on déduit vou = uowv =id. On
conclut donc que u est bien inversible et que v = u~".
Inversement, si on suppose que u est inversible, alors

Matg (u_l)Matg (u) = Matg (u_l o u)
= Mate(id) = I, = Mate (u o u_l)
= Matg (u) Matg (ufl) .

Donc Matg(u) est inversible et

Matg (u_l) = Matg(u) L.
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2.3.4 Image, noyaux et rang des matrices

En pratique on travail souvent avec la forme matricielle des applications linéaires. Dans le

cas dégénéré ou les applications linéaires ne sont pas inversibles, il est utile d’identifier le

noyaux, I'image et le rang de I'application linéaire a partir de sa forme matricielle.
Commengons par définir I'image et le noyaux d’une matrice M € M,, ,(R).

Définition 2.30. On pose

Im(M) ={X € My (R): Y € M,,; t.q. MY =X} CR™,
Ker(M) = {X € M,1(R) : MX =0} C R",
rang(M) = dim(Im(M)).

Remarque 2.31. On peut facilement vérifier que Im(M) et Ker(M) sont des s.e.v. de R™ et
R™, respectivement.

Les définition de image, noyaux et rang pour les matrices sont trés similaires a ceux pour
les applications linéaire. Ce n’est pas par hasard, ce sont deux facons de voir le méme objet.

Proposition 2.32. Soit u € L(E, F). Alors,

Im(Matre(u)) = Ve(Im(u)) et Ker(Matzg(u)) = Ve(Ker(u)).

On laisse la preuve en exercice.
Un corollaire immédiat est la version du théoréme du rang pour les matrices.

Corollaire 2.33. Soit M € M,, ,,(R), alors

rang(M) + dim(Ker(M)) = n.

Pour les matrices, le rang peut se calculer de plusieurs manieres, comme l’illustre la
proposition suivante.

Proposition 2.34.
Ly

Soit M € My o(R), M= |Cy...C, | = | ¢ |. Alors Im(M) = Vect(Cy,...,C,) et
L,

rang(M) = rang(Ch,...,C,) =rang(Li, ..., Ly).
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Preuve: On commence par montrer Im(M) = Vect(C,...,Cy).
Pouri € {1,...,n}, soit Y; € M, 1(R) le vecteur contenant un 1 sur la ligne ¢ et 0 partout
ailleurs. Alors Y7,...,Y,, est la base canonique de R".
Une simple application de la régle de multiplication des matrices montre que

MY; = C;, pour tout 1 <4 < n.

Ainsi C1,...,Cp € Im(M). Comme Im(M) est un espace vectoriel, Vect(C1,...,Cy) C

Im(M).
Inversement, soit X € Im(M) et Z € M,,1(R) avec X = M Z. Si on note z1,...,2,
21
les coefficients de Z, a savoir Z = | : |, alors Z = 21Y7 + -+ + 2,Y,,. Ainsi
Zn

X:MZZM(Zlyle---+ZnYn)
:ZlMY1+"'+ZnMYn:Zlcl+"'+ZnCnEVeCt(Cl,...,Cn).

On a donc montré que Im(M) = Vect(C1,...,Cy).
Une conséquence directe est

rang(M) = dim(Im(M)) = dim(Vect(C1, ..., Cy)) = rang(Cy,...,Cp).

La derniére égalité (a savoir rang(C1y,...,Cy) = rang(Ly,...,Ly,)) est plus délicate et
nécessite une construction qu’on ne traite pas dans ce cours. On va I'admettre. O

Une conséquence immédiate de la proposition 2.32 et le critére suivant pour l'invisibilité
des matrices.

Corollaire 2.35. Soit M € M, (R). Alors on a équivalence de
(i) la famille des colonnes C4,...,C, est libre,
(i) la famille des lignes Ly, ..., L, est libre,

(iii) la matrice M est inversible.

Preuve: La matrice M est inversible si et seulement si rang(M ) = n. Par la proposition précédente,
cela revient a rang(Ch,...,Cy) = rang(Ly,...,Ly) = n. Mais cela est équivalent au fait
que les familles (Cy,...,Cy) et (Lq,..., Ly,) sont libres. O

Lemme 2.36. Soit M € M,,,,(R), P € M,,(R) et Q € M, (R). Alors
(i) si P est inversible, alors Ker(M) = Ker(PM) et rang(M) = rang(PM);
(i) si Q est inversible, alors Im(M) = Im(MQ) et rang(M) = rang(MQ).

Ce qu'il faut retenir de ce lemme est que le rang d’une matrice n’est pas modifié si on la

multiplie, & gauche ou a droite, par des matrices inversibles.
On laisse la preuve en exercice.
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Exercice 2.25.
Démontrer la proposition 2.32. (La relation (2.10) peux étre utile.)

Exercice 2.26.
Démonter le lemme 2.36.

Exercice 2.27.

Soient A, B € M,(R) tels que AB = I,,. Montrer que A est inversible et que A~! = B.
Trouver un couple de matrices A € M,,,(R) et B € M(n,m)(R) pour m < n, tels que
AB = I,,. Calculer BA. Que dire des images et noyaux de A et B?

2.3.5 Changement de base

En pratique il est des fois nécessaire de travailler avec plusieurs bases d’'un méme espace
vectoriel (voir par exemple les suites définies par récurrence traités dans la partie 1.4, ou
encore la diagonalisation des matrices traitée dans la partie 3). Ainsi, il est important d’avoir
un outil qui permet d’obtenir I’écriture d’un vecteur dans une base & partir de son écriture
dans une autre base. La solution est donnée par les matrices de changement de base.

Fixons E un espace vectoriel de dimension finie n et B = (by,...,b,) et £ = (e1,...,¢e,)
deux bases de E.

Définition 2.37. La matrice de changement de base de £ a B est la matrice notée Pps =
(pij) € Mn(R) dont les entrées sont données colonne par colonne par

D
Ci=1 : | =Vsle;) pourtoutiec{l,...;n}. (2.12)

DPni

Remarque 2.38. On peut voir la matrice de changement de base comme la matrice de
'application linéaire identité id € L(E):

PB’g = Mat[g’g(id). (213)

Proposition 2.39. Pour tout x € E, Vg(z) = PpeVe(x).

Preuve: La démonstration découle directement de (2.13) et du théoréme 2.26. O

On aimerai dire que le changement de base de B & &£ est l'inverse de celui de £ & B. La
proposition suivante en donne le sens précis.
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Proposition 2.40. La matrice Pg¢ est inversible et Pg}g = P¢ .

Preuve: En appliquant la proposition 2.39 deux fois, on obtient que pour tout x € E,

Vs(z) = PpeVe(z) = PpePe sVi(x).
Le méme calcul s’applique a Pg gPp¢. Comme Vj etVe sont surjectives, on déduit que
PpePepX =PepPpeX =X, pourtout X € M, 1(R).
Il s’en suit (voir par exemple 'exercice 2.23) que Ppe¢Pep = Pe gPpe = I, donc que
Ppe =Pgl. O

De plus, il est facile de voir que toute matrice inversible est une matrice de changement
de base. En effet, si P € M,,(R) est inversible et B est une base de F, il suffit de créer la
base € par la formule (2.12), et on obtient P = Pp.

Exercice 2.28.
Soient F un espace vectoriel de dimension n et £ une base de E. Montrer que pour toute
matrice inversible M € M,,(R) il existe une base B de E telle que M = Pp¢.

2.3.6 Matrices semblables

Définition 2.41. Soit A, B € M, (R) deuz matrices. On dit qu’elles sont semblables sl
existe P € M(R) inversible telle que

B =P AP (2.14)

La notion de matrices semblable est motivée par la représentation des automorphisme
par les matrices carrées. Pour illustrer cela, on commence par une proposition qui donnent
la formule essentielle de changement de base pour des automorphisme.

Proposition 2.42. Soient £ et B deux bases d’un espace vectoriel de dimension finie E
et soit uw € L(E). Alors,

Matp(u) = Pg,}gMatg(u)P&B. (2.15)
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Preuve: Notons n la dimension de E et soit X € M, 1(R). Alors, par la surjectivité de Vectp, il
existe x € F, tel que X = Vectp(z). Ainsi

Matpg(u)X = Matg(u)Vectg(x)
= Vectg(u(z))
= PpeVecte(u(x))
= PpeMatg(u)Vecte ()
= PpeMatg(u)Pg gVectp(z)
= P, zMate (u)Pe 5 X.

On a donc prouvé que Matg(u)X = Pg zMate(u)Pe X pour tout X € M, (R). Par
I'exercice 2.23, ceci implique 1’égalité des deux matrices. ]

Soit A € M,,(R), E un espace vectoriel de dimension n et £ une base de E. Il existe alors
une unique application linéaire v € L(F) telle que Matg(u) = A (par bijectivité de Matg).
Une conséquence immédiate du lemme précédent est la suivante.

Proposition 2.43. Une matrice B € M, (R) est semblable & A si et seulement si B est la
représentation de u dans une base B de E. De plus, la matrice P de (2.14) est alors Ppe.

Preuve: Si B = Matg(u) pour une certaine base B de E, alors, par la proposition 2.42, B =
PB,SAPlgig"
Inversement, supposons que B = PAP~! pour une certaine matrice inversible P.
Alors il existe une base B de E telle que P = Ppg (voir 'exercice 2.28). Ainsi, par la
proposition 2.42,
B= PB,gAPg}S = Matg(u).

2.4 Systémes linéaires

Définition 2.44. Soient m,n € N et (a;;)1<i<m, (bi)1<i<m deux familles de scalaires (c.a
1<5<n
d. des éléments de R). Le systéme linéaire de m équations a n inconnues xy,...,T, QUec

les coefficients (a; ;)i j, (b;); est l’ensemble d’équations

a1121 +--+ a1 nTn = b1
(2.16)

Am, 121 + -+ AmnTn = bm

Une solution du systéme est une famille (1, ..., x,) € R™ qui satisfait toutes les équations
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‘ de (2.16). On appelle S C R"™ l’ensemble des solutions de (2.16).

On peut écrire le systéme (2.16) sous forme matricielle de la fagon suivante. Soient

ayil ... Q1n bl
A=| D EMuaR) et B=] | € Mua(R)

Ui - Gmp b,

Alors, (2.16) devient

AX =B, (2.17)
ou X € M, 1(R) est le vecteur des inconnues z,...,x,. On peut ainsi écrire
Zy
S=¢X=|:]|eM, (R): AX =B
Tn

Ainsi, S # 0 (c.a d. que le systéme admet au moins une solution) si et seulement si B €
Im(A). Supposons que B € Im(A), et soit Xy € M,,1(R) une solution. Alors, pour toute
solution X € S,

AX — Xy) =AX —AXy=B—-B=0,

donc X — X, € Ker(A). Inversement, si X € M, 1(R) est tel que X — X, € Ker(A), alors le
calcul précédent montre que X € S. On arrive ainsi a la conclusion suivante.

Théoréme 2.45. Soient A € M, ,(R) et B € M,;,1(R). On note S l’ensemble des
solutions X € M, 1(R) de AX = B. Alors

(i) si B ¢ Im(A), alors S =1,
(ii) si B € Im(A), alors S # 0. De plus, si Xy est une solution, on a

S=Xo+Ker(A) ={Xo+Y :Y € Ker(4)}.

Dans le cas (ii) on dit que Xy est une solution particuliére du systéme et que Y est une
solution générale du systéme homogeéne. Le fait que Y € Ker(A) s’écrit aussi AY = 0, ou
encore,

ai iy + -+ a1 yn =0

am1Y1 +-+ A nYn = 0.

On appelle ce systéme le systéme homogéne associé a (2.16).
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Rappelons nous que Ker(A) est un s.e.v. de R™. Ainsi, quand le systéme admet des
solutions, S est le translaté d’un espace vectoriel par un vecteur Xy. On appelle ce type
d’espace un espace affine et on pose

dim(S) = dim(Ker(A)).
Une conséquence du théoréme du rang qui peut étre utile est que dim(Ker(A)) = n—rang(A).

Exercice 2.29.

Soit m < n et A € M,,,(R). Supposons que la famille des lignes Ly, ..., L,, de A est libre.
Montrer que, pour tout B € M,, 1(R), I'équation AX = B admet des solutions X € M,,1(R),
et que I'ensemble des solutions est un espace affine de dimension n — m.

Exercice 2.30.

Soit n € N, A € M,(R) et B € M,,1(R) tels que I'équation AX = B admet une unique
solution X € M, ;(R). Montrer que pour tout B’ € M,, 1(R), 'équation AX = B’ admet
une unique solution X € M, ;(R).

2.4.1 Opérations sur les lignes; forme échelonnée
Notons les équations du systéme comme suit

1,121 + -+ A1 nTpn = bl (Ll)
(2.18)
Q121 +--+ ATy = bm (Lm)

Alors pour ¢ # j et pour A € R, on peut rajouter a I’équation (L;) I'équation (L;) multipliée
par A, sans changer ’ensemble des solutions S. On dit que le systéme (2.16) est equivalent
au systeme

( (11711'14- c. +a1,n:1:n = bl (Ll)
(am + )xaﬂ)xl—l— Ce +(ai,n + )\aj,n):cn = bz + )\bj (Ll) + )\(LJ) (219)
\ AmaT1+ ... FUmaTy =b,,. (L)

On peut également échanger deux équations du systéme entre elles et multiplier une équation
par un scalaire A # 0, sans que ’ensemble des solutions change.

Vu l'écriture plus compacte en utilisant les matrices, on va désormais écrire les systémes
linéaires sous forme matricielle. On identifie trois opérations pour les matrices:

e Add;,; consiste a rajouter a la ligne ¢ la ligne j multipliée par A (ici i # j);
e Multy; consiste a multiplier la ligne ¢ par A (ici A # 0);
e Ech;; consiste a échanger les lignes 7 et j (ici ¢ # j).

Pour une matrice A, on va écrire Add;.»;A, Multy;A et Ech;;A pour la matrice obtenue
a partir de A par les opérations Add;,y;, Multy; et Ech;;, respectivement. Le fait que ces
opérations ne changent pas les solutions du systéeme s’écrit de la maniére suivante.
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Proposition 2.46. Soient A € M,,, ,(R), B € M,,1(R) et X € M,,1(R). Pouri # j et
A € R avec X\ # 0 on a équivalence de

e AX =B,

[ ] (Addi;)\dA)X = Addi;)\7jB,
® (Mult,\jiA)X = Mult)\JB,
® (EChLJA)X = EChi;J‘B.

Preuve: Les opérations Add;,) j, Multy ; et Ech;; consistent & multiplier a droite A par les matrices
suivantes de M., (R):
7 1 T g
} } Voo
1 . 1 L
1020\~ 0 . 00

0 1

0 1>\ T O112'10 ~J
0 4 0 00 "y

On notera ces trois matrices aussi par Add;.yj, Multy; et Ech;;, respectivement. Ainsi
la notation Add;; ;A désigne simplement le produit matriciel. De plus ces trois matrices
sont inversibles, leurs inverses étant Add;,y;, Mult; /) ; et Ech;j, respectivement.

Soit P € M, (R) inversible. Alors si AX = B on a évidement aussi PAX = PB.
Inversement, si PAX = PB, alors, si on multiplie a droite par P~ on obtient AX = B.
On a donc prouvé que AX = B si et seulement si PAX = PB.

En appliquant cette observation aux matrices inversibles Add;,y j, Multy; et Ech;; on
obtient ’équivalence des affirmations. O

Définition 2.47. Soit A € M,,,(R). On dit que A est échelonnée selon les lignes™si A
est de la forme

0...01*...%x0%x...%x0 ... x0=x*...

*

0 .. O01x...%x0 ... x0x*...%
0 ... ... ... ... 01 ... x0x%x...x
A= 10 . 01%...x%
0 0 . 0
0 0 . 0

Dans la représentation de la matrice échelonnée, les * représentent des nombres quelcon-
ques.

(V) Reduzierte Stufenform
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Les matrices échelonnées sont particulierement faciles a étudier. Par exemple, si A €
M n(R) est échelonnée avec k lignes non nulles, alors rang(A) = k et par conséquence
dim(Ker(A)) = n — k. De plus, la résolution de AX = B est immédiate (voir la partie
suivante). Il est donc intéressant de transformer une matrice quelconque A en une matrice
échelonnée en utilisant les opérations sur les lignes décrites ci-dessus.

Théoréme 2.48. Soit A € M,,,,(R). Alors, en lui appliquant une série d’opérations
sur les lignes du type Add;y;, Echyy et Multy;, on peut la transformer en une matrice
échelonnée A.

La preuve du théoréme nous donne aussi l'algorithme & suivre pour obtenir la forme
échelonnée de A. Cet algorithme, appelé le pivot de Gauss™ | est présenté dans la partie
suivante dans le cadre des systémes linéaires.

Soient P, ..., Py les transformations sur les lignes appliquées & A pour arriver a la matrice
échelonnée A. La preuve de la proposition 2.46 nous dit que P,..., P, € M, (R) sont
inversibles et que

A=D,...PA
Ainsi, si B € M,,,1(R), alors

AX =B siet seulement si AX = P,...P,B.

En outre, comme Py ... P est inversible, rang(A) = rang(A).

Attention! L’application des transformations dans 'ordre P, ..., P, correspond a la mul-
tiplication de A a gauche par P, puis par P, etc. Cela correspond bien &
P, ... PA.

2.4.2 Pivot de Gauss pour la résolution des systémes linéaires

Soient A € M, »(R) et B € M,,1(R). Plutot que de résoudre 1'équation AX = B, on va
transformer A en une matrice échelonnée A par des opérations Pi, . .., Py sur les lignes, pour
ensuite résoudre Péquation équivalente AX = P, ... P, B.

Vu que les opérations Add;;y;, Ech;;j et Multy; doivent étre appliquées & A et B simul-
tanément, il va étre plus commode d’écrire A et B ensemble sous la forme réduite suivante.

aii Ce a1n b1
(A|B) = SR (2.20)
Ami - Gmp | bm

On va procéder de facon itérative, suivant les colonnes. Supposons qu’on a une matrice
A dont les j — 1 premiéres colonnes forment une matrice échelonnée. Soit k —1 < j —1 le
nombre des lignes non nulles de la matrice formée des les j — 1 premiéres colonnes. (Au pas
initial, on prend j = 1 et k = 1 et on applique la procédure décrite ci-dessous.)

On s’occupe de la colonne 7, plus précisément de ’entrée ay ;. On distingue plusieurs cas:

(vil) GauRsches Eliminationsverfahren
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(i)

Si ag,; = 1, alors on soustrait la ligne & multipli¢ par a;; a la ligne ¢ pour chaque
1 =1,....k—1,k+1,...,n. Plus précisément on applique Hi#k Add;;_o 1k & A,
Ainsi on obtient une matrice qui contient un coefficient 1 sur la position k,j et des
0 sur le reste de la colonne j. Les colonnes 1,...,5 — 1 ne sont pas affectées par ces
transformations car la ligne k a ses premiéres j — 1 entrées égales & 0. On conclut que
les j premiéres colonnes de la matrice ainsi obtenue sont échelonnées; on peut donc
passer a la colonne suivante.

Si ay; # 0 est une valeur quelconque, alors on divise la ligne & par aj; (c.a-d. on
applique Mult, 1 a A) et on obtient ainsi une matrice comme celle traitée au point (i).

On continue en apphquant le point (i) & Mult, 1 A.

7dk
Si ap; = 0 mais il existe £ > k tel que ay; # 0, alors on échange les lignes k et ¢
(c.a-d. on applique Echy, & A) et on se raméne ainsi & une matrice comme celle traité
au point (ii). On continue en appliquant le point (ii) a Echy /A
Siag; = agq1,; = -+ = amy; = 0, alors la matrice formée des j premiéres lignes est déja
sous forme échelonnée et on peut passer a la colonne suivante.

L’algorithme fini quand j = n+1 ou k = m+ 1. On vérifie facilement que dans les deux cas,
la matrice résultante est bien sous forme échelonnée. Un exemple est donné plus bas.

Attention! Pendant tout l'algorithme, les opérations appliquées a A doivent aussi étre

appliquées a B. Pourtant, on n’essaye pas de mettre B sous forme échelonnée.
L’ordre d’application des transformations est importante!

Résoudre un systéme sous forme échelonnée.
Supposons maintenant qu’on veut résoudre un systéme déja écrit sous forme échelonnée:

J1 J J3 Jk
v ' ' '
0...01x...%x0*...%x0 ... x0x%...%]| by
0 . O1x...%x0 ... x0*... %] by
0 . 01 ... x0x*... x| b3
(AIB)= |0 01%...x| b
0 0 ... 0|bpp
0O ... ... ... ... ... ... 0...0!Db,

ou j; < --- < ji sont les colonnes contentant les premiers 1 de chaque ligne. Alors X € M,, ;
est solution du systéme si et seulement si

Ty + D sy O1,4T; by
ax = | Tt s et | b ¢ ligne k (2.21)
0 brt1
0 bm,
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Ainsi, le systéme admet des solutions que si by, = - = b, = 0.
Supposons que by 1 = --- = b, = 0. Alors les solutions X de AX = B sont obtenues
comme suit. On choisi arbitrairement les valeurs de x; pour j ¢ {j1,...jx} et on pose, pour

chaque 7y,
Xj, = bg — Z Q. 5.
J>Jk
Vu (2.21), il est évident que les vecteurs obtenus comme cela sont biens les solutions de
AX =B.
En fin, mentionnons que dans le cas ou (2.21) admet des solutions (c.a-d. quand by ; =
-+ = by, = 0), I'espace vectoriel des solutions a dimensions n — k.

Exemple: Considérons le systéme suivant, au inconnues z1,..., x5 € R,
4r1— 4ro— dw3— 8xrs— 815 = —8
3r1— 3x9— 3x3— x4+ 4x5= 9
T+ 2!L‘3+ Tyt 5[)35 = 95
2ZL‘1—|— 4ZE3+ 6I5 = 4
—2331+ To— T3+ 4$4+ 3£E5 = 6

On P’écrit sous forme matricielle réduite comme dans (2.20):

4 -4 -4 -8 —-8|-8
3 -3 -3 -1 4] 9
1 0 2 1 5| 5
2 0 4 0 6| 4
-2 1 -1 4 3] 6

On applique 'algorithme pour mettre la matrice sous forme échelonnée: on com-
mence par k = j = 1. Vu que l'entrée en position 1,1 est non-nulle, on applique
le point (ii), & savoir on divise la premiére ligne par 4 pour obtenir un 1 en haut

a gauche:
1 -1 -1 =2 —-2|-2 Li/4
3 -3 -3 -1 4| 9
1 0 2 1 5] 5
2 0 4 0 6| 4
-2 1 -1 4 3| 6

Ensuite on applique I’étape (i) de l'algorithme: on additionne la premiére ligne
multipliée par —3, —1, —2, 2 aux lignes 2,3,4 et 5, respectivement. Ainsi on
obtient des zéros sur le reste de la premiére colonne.
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La premiére colonne est maintenant échelonnée; on passe a la suivante, donc a
7 =k = 2. Comme l’entrée en position 2,2 est nulle, mais qu’il y a des valeurs
non-nulles sous cette entrée, on applique le point (iii) de I’algorithme: on échange
les lignes 2 et 3 pour mettre une valeur non-nulle a la position 2, 2.

1 -1 -1 =2 =2|-2
13 3 7177 Lj
0O 0 5 10| 15 L,
2 6 4 10| 8

-1 -3 0 —=1| 2

o O OO

L’entée a la position 2, 2 est maintenant déja égale a 1, il n’est donc pas nécessaire
d’appliquer le point (ii), on passe directement au point (i). On additionne la ligne
2 multipliée par 1, —2 et 1 aux lignes 1, 3 et 5, respectivement, pour éliminer les
autres entrées de la colonne 2:

102 1 5| 5 Li+ Ly
o013 3 7| 7

000 5 10| 15

000 -2 —4]-6 Ly— 2L,
000 3 6| 9 Ls+ Lo

On passe a la colonne 3 (& savoir a j = k = 3). Toutes les entrées sous le niveau
déja traité sont nulles (on est dans le cas (iv) de l'algorithme), on peut donc
passer a la colonne 4, & savoir & j = 4 et k = 3. On applique le point (ii): on
divise la ligne 3 par 5 pour obtenir ’entrée 1 en position 3, 4:

102 1 5|5
013 3 7|7
000 1 2 3 17,
000 —2 46
000 3 6| 9

Pour éliminer les autres entrées sur la colonne 4 on applique le point (i): on
additionne la ligne 3 multipliée par —1, —3,2 — 3 aux lignes 1, 2,4 et 5, respec-
tivement.

1020 3] 2 L, — Ly
0130 1|2 Ly —3Ls
0001 2| 3

0000GO| O Ly+ 2L,
0000GO| O Ls — 3L,

En fin on passe a la colonne 5 (7 =5, k = 4). On est a nouveau dans le cas (iv).
Comme toutes les colonnes ont été analysées, l'algorithme est fini. La matrice
ainsi obtenue est échelonnée de rang 3. Le systéme initial est équivalent a

r1+2x3+ 315 =2
$2+3I3+$5 = -2
l’4+21’5 =3
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Les solutions forment un espace affine de dimension 2. Elles sont obtenues en
choisissant x3 et x5 arbitrairement, puis en posant

T :2—21’3—3.1'5
Ty = —2— 333‘3 — Xy (222)
Ty = 3—21’5
Ainsi
2 — 2\ —3u 2 —2 -3
—2—3\—u —2 -3 ~1
S = A AU ER Y = Ol +XAl 1 | +ul O]:NpueR
3—2u 3 0 —2
W 0 0 1

On peut aussi voir les solution comme la somme d’une solution particuliére
et d’une solution générale du systéme homogéne. Pour obtenir une solution
particuliére X, on pose 3 = x5 = 0 et on obtient par (2.22)

2

—2
XO —

S w O

Alors § = {Xy + Y : Y solution du systéme homogéne}. Le systéme homogéne
s’écrit
$1+2$3+3JJ5 =0

$2+3I3+1‘5 =0
ZE4+2ZL‘5 =0

Ses solutions forment un espace Sp,m de dimension 2 dans R®. Une base est
formée de deux solutions linéairement indépendantes, par exemple celle obtenue
en posant x3 = 1 et x5 = 0 et celle obtenue avec x3 =0 et x5 = 1:

-2 -3
-3 —1
Y, = 1 et Yo=1| 0
0 —2
0 1

Ainsi Spo = {AY1 + Yo i A, p € R} et S = {Xo + AY1 + Yot A\, u € R}

Exercice 2.31.
Représenter dans 1'espace R? les solutions de

20 +2y+2=4
r+y+z2=0
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Exercice 2.32.
Mettre sous forme échelonnée les systémes suivantes calculer leur solutions:

([ s+ 2y+2=4 3z 422 =5y —6
a) 2r+y+z2=3 b) z=1x+2
| Tz+by+2:="7. 20 —y—2=0.
([ s +2y+z+t=4 r+y+z+t=0
0 20 +3y+3z2—t=3 d) r—y+2:—-2t=0
rT+dy+2z2+4+3t="7 r4+y+4z4+4t=0
| 2045y +42+3t=2. r—1y+8z—8t=0.

2.4.3 Pivot de Gauss pour le calcul de I'inverse

Soit A € M,,(R). 1l est souvent intéressant de vérifier si A est inversible et de calculer son
inverse A~!. Le pivot de Gauss offre une procédure pratique pour faire cela.

Appliquons le pivot de Gauss & A et a la matrice identité I, simultanément. Plus précisé-
ment, chaque transformation appliquée a A dans I'algorithme du pivot de Gauss, est aussi
appliquée a I,,. Notons A la forme échelonnée de A qui en résulte, et I le résultat pour I,.

Proposition 2.49.
Si A # 1, alors A n'est pas inversible. .
Si A =1,, alors A est inversible et A~' = 1.

Preuve: Rappelons que, pendant le pivot de Gauss, on applique des transformations & A qui
correspondent & des multiplications & gauche par des matrices inversibles. Notons ces
matrices Pi,..., P.. Ainsi A:Pk...PlA et f:Pk...Plln =P....P.

Si A n’est pas égale a I,,, alors elle contient au moins une ligne nulle, donc n’est pas
inversible. Comme P = Py ... P; est inversible, cela implique que A n’est pas inversible
non-plus (car le produit de deux matrices inversibles est forcement inversible — voir la
proposition 2.18).

Si A= PA=1I,alors A= P~ !est inversibleet A' =P =P,...P — I. O

Exercice 2.33.
Déterminer si les matrices suivantes sont inversibles. Si c’est le cas, calculer leur inverse.
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Multiplier la matrice par le résultat pour vérifier.

00010
1 2 3 00100
a)|3 7 6 | € M3(R); b1 00 0 0feMsR);
2 8 =5 00001
01000
1 2000 I -1 -1 -1
01200 0 1 -1 -1
)0 0 1 2 0] e Ms(R); d|: ] e My (R);
00012 0 0 1 —1
0 00O0T1 0 0 0o 1
1 0 00 1 11
2 1 00 0 11
e)| bt € M (R); H: D] e My (R).
n—1 n—2 10 0 11
n n-—1 2 1 00 0 1

2.4.4 Familles de vecteurs et pivot de Gauss

Soit C4,...,C, € M, une famille de vecteurs de R™ écrits en format colonne. A l'aide du
pivot de Gauss on peut déterminer si la famille C,. .., C, est libre; plus généralement on
peut calculer son rang.

En effet, posons A = <C1, cee C’n> € M, la matrice formée des colonnes C1,...,C,.
Alors rang(Cy, . .., C,,) = rang(A) = rang(A), ou A est la matrice échélonnée obtenue a partir
de A par le pivot de Gauss. En particulier, la famille C1, ..., C,, est libre si et seulement si
rang(A) = n.

Mentionnons qu’on peut aussi déterminer les scalaires Ay, . .

)\101++)\n0n20

.y An € R tels que
(2.23)

At

Si on pose A = , alors (2.23) s’ecrit

An
AN = MGy + -+ MG, = 0,

ce qui revient a dire que A € Ker(A) = Ker(A).
En conclusion, une famille Ay, ..., A, satisfait (2.23) si et seulement si le vecteur colonne

qu’elle forme est dans Ker(A) = Ker(A). On peut donc, de fagon alternative, voir si la famille
C4,...,C, est libre en calculant Ker(A). La famille est libre si et seulement si I'unique famille
de scalaires satisfaisant (2.23) est nulle, donc si et seulement si Ker(A) = Ker(A) = {0}.
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A retenir

Applications linéaires:

e Pour deux espaces vectoriels F, F', une application u : F — F est linéaire si u(\x +
py) = Au(z) + vu(y) pour tout =,y € E et \,v € R. L’ensemble des applications
linéaires est noté L(E, F').

e Les applications peuvent étre additionnées entre elles et multiplies par des scalaires.
Avec ces opérations, L(E, F') est un espace vectoriel.

e Pour £, F,G des ev. et u € L(E,F), v € L(F,G), la composition de v et u, notée
v o wu, est donnée par x — v(u(x)). C’est une application linéaire de L(E,G).

e Dans L(F) = L(E, F) on a trois opérations: +, - et o. L(E) est un algébre.

e Une application u € L(F, F) est inversible, si et seulement si elle est bijective. Si elle est
inversible, alors u™! € L(F, E) est 'unique application telle que uou™ = u=tou = id.

e Pour u € L(FE, F) on pose
Ker(u)={z € E:u(x) =0} et Im(u)={yeF:3ze€kF tq ulx)=uy}.
Ce sont des sous-espaces vectoriels de E et F', respectivement.

e Si F est de dimensions finie, alors Im(u) l'est aussi. On note rang(u) = dim(Im(u)) et
on a
rang(u) + dim(Ker(u)) = dim(E).

Matrices:

e Une matrice de taille m x n est un tableau rectangulaire de m - n scalaires noté A =
(a;;)1<i<m. On écrit M,,,(R) pour 'ensemble des matrices de taille m x n.
1<j<n
e On peut additionner deux matrices de méme taille et multiplier une matrice par un
scalaire. M, ,(R) est un espace vectoriel.

e On peut multiplier une matrice A € M, ,(R) avec B € M,, ,(R) et on obtient AB €
M »(R). Avec cette régle de multiplication M,,(R) = M,, ,(R) est une algébre.
La multiplication des matrices n’est pas commutative!

e L’¢lément neutre pour la multiplication dans M,,(R) est la matrice [,, = | : ..
0 --- 1
Une matrice A est inversible s’il existe A™! € M,,(R) telle que AA™' = A71A=1,.

Applications linéaires représentées par des matrices:
Soient E et F' deux espaces vectoriels de dimensions n et m respectivement. Soient £ une
base de E et F une base de F'.
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e Les matrices colonne de M,, 1(R) représentent les vecteurs de E dans la base £. Plus
précisément, Ve : E — M, 1(R) est une application linéaire bijective. De la méme
fagon M,, 1(R) représente les vecteurs de F' dans la base F.

e Les matrices de M, ,(R) représente les applications linéaires de L(E, F') dans les bases
E et F. Plus précisément, Mrge : L(E,F) — M, »(R) est une application linéaire
bijective. Pour tout u € L(E, F') et z € E:

V]: (U(QT)) = Mat}‘@(u)Vg (m)

e La multiplication des matrices correspond & la composition des applications. Une ap-
plication linéaire est inversible si et seulement si la matrice associée 'est.

e La représentation des vecteurs et des applications linéaires par des matrices dépend des
bases £ et F. Pour passer d’une base & une autre on utilise la matrice de changement
de base. Pour deux bases € et Bde F et x € E et u € L(E),

VB(JI) = P&ng(I) et Matg(u) = Pg}BMatg<u>Pg’B.

Image, noyaux et rang des matrices:

e Comme pour les applications, on pose pour une matrice M € M,, .,

Ker(M) ={X e M,; : MX =0} et
Im(M) = {Y € My1:3X € M, avec MX =Y.

Ce sont des sous-espaces vectoriels de R™ et R™, respectivement.

e On défini le rang d’une matrice M € M,, ,(R) par rang(M) = dim(Im(M)). Cest
également le rang de la famille des lignes de M (comme vecteurs de R") et celui de la
famille des colonnes (comme vecteurs de R™).

e Une matrice M € M,,(R) est inversible si et seulement si rang(M) = n.

e Un systéme linéaire est une équation matricielle AX = B ou A € M,,,(R), B €
M, 1(R) sont les coefficients et X € M, ;1(R) est I'inconnue. L’ensemble des solutions
S={X e M,1(R): AX = B} peut étre vide (si B ¢ Im(A)) ou peut étre une espace
affine de dimension dim(Ker(A)) = n — rang(A). Dans le second cas

S=Xo+Ker(A) ={Xo+Y:Y € M, 1(R) est telle que AY =0},
ou X est une solution particuliére de AX = B.

e Les solutions d’un systéme linéaire peuvent étre trouvées par ’algorithme du pivot de
Gauss. L’'inverse d'une matrice peut aussi étre calculé par ce méme algorithme.
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Chapter 3

Matrices diagonalisables; valeurs et
vecteurs propres

Le chapitre va porter entierement sur des matrices carrées. Fixons pour 'intégralité de ce
chapitre une matrice A € M,,(R). Comme avant, on identifie M,, 1 (R) avec R"; on va appeler
parfois les éléments de M,, ;1 (R) des vecteurs.

3.1 Valeurs et vecteurs propres

Définition 3.1. On dit que A € R est une valeur propre®de A s’l existe un vecteur
X e M,1(R), X #0, tel que
AX = \X.

Dans ce cas on dit que X est un vecteur propre™ de A pour la valeur propre X. L’ensemble
des valeurs propres de A s’appelle le spectrelde A et est noté Sp(A). Pour A € Sp(A),
on note

E)\(A> = {X S Mn,l(R) cAX = )\X}

Proposition 3.2.
(i) Pour chaque A € Sp(A), E\x(A) est un sous-espace vectoriel de R™ qu’on appelle
'espace proprel™de A associé a .
(ii) Si A1,..., A\ € Sp(A) sont deux o deux distinctes et X1 € Ey,,..., Xy € E\, sont
des vecteurs non-nuls, alors la famille (X, ..., Xy) est libre.

(iii) Le spectre de A a au plus n éléments.

() Bigenwert
(i) Bigenvector
(i) Spektrum
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Preuve: (i) Soit A € Sp(A). Alors X € E\(A) si et seulement si AX — AX = (A —\[,)X =0.
Ainsi
E\(A) = Ker(A — \I,).

En particulier on déduit que F)\(A) est un s.e.v. de R™.

(79)  Soient Ap,...,\r des valeurs propres de A distinctes, et Xi,..., X} des vecteurs
propres non-nuls associés. Soient puq,...ur € R tels que

X1+ + pup Xy = 0.
Alors, pour tout j > 1,

Y= )\{M1X1+"‘+>\£Mka:MlAjX1+“'+MkAij
= A (X1 + -+ Xy) = A70 = 0.

Un calcul standard (qu’on va admettre) montre que, vu que Ag,..., A, sont distincts, la
matrice

1 1 . 1

)\1 )\2 Ce >\k:

) . . € Mg(R).

k=1 k-1 kel

Al Ay AL
est inversible. Ainsi la famille des lignes L1, ..., Lj, est génératrice pour R¥. 11 existe donc
at,...,0 € R tels que
oLy 4+ +oply=(1 0 ... 0).

Alors, comme Y] =--- =Y, =0,

O=aY1+ 4+ apYr = 11 X1.
Comme X7 # 0, on déduit que p; = 0.
On peut de la méme facon déduire que ps = --- = u, = 0, ce qui fini la preuve.

(7i7) Soient A1,..., A\ € Sp(A) deux a deux distincts. On peut alors choisir des vecteurs
non-nuls X; € Ey,,..., X} € E),. Par le point précédent (Xi,..., X)) est une famille
libre de R™, donc k < n. Ainsi [Sp(A)| < n. O

Remarque 3.3. On insiste sur 'importance du point (i) et de sa preuve. Vu que
E\(A) = Ker(A — \I),

les valeurs propres de A sont exactement les A € R pour lesquels A — A\I n’est pas inversible.

Les mémes notions de valeur propre, vecteur propre, et espace propre se généralisent aux
applications linéaires. Dans ce cours on va se limiter aux matrices. Il peut toutefois étre
intéressant de remarquer le liens entre les deux.

(V) Eigenraum
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Proposition 3.4. Soient E un e.v. de dimension finie, B une base de E, u € L(E) etz € E,
x # 0. Alors on a équivalence de:

(i) x est vecteur propre de u avec valeur propre A (c.-a-d. u(x) = \z);

(i) Matg(u)Va(x) = AVs(x).

La preuve suit directement des propriétés de Matg et Vi et on ne la donne pas ici.

On observe que, quand on parle de vecteur propre pour les applications linéaires on ne fixe
pas une base de l'espace vectoriel. Ainsi, il est naturel que les valeur propres d’une matrice
soient invariantes par changement de base.

Proposition 3.5. Soit P € M,,(R) une matrice inversible. Alors
(i) Sp(A) = Sp(P~'AP);
(ii) pour tout N € R, X € E\(P~'AP) si et seulement si PX € Ey\(A).

Preuve: On commence par le point (i7). Soit A € R et X € M, 1(R). Supposons que X €
Ex(P7'AP). Alors P"'APX = AX. Si on multiplie cette égalité par P & gauche, on
obtient APX = APX, donc PX € E\(A).
Inversement si PX € Ey(A), alors PT'APX = AP7'PX = AX, donc X € E\(A).

Passons au point (7). Soit A € Sp(P71AP) et X € E5\(P~1AP) non nul. Alors, par le point
précédent, PX € Ey(A). De plus, comme P est inversible, PX # 0, donc E)(A) # {0}.
On en déduit que A € Sp(A), donc que Sp(P~tAP) C Sp(A).

Inversement, si A € Sp(A) et X € Ex(A) non nul, alors P~1X € Sp(P~1AP). A
nouveau P~1X # 0 car P~! est inversible, donc A € Sp(P~tAP). 1l s’en suit que Sp(A) C
Sp(P~*AP). La double inclusion montre que Sp(A) = Sp(P~1AP). O

3.2 Matrices diagonalisables

Définition 3.6. On dit que A est une matrice diagonalisable™) (dans M,,(R)) sl existe
une matrice inversible P € M,,(R) telle que P~ AP est une matrice diagonale.

L’intérét de cette notion peut s’expliquer par l’observation suivante. Dans beaucoup
de situations pratiques il est intéressant de calculer les puissances d’une matrice carrée.
Comment peut-on donc calculer A* pour une grande matrice A, ou k est une trés grande
valeur, sans faire trop de calculs?

Si A est diagonalisable, le calcul est simple. Soit P € M, (R) inversible, telle que la
matrice D = P71 AP soit diagonale. Alors A = PDP~! et

AF = (PDP e =pDP ' PDP .. PDP ' = PDFPL.

~
k fois

(vii) diagonalisierbar
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d; 0 ... 0
0 d272 c. 0
Mais D est une matrice diagonale de la forme D = . ] ) . On peut donc
0 0 dpn,
facilement calculer
dlf,1 0 0
DF 0 d’§72 0
0 0o ... dﬁ”n

Ainsi, le calcul des puissances des matrices diagonalisables est facile, surtout si on connait
la matrice P.

3.2.1 Lien avec les vecteurs propres

Théoréme 3.7. La matrice A est diagonalisable si et seulement s’il existe une base £ =
(X1, ..

, Xpn) de R™ formée entierement de vecteurs propres de A.

Preuve: Avant de commencer, définissons, pour ¢ € 1,...,n, le vecteur Y; € M, 1 comme ayant

Pentrée 1 a la position i et 0 partout ailleurs. (Y7,...,Y, forment la base canonique de
R™.) Alors, pour toute matrice M € M, (R), MY; est la ieme colonne de M (cela résulte
directement des régles de la multiplication matricielle).

Supposons pour commencer que A est diagonalisable, et soit P € M,,(R) une matrice
inversible, telle que

M0 ... 0
piap—| " a
0 0 .. A
pour des valeurs Aq,..., A\, € R (pas forcement distinctes). Posons, pour i € {1,...,n},

Xi = PY; € My, 1; ainsi X; est la jeme colonne de P. La forme diagonale de P~ 'AP
entraine que chaque Y; en est un vecteur propre, avec \; la valeur propre correspondante.
Ainsi

\Y; = P71APY, = P71AX;, pour chaque 1 <i < n.

En multipliant cette équation par P a gauche, on obtient \;X; = AX;. On conclut
X1,..., X, est une famille de vecteurs propres de A.
De plus, comme P est inversible,

n = rang(P) = rang(Xy,..., X,).

Ainsi (X1,...,X,) est une base de R™.

Supposons maintenant qu'’il existe une base (X1,...,X,) de R™ de vecteurs propres
de A. Soient Aq,..., )\, € R les valeurs propres associées.
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On défini la matrice P € M,,(R) comme la matrice dont les colonnes sont données par
X1,...,Xp. Alors, pour chaque 1 <1i <n, PY; = X;. Comme (X1,...,X,) est une base
de R™,

n = rang(Xy,...,X,) = rang(P),

donc P est inversible. On peut alors calculer, pour chaque 1 < ¢ < n,

P7'APY; = P AX; = P71 X; = M PTIPY; = )Y,

On en déduit que les colonnes de P~'AP sont A\1Yi,..., A\ Yy, respectivement. On peut
donc écrire
A 0 ...00
0 X ... 0
pltAap=| . R
0 0 ... X\
et on conclut que A est diagonalisable. O

Remarque 3.8. Dans les faites, la matrice P n’est rien d’autre que la matrice de changement
de base de la base canonique de R™ a la base de vecteurs propres de A. On aimerait insister

sur le fait que la base de vecteurs propres (et donc la matrice P qui diagonalise A) ne sont
pas uniques!

Si A € M, (R) est diagonalisable et P est une matrice inversible telle que P~'AP = D
est diagonale, alors les valeurs propres de A sont exactement les éléments de la diagonale de
D. De plus, pour A € Sp(A), dim(F)(A)) est simplement le nombre d’apparitions de A sur
la diagonale de D.

Le critére de diagonalisation suivant va nous servir par la suite; il découle du théoréme
précédent.

Proposition 3.9. La matrice A est diagonalisable si et seulement si

> dim(E\(A)) =n.

AESDP(A)

Preuve:  Supposons pour commencer que Z)\GSp(A) dim(E)(A)) > n. On va prouver alors que
2 oresp(a) dim(Ex(A)) = n et que A est diagonalisable.
Notons Aq,..., A, les éléments de Sp(A) et dy, ..., di les dimensions de Ey, ..., Ej,.
Pour chaque 1 < 5 <k, soit (ij), e ,Xe(lg)) une base de E;. On va montrer alors que la
famille (Xi(j ))i,j est une famille libre de R".

Soit une famille (MEJ ))i,j de scalaires telle que

WD X0 g,

k
= 1

dj

j=11
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Observons que, pour chaque 7, Zj; 1 ,ul(j )Xi(j ) ¢ E,,. La proposition 3.2(i7) indique alors
que Zf;l ,u,z(-j)Xi(j) = 0 pour chaque j. Mais, pour chaque j, les vecteurs ij), . ,X]g)
forment une famille libre (car ils sont une base de E);). Ainsi ng )
tout j. A

On conclut que (X i(] ))i,j est une famille libre de R™. Cette famille contient dy + - -+ +
di = > resp(a) iim(Ex(A)) vecteurs. Comme on a supposé que ZXGSP(A) dim(Ey(A)) >
n, on conclut que } ¢ g, 4y dim(Ex(A4)) = n et que la famille (Xz'(]))i,j est une base de R™.

On a donc crée une base de R™ contenant que des vecteurs propres de A; le théoréme 3.7

nous dit alors que A est diagonalisable.

= 0 pour tout 7 et

Supposons maintenant que A est diagonalisable et montrons que ) . Sp(A) dim(E\(A)) =
n. Soit X = (Xi,...,X,) une famille de vecteurs propres de A qui forment une base de
R™ (Pexistence d’une telle famille est donnée par le théoréme 3.7). Alors, pour chaque A €
Sp(A), les vecteurs de X' qui appartiennent & E) forment une famille libre. De plus, tout
vecteur X; appartient a exactement un espace propre Ey. Ainsi ), Sp(A) dim(E)(A)) > n.
On vient de montrer que cela implique ¢ g, 1) dim(Ex(A4)) = n, ce qu’on voulait dé-
montrer. O

Malheureusement pas toutes les matrices sont diagonalisables.

Lemme 3.10. La matrice N = (8 é) n’est pas diagonalisable.

Preuve: On va procéder par 'absurde. Supposons que N est diagonalisable. Soit P € Ma(R)
inversible, telle que P"INP = <)(\)1 )? > soit une matrice diagonale. Alors
2
AP0 -1 2 —1 772 -1
9| =(PT"NP)*=P "N*P=P 0P =0,
0 A3
donc A\ = A2 = 0. Cela implique que N = P~10P = 0, ce qui est clairement faux. ]

Comme les matrices diagonalisables sont souvent plus facile & traiter, il est intéressant
d’avoir des critéres pour les reconnaitre. On commence par un critére suffisant, mais pas
nécessaire; il suit facilement des résultats déja mentionnés.

Corollaire 3.11. Si A est telle que Sp(A) contient n valeurs propres distinctes, alors A
est diagonalisable.

Preuve: Si Sp(A) contient n valeurs propres distinctes Aj,..., A, alors
dim(Ey,) + -+ - + dim(E)y,) > n.
Mais on a vu que cette somme est toujours plus petite que n, donc
dim(E)y,) + - -+ dim(E), ) = n.

La proposition 3.9 implique que A est diagonalisable. ]
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Matrices symétriques

Théoréme 3.12. Si A € M, (R) est symétrique (c.-a-d. AT = A) alors A est diagonal-
isable. De plus ses valeurs propres sont toutes réelles et il existe une matrice P € M, (R)
inversible, telle que P~' = PT, avec

A=P'DP,

ou D est une matrice diagonale.

Une matrice P € M,,(R) telle que P~! = P7 est dite orthogonale. Ce type de matrices
a une signification particuliére dans 'interprétation géométrique des espaces vectoriels. On
va admettre ce théoréeme.

Matrices positives: Perron-Frobenius

Théoréme 3.13. Soit A = (a;;)1<ij<n € M,(R) une matrice avec a;; > 0 pour tout
1 <i,j <n. Alors il existe \g € (0,4+00) une valeur propre de A telle que:
(i

) pour toute autre valeur propre A € Sp(A) \ { Ao}, on a |A| < Ao;
(i) dimFEy,(A) =1 (on dit que la valeur propre Ay est simple);
)

)

(iii) 4l existe X € E),(A) avec toutes les entées de X réelles et strictement positives;
(iv) si X € M, 1(R) est un vecteur propre de A avec toutes les entrées positives ou
nulles, alors X € E),(A).

On va admettre ce théoréme (il s’agit d’un théoréme difficile).

Mentionnons que ce résultat se généralise a certaines matrices aux entrées positives ou
nulles (pas & toutes). On peut par exemple montrer que si A € M,,(R) est telle que a;; > 0
pour tout i, j et si toutes les entrées de A™ sont strictement positives pour un certain n € N,
alors la conclusion du théoréme est encore valable.

En pratique on rencontre souvent des matrices dont les entrées sont positives. Par ex-
emple, les matrices qui décrivent les évolutions de populations sont souvent de ce type (voir
exemple dans la partie 3.2.2). Le théoréme de Perron Frobenius nous dit qu’il existe Ag > 0
et X € M, 1((0,400)) avec AX = A\ X.

Si on suppose que A est diagonalisable, avec valeurs propres Ag,...,\,_1 et vecteurs
propres (Xy,...,X,). Alors, pour tout vecteur X = >, ;. X; avec o # 0, on a

1 A"
X =S () X, = a0Xo.
)\8 zi:a (/\0) —rn QX0

Ainsi le “taux” de croissance de A"X est positif et on observe une distribution (aprés nor-
malisation) proportionnelle & un vecteur positif.

Le méme résultat asymptotique peut étre montré méme si A n’est pas diagonalisable. On
en parlera plus dans I'exemple donné dans la partie 3.2.2.
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Perron-Frobenius pour les matrices stochastiques Supposons que A € M,, est une
matrice stochastique a droite. Alors tous les coefficients de A sont positifs ou nuls. Supposons
de plus qu’il existe N > 1 tel que tous les coefficients de AN soit strictement positifs (on dit
alors que A est irréductible et apériodique). On peut alors appliquer le théoréme de Perron-
Frobenius & A (une version un peu plus générale du théoréme quand N > 1) et déduire
T
I’existence d’un vecteur propre X = : d’entrées strictement positives et de la valeur
xn
propre A associée, qui est strictement positive et satisfait les points (i) et (ii) du théoréme.
Du fait que AX = AX on peut déduire

n n

)\gxi = i(AX)i = iiammj = Z <a:j Zam) = éx]

i=1 i=1 j=1 j=1 i=1

Dans la dérniére égalité on a utilisé que > ,_,. a;; = 1 car A est stochastique & droite. En
fin, les x; sont tous strictement positifs, donc Y1 | x; = Z;L=1 x; > 0. On peut simplifier par
cette quantité pour trouver A = 1.

On conclut que toutes les autres valeurs propres de A sont de module strictement plus
petit que 1 et que tout vecteur propre de valeur propre 1 est proportionnel a X. Si on choisie
X de sorte que 1, x; = 1 (ce qui le détermine uniquement) on peut voir X comme une
probabilité sur {1,...,n} (avec une probabilité x; associée a 7).

De la discussion qui précede, on conclut que cette probabilité est

e invariante: car AX = X
e asymptotique: car pour tout vecteur Y d’entrées positives se sommant a 1, on a

ANY —— X
N—oo

De plus, chaque propriété détermine X de maniére unique.

Exercice 3.1.
Soient A € M,,(R) une matrice diagonalisable, avec n valeurs propres distinctes. Soit B €
M, (R) une matrice qui commute avec A (c.-a-d. telle que AB = BA).

Montrer que B est aussi diagonalisable. De plus, montrer que B admet les mémes vecteurs
propres que A (mais pas forcement les mémes valeurs propres).
Est-ce que le résultat reste vrai si les valeurs propres de A ne sont pas supposées distinctes?

Exercice 3.2.

Trouver une matrice diagonalisable A, et plusieurs matrices inversibles P telles que P~'AP
est diagonale.

Que dire de A si P7'AP est diagonale pour toute matrice inversible P € M,,(R).

3.2.2 Application: matrices de Leslie

Les matrices de Leslie sont un modeéle d’évolution d’une population classée selon I’age. On
considére une population qui évolue en temps discret (on peut par exemple supposer qu’on la
mesure tout les ans/mois) dont les individus peuvent avoir un age compris entre 1 et d € N.
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ny(t)
Ainsi, la population & tout moment ¢ € N est représenté par un vecteur N (t) = :
nd(t)
Supposons que ’évolution suit la dynamique suivante:
g1 (t+ 1) = spng(t), pour 1 <k <d, et
'fl1(t + 1) = a1n1(t) +---+ adnd(t).

ousy...sq-1 € (0,1] et ay,...aq € (0,+00) sont des parameétres fixés. Ainsi 1 — s; représente
la proportion d’individus d’age k& qui meurent avant d’arriver a I’age k + 1; ax représente le
nombre moyen d’enfants d’un individu de la génération k.

On peut écrire 1’évolution sous forme matricielle comme suit:

ay Qas ... Qag—1 Qq
s 0 ... 0 0

Nt+1)=]0 s2 ... 0 0N =AN®),
0 0 ... s41 O

ou A € My(R) est la matrice affichée. Méme si la matrice A n’est pas strictement positive,
A? T'est, et on peut appliquer le théoréme de Perron Frobenius & A.
Cherchons A (different de 0) et N € My(Ry) tels que AN = AN. Cela reviens a

1 1
M1 = Y SKTG = 00 = S-S pour 1 <k <d, et
1 1
= X(cum + -t adnd) = (1?1 VSI cee Sk—lak>n1

Ainsi, X est valeur propre de A (avec ny # 0) si et seulement si

d
B(A) =
k=1

de plus pour cette valeur propre, un vecteur propre associé est donné par n, = —z=r— pour
k > 1 (en particulier n; = 1).
On voit bien que ¢()\) admet exactement une racine positive, qu'on va noter A;.
Supposons que A est diagonalisable, avec Sp(A) = {\1,...,A¢}. Soient X,..., X, des
vecteurs propres associés; ils forment une base de R qu’on note X. Alors, si on suppose que
A1 est la valeur propre positive,

| =

£S1 .. Sk—10k = 1;

>

Soit N(0) une distribution de population initiale. On écrit alors N(0) = . X, ou

= Vae(N(0)) € My, (C).

aq
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Un calcule immédiat montre que
d
N(t) = A'N(0) = > a; XX,
i=1
Ainsi

d t
3 Ai
)\ItN(t) = Oéle + a; (/\—) Xz ;) Oéle. (3].)
=2

1

Cela doit étre compris comme suit. Si a; > 0, alors la population & un taux de croissance
A1 et si on la normalise, elle devient proportionnelle & une distribution suivant ’age donnée
par Xj.

Une analyse plus approfondie des espaces propres des matrices montre que la convergence
de (3.1) est vraie méme si A n’est pas diagonalisable.

3.3 Le déterminant

On a vu qu’une propriété importante des matrices est l'inversibilité. Le déterminant nous
offre un critére pratique pour vérifier si une matrice est inversible.

3.3.1 Définition et propriétés de base

Le déterminant associe & une matrice carrée A € M, (R) est un scalaire qu'on va noter
det(A) € R. Il y a plusieurs fagons de définir le déterminant, on choisie celle par récurrence.
On aura besoin de la notation suivante:

Définition 3.14. Soient A € M, (R) et 1 <1i,5 <n. Le mineur A;; de A est la matrice
de M,,_1(R) obtenue en éliminant la i°™ ligne et j°™¢ colonne de A.

Définition 3.15. Soit A = (a;;) € M,(R).

o Sin=1,detA=ay;.
o Sin>2,

det A = Z(—l)jﬂalﬂ- det Al,j-
j=1

Donnons quelques conséquences de cette définition.

e Pour les matrices de M5(R) le déterminant est donné par :

a b
det (c d)—ad—bc,
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e Pour les matrices de Ms(R) le déterminant est donné par :

11 Air2 d4ai3
det G271 Q22 A3 = (32)
az1 Aazz2 Aa33

= al,l(a2,2a3,3 - CL3,2G2,3) + a1,2(a2,3a3,1 - a2,1a3,3) + G1,3(CL2,1CL3,2 - a3,1a2,2)

= 01,102,203 3 + A1,202 3031 + 01,302,103 2 — (31022013 — A2,101,2033 — 01,1043202 3.

Un moyen de se souvenir de cette formule est par I'image suivante.

21 (22

e Plus généralement, le déterminant d’une matrice A € M,,(R) est une somme de pro-
duits, chaque produit contenant n entrées, une par ligne et une par colonne. Ainsi il y
a n! produits dans l’expression du déterminant (certains ayant un signe +, certains un
signe —). Formellement

det(A) =D €(0)a1,00) - - - Gno(m)» (3.3)

g

ou la somme porte sur toutes les bijections o : {1,...,n} — {1,...,n} et ou € vaut +1
ou —1 en fonction de o.

Généralement le calcul du déterminant d’'une matrice est compliqué. Pour les matrices
3 x 3 le nombre de termes dans la somme de (3.2) est 6. On peut écrire une formule similaire
pour les matrices 4 x 4; elle va contenir 24 termes ...

Néanmoins, dans certains cas particulier, le déterminant se calcule facilement.

Proposition 3.16. Soit A € M, (R) une matrice triangulaire supérieure ou inférieure.
Alors,
det A =ajqa29...a5,.

Cette proposition se montre par récurrence sur la taille de A; on la laisse en exercice.

3.3.2 Déterminant et inversibilité

On va donner ici quelques propriétés essentielles du déterminant.

Proposition 3.17. Soient A, B € M, (R). Alors,

det(AB) = det A - det B.
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Figure 3.1: Une matrice A transforme les trois vecteurs de la base canonique de R3. L’image
du cube unité par A est marquée en bleu; son volume est (& signe prés) le déterminant de A.

On va admettre cette proposition.

Théoréme 3.18. Soit A € M, (R). Alors, A est inversible si et seulement si det A # 0.

Une preuve rapide est basée sur le pivot de Gauss; on la donne dans la partie suivante.

Une fagon géométrique de voir le déterminant d’une matrice A est comme le volume du
polyédre déterminé par les vecteurs colonne de A. Rappelons nous de la base canonique de
R™ formé des vecteurs Y7, ...,Y,. Le polyédre déterminé par les vecteurs colonne de A est
alors 'image du cube [0, 1]" = {D>"1"  \;Yi: Ay, ..., A, € [0, 1]} par A. Ainsi

| det(A)| = vol{ zn:)\iAYi A A €0, 1]}.
i=1

On a déja vu que A n’est pas inversible si et seulement si les vecteurs colonne de A, a savoir
AYy, ..., AY,, sont liées. Cela reviens a rang(AY7,..., AY,) < n, donc a ce que le polyédre
mentionné fasse partie d’'un hyperplan de R™. On voit bien que alors son volume est nul.

Exemple: Soit A = CCL b) € My(R). Alors A est inversible si et seulement si ad —bc # 0.

d
1 d —b
ATl = .
ad — bc (—C a )

De plus, dans ce cas
3.3.3 Opérations sur lignes; pivot de Gauss

Rappelons nous des opérations sur les lignes utilisées pour le pivot de Gauss. Ces opérations
changent le déterminant comme suit.
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Proposition 3.19. Pouri # j et A # 0,

e Add;j ne change pas le déterminant,
o Multy; multiplie le déterminant par A,
e Ech;; change le signe du déterminant (c.a d. le multiplie par —1).

Rappelons nous que ces opérations correspondent a des multiplications a gauche par des
matrices spécifiques, qu’on a notées aussi Add;.y;, Multy; et Ech;;. Un calcul directe méne
au lemme suivant.

Lemme 3.20. Pouri # j et A # 0,
det(Add;nj) =1 et det(Multy;) =X et det(Ech;) = —1.

Comme le déterminant est multiplicatif, la proposition suit directement du lemme.

Pour une matrice carrée de taille n, le calcul du déterminant par la formule récursive
qui le définit est extrémement long. On peut voir par récurrence qu’il a une complexité
algorithmique d’ordre n!. Un moyen beaucoup plus rapide (de complexité n?) est offert par
le pivot de Gauss.

Soit A € M,,(R). Rappelons nous du théoréme 2.48 qui nous dit qu’on peut transformer
la matrice A en une matrice échelonnée A en utilisant les opérations sur les lignes Add;.y j,
Multy; et Echi;. Vu qu'on connait l'effet de ces opérations sur le déterminant, il suffit de
savoir calculer le déterminant d’une matrice carrée échelonnée.

Ce calcul est particuliérement facile vu la proposition 3.16. Une matrice carrée échelonnée
A € M,(R) est forcement triangulaire supérieure. Ses coefficients sur la diagonale valent
soit 0 soit 1. Ainsi le déterminant de A vaut soit 1 (si tous les coefficient diagonaux valent
1), soit 0. Rappelons également que I'unique matrice carrée échelonnée contenant que des 1
sur la diagonale est la matrice identité.

Ainsi, on arrive a la conclusion suivante.

Corollaire 3.21. Soit A € M, (R) et A = P....P,A la matrice échelonnée obtenue a
partir de A en utilisant les opérations Py, ..., P, de type Add;,;, Multy; et Ech;;. Alors,

0, si A # 1;
det(4) = {—1 siA=1

det(Py)-.. det(P1)

Comme promis, on donne maintenant la preuve du théoréeme 3.18.

Preuve: [Théoréme 3.18] Soit A € M,,(R) et A = Py ... P; A la matrice échelonnée obtenue a partir
de A en utilisant les opérations Py, ..., P de type Add;.y j, Multy ; et Ech;;j. On a vu dans
la partie 2.4.3 que A est inversible, si et seulement si A = I,,. Mais le corollaire 3.21 nous
dit que cela est équivalent a det(A) # 0. O
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Remarque 3.22. En général on n’est pas obligé de ramener A sous forme échelonnée pour
calculer son déterminant. Il suffit d’utiliser Add;,;, Multy; et Ech;; pour la ramener sous
une forme triangulaire supérieure ou inférieure.

Dans certains cas on peut montrer par des moyens plus simple que le rang de A est strictement
plus petit que n. Cela implique que A n’est pas inversible, donc que det(A) = 0.

3.3.4 Compléments

Pour complétude, on mentionne le résultat suivant qui peut étre utile en pratique. 11
s’applique également & 1’écriture par lignes. On va admettre ce résultat, méme s’il suit
directement de (3.3).

Proposition 3.23. Soient Ci,...,C,,C! € M, 1(R) une famille de colonnes et A € R.
Alors,

det (cl...ci_l Ci+C! CHl...Cn)

7

:det(Cl...(JZ-_l C, Ci+1...0n)+det<01...ci_1 ! CZ-H...(Jn),
det (cl...ci_l A OZ-H...O,L):/\det<01...6’i_1 C, om...cn).

On dit que le déterminant est une forme multi-linéaire de la famille des colonnes.

On viens de voir effet sur le déterminant de certaines opérations sur les lignes (proposi-
tion 3.19) et sur les colonnes (proposition 3.23). Les deux sont reliées par le lemme suivant.
On va admettre ce résultat (il peut étre montré en utilisant (3.3)).

Lemme 3.24. Pour tout A € M,(R), det(AT) = det(A).

3.4 Polyndéme caractéristique

Une fagon de déterminer les valeurs propres d’'une matrice est donnée par le critére suivant.
Fixons A € M, (R).

Proposition 3.25. A € R est valeur propre de A si et seulement si det(Al,, — A) = 0.

On peut vérifier (par exemple par récurrence sur la taille de A) que la fonction \ +—
det(Al,, — A) est un polynome de degré n en A (et de coefficient dominant 1). Il est appelé
le polynome caractéristique™™ de A. On le note x 4()).

La proposition 3.25 nous dit que les valeurs propres de A sont exactement les racines
de XA-

(viii) Charakteristisches Polynom
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Preuve: On a déja vu (remarque 3.3) que A € R est une valeur propre de A si et seulement si
A — M\, n’est pas inversible. Par ailleurs, le théoréme 3.18 nous dit que cela est équivalent
a det(AI, — A) = 0. O

Exercice 3.3.
Soit A = (a;;) € M, (R) une matrice triangulaire supérieure. Calculer x4 et montrer que

Sp(A) = {al,la Ce ,anyn}.

3.4.1 Application: recherche de vecteurs propres

On est maintenant en mesure de décrire un algorithme pour chercher les valeurs et vecteurs
propres d'une matrice A € M,,(R).

On commence par calculer le polyndéme caractéristique de A, Ensuite on trouve ses racines,
notons les Ay,..., \; et notons mq,...,my € N leur multiplicité.

Pour chaque 1 < ¢ < k, en utilisant le pivot de Gauss, on résout 1’équation matricielle
(NI, — A)X =0, pour X € M,(R). L’ensemble des solutions est E,, = Ker(\; [, — A).
Vu que \;I,, — A n’est pas inversible, on va trouver un espace de solutions de dimension au
moins 1. On a ainsi trouver les valeurs propres \q, ..., A\; et les vecteurs propres associés.

Si on trouve des espaces propres avec dim(Ey,) + - - - 4+ dim(E), ) = n, alors A est diago-
nalisable (voir la proposition 3.9). De plus, la preuve de la proposition 3.9, décrit comment
créer une base de R™ formée de vecteurs propres de A. Le théoréme 3.7 (plus précisément
sa preuve) nous dit alors comment créer une matrice P € M,,(R) qui diagonalise A. Si par
contre, dim(E)y,) + - -- + dim(E),) < n, alors A n’est pas diagonalisable (voir & nouveau la
proposition 3.9). On distingue trois situations:

(i) x4 admet n racines distinctes (c.a-d. si k =net my =--- =m, = 1). Alors la matrice
A est diagonalisable et chaque espace propre est de dimension 1. (Rappelons nous du
corollaire 3.11 qui nous dit que si [Sp(A)| = n, alors A est diagonalisable.)

Exemple: Posons

5 —3 2
A=16 —4 4
4 —4 5

On trouve par un calcul directe x4(A) = A =6 2+ 1IN —6= (A —1)(\ —
2)(A — 3). Ainsi on déduit que A est bien diagonalisable et que ses valeurs
propres sont 1,2 et 3. Un calcul rapide nous offre une base de vecteurs
propres associés, notamment

1 1 1
21, (1].]2
1 0 2
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(ii) xa est scindé, c.a-d. my + -+ + my = n, mais certaines racines ont des multiplicités
plus grandes que 1. Alors, pour chaque ¢ = 1,...,k, on calcule E; = Ker(\;I,, — A) et

on trouve

(Le fait que dim(E;) < m; va étre admis). La matrice est diagonalisable si et seulement
si dim(FE;) = m; pour chaque i.

Exemple:

Posons
2 0 -1 1 -3 4
B=11 1 -1 et C=14 -7 8
-1 0 2 6 —7 7

Par calcul directe xg(\) = (A — 1)2(A = 3) et xc(A\) = (A= 3)(A+ 1)% En
utilisant le pivot de Gauss, on peut calculer les espaces propres de B. On
trouve

0 1 -1
Ker(I3—B) =Vect [ [1],]0 et Ker(3l3—B) = Vect | [ —1
0 1 1

On en déduit que B est diagonalisable; une base de vecteurs propres est
donnée par les bases de Ker(I3 — B) et Ker(I3 — B). Plus précisément, si
on pose

01 —1 1 00
P=[10 -1 alors P'BP=1[0 1 0
01 1 003

Le méme type de calcul pour C' nous permet d’obtenir ses espaces propres,
a savoir

1/2 1
Ker(313 — C) = Vect 1 et Ker(—I3—C)=Vect | |2
1 1

Ainsi C' n’est pas diagonalisable.

(iii) Si on travaille sur R il se peut que le polynéme x4 n’ai pas toutes ses racines réelles.
Si c’est le cas (c.a-d. si my + -+ my < n) alors A n’est pas diagonalisable dans R,
c.a-d. il n’existe pas P € M,,(R) inversible telle que P~*AP est diagonale. (Pour voir
si A est diagonalisable dans C, voir les points (i) et (ii).)

Exemple: Posons

3 =1 0
D=6 -3 2
8 —6 5
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Un calcul directe montre que xp(A) = A3—=5A\24+9A—5 = (A—1)(A\?—4\+5).
En utilisant la résolution des équations d’ordre 2, on voir que A\ — 4\ + 5
n’as pas de racines réelles. Ainsi D n’est pas diagonalisable par une matrice

de M, (R).

Si on prend en compte les racines complexes, alors presque tout polynéme admet n racines
distinctes. Il faut avoir quelques notions d’analyse mathématique pour donner un sens précis
a cette affirmation. Informellement, on peut dire que, si A € M,,(C) est prise “au hasard”,
alors elle est diagonalisable. Ou encore que toute matrice A € M,,(C) peut étre approchée
par des matrices diagonalisables.

En général, quand n > 5, les racines de y 4 n’admettent pas d’expression exacte. Ainsi,
on doit se contenter d’approximations numériques pour trouver Sp(A).
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A retenir

e Pour une matrice carrée A € M,,(R) on dit qu’un vecteur non nul X € R" est vecteur
propre de A si AX = AX pour un X\ € R. Le scalaire A\ s’appelle valeur propre de A.
L’ensemble des valeurs propres est le spectre de A, noté Sp(A).

e [’ensemble des vecteurs propres pour une valeur propre A est le s.e.v.

Er(A) = Ker(A — \,,).

e )\ € Sp(A) si et seulement si A — A, n’est pas inversible.

e La matrice A est dite diagonalisable si elle est semblable & une matrice diagonale, c.-a-
d. ¢'il existe P € M, (R) inversible, telle que P~ AP est diagonale.
Pas toutes les matrices sont diagonalisables!

e A est diagonalisable si et seulement s’il existe une base de R™ formée entiérement de
vecteurs propres de A.

e A est diagonalisable si et seulement si } g, 4) dim(E)) = n.

e Si A est diagonalisable par une matrice inversible P,

M ... 0 Moo
plap=|: - |, aloes A*=P|: .. :|PL
0 ... M\ 0 ... A

e Les matrices symétriques sont diagonalisables dans M, (R).

e Pour vérifier si une matrice est inversible, on utilise le déterminant: A € M,,(R) est
inversible si et seulement si det(A) # 0.

o Pour A, B € M,(R), det(AB) = det(A) det(B),

o L’effet des transformations sur les lignes:

— multiplier une ligne de la matrice par A multiplie le déterminant par A;
— échanger deux lignes multiplie le déterminant par —1;
— rajouter une ligne & une autre ne change par le déterminant.

Le déterminant peut se calculer par le pivot de Gauss.
e Le déterminant d’une matrice diagonale est le produit des coefficients diagonaux.

e Le polynome caractéristique d’'une matrice A € M,,(R) est y4(A\) = det(Al,, — A). Ses
racines sont exactement les valeurs propres de A.

e La procédure de la partie 3.4.1 pour vérifier si une matrice est diagonalisable.
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