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Avant-Propos

Ces notes accompagnent le cours d’algèbre linéaire propédeutique donné au semestre
d’automne des années 2017-2018 à l’Université de Fribourg.

Le but du cours est double. Il vise principalement de familiariser les étudiants avec
l’algèbre linaire, en accentuant les aspects pratiques comme le calcul matriciel, la résolution
des systèmes linéaires et les notions de valeur et de vecteur propres. Un deuxième but est de
faire découvrir aux étudiants le fonctionnement des mathématiques, à savoir la construction
d’une théorie à partir d’axiomes. Ce processus vise à créer un cadre abstrait qui permet
de décrire des problèmes issus de la réalité. Trouver un cadre abstrait, général, plutôt que
d’en créer un pour chaque problème rencontré, cela nous permet d’apercevoir des connexions
entre différents problèmes et d’en offrir des solutions plus robustes.

Enfin, dans le développement de toute science, arrive un moment où, pour dépasser les
approches ad-hoc, il est nécessaire de construire un cadre théorique qui permet une étude
systématique. Les sciences plus “mathématiques” comme la physique ou l’informatique tra-
vaillent déjà dans un tel cadre. Dans les sciences traditionnellement plus empiriques (biologie,
médecine, économie etc.) ce cadre est en train de se former par les travaux de modélisation
de plus en plus fréquentes. Ainsi, il est essentiel pour les scientifiques en formation de se
confronter à une construction abstraite, comme celle présentée dans ce cours.

Ce polycopié n’est pas censé remplacer le cours donnée en classe; il se veut plutôt un
complément, qui permet aux étudiants de revoir certains points. Dans la version présente, il
contient également beaucoup de compléments qui sont facultatifs et s’adressent aux étudiants
qui veulent approfondir certains points. La plupart des résultats sont prouvés, ce qui n’est
pas usuel dans un cours propédeutique. De plus, le premier chapitre (pas traité en classe)
consiste d’un résumé des bases des mathématiques ainsi que d’une liste des notations et
méthodes utilisés dans le cours.

Les exercices sont destinés à offrir une compréhension plus profonde du cours; ils sont
facultatifs et de difficulté hautement variable. Ils sont différents des exercices des séries qui
consistent surtout en exemples concrets.

Une version abrégée, plus proche de ce qui est fait en classe, est aussi disponible.
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Chapter 0

Éléments de base des mathématiques

0.1 Les ensembles
La notion peut-être la plus basique des mathématiques est celle d’ensemble. Un ensemble(i)

est une collection d’objets sans répétition et sans ordre.
On dit que les éléments d’un ensemble appartiennent à l’ensemble et on écrit ça en utilisant

le symbole ∈:
élément ∈ ENSEMBLE.

On dit qu’un ensembles A est contenu dans un ensemble B (ou que A est un sous-ensemble
de B), et on l’écrit A ⊂ B, si

pour tout x ∈ A, x ∈ B.

Ainsi, quand il faut montrer qu’un ensemble A est contenu dans un ensemble B, il est souvent
utile de montrer qu’un élément générique de A appartient à B.

Deux ensembles A et B sont dit égaux si et seulement si A ⊂ B et B ⊂ A. Ainsi, quand
il faut montrer une égalité d’ensembles, il est souvent utile de montrer la double inclusion.

L’existence de certains ensembles est garantie par les axiomes les plus basiques des mathé-
matiques. En particulier, un axiome déclare l’existence d’un ensemble (unique) ne contenant
aucun élément. Cet ensemble est noté ∅ et est appelé l’ensemble vide. De plus, on peut
définir des ensembles d’objets qu’on peut écrire explicitement, comme

{a, b, c}; {1, 2}; {4, a, G,♥}.

Les opérations les plus courantes sur les ensembles sont l’union (notée ∪) et l’intersection
(notée ∩). Pour deux ensembles A et B on définie l’union et l’intersection de A et B par

x ∈ A ∪B si et seulement si x ∈ A ou x ∈ B,
x ∈ A ∩B si et seulement si x ∈ A et x ∈ B.

L’union et l’intersection peuvent être appliquées à un nombre quelconque d’ensembles, fini ou
infini. L’existence de ces opérations est aussi le sujet d’axiomes de la théorie des ensembles.

(i)Menge
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CHAPTER 0. ÉLÉMENTS DE BASE DES MATHÉMATIQUES

Si P est une certaine propriété et A un ensemble, on peut définir l’ensemble des éléments
de A qui satisfont la propriété P . Il s’écrit

{x ∈ A : P (x)}.

En fin, pour deux ensembles A et B, on définit le produit cartésien de A et B comme
l’ensemble des couples (a, b) avec a ∈ A et b ∈ B. Il est noté A × B. Comme pour les
nombres, pour n ∈ N, on écrit An pour le produit cartésien de A avec lui même n fois:

An = A× · · · × A︸ ︷︷ ︸
n fois

.

Ainsi An est l’ensemble des n-uplets d’éléments de A:

An = {(a1, . . . , an) : a0, . . . , an ∈ A}.

Les ensembles les plus courants sont ceux des nombres naturels, entiers, rationnels, réels
et complexes. Ils sont notés N,Z,Q,R et C, respectivement. Ils sont inclus les un dans les
autres comme suit:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

On va supposer connues les propriétés basiques de ces ensembles (à l’exception de C) ainsi
que les opérations usuelles d’addition et multiplication.

Comme déjà mentionné, les éléments d’un ensemble n’ont pas d’ordre, ni de multiplicité.
Un concept plus évolué, qui admet plusieurs fois le même élément et dans lequel les éléments
sont ordonnés, est celui de famille(ii). Une famille finie, contenant n éléments x1, . . . , xn, est
aussi appelée n-uplet (iii) et est notée (x1, . . . , xn).

Même si ce nouveau concept nous semble peut-être plus naturel que celui d’ensemble,
c’est les ensembles, par leur nature très basiques, qui sont plus adaptés aux constructions
mathématiques.

0.2 Les fonctions
Une autre notion centrale dans les mathématiques est celle de fonction.

Définition 0.1. Une fonction(iv)est un triplet formé de deux ensembles A et B et d ’une
loi f qui associe à chaque élément de A un élément de B. L’ensemble A est appelé le
domaine de définition(v)de la fonction; B est le domaine d’arrivé(vi). Pour un élément
x ∈ A, l’élément de B associé par f à x est noté f(x).
Une telle fonction est souvent écrite f : A → B. Cela se lit "une fonction f de A dans

(ii)Familie
(iii)n-Tuple
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B". Une notation qui inclut la loi qui associe les éléments de B à ceux de A est

f : A→ B

x 7→ f(x)

Quand on parle d’une fonction f : A→ B, on appelle souvent la fonction tout simplement
f . Cela peut suggérer qu’un fonction est uniquement une loi qui associe à un élément un
autre. Il est important de se rappeler que la notion de fonction contient tout autant les
domaines de définition et d’arrivé, que la loi d’association.

Définition 0.2. Soient A et B deux ensembles et f : A→ B.

• On dit que f est une fonction injective si pour tout y ∈ B il existe au plus un x ∈ A
tel que f(x) = y.
• On dit que f est une fonction surjective si pour tout y ∈ B il existe au moins un
x ∈ A tel que f(x) = y.
• On dit que f est une fonction bijective si pour tout y ∈ B il existe exactement un
x ∈ A tel que f(x) = y.

Soient A,B deux ensembles et f : A→ B. Alors la fonction f est injective si et seulement si

si x, y ∈ A sont tels que f(x) = f(y), alors x = y.

Attention! Les notions d’injectivité, surjectivité et bijectivité sont très sensibles aux do-
maines d’arrivé et de définition.

Exemple: Prenons les fonctions:

f :R→ [0,+∞) g :[0,+∞)→ R h :[0,+∞)→ [0,+∞)

x 7→ x2 x 7→ x2 x 7→ x2

On s’aperçoit que f est surjective mais pas injective, que g est injective mais pas
surjective et que h est bijective.

En effet, pour chaque y ∈ [0,+∞), il existe au moins un x ∈ R (à savoir √y)
tel que f(x) = y. Ainsi f est surjective. Par contre, f(1) = f(−1) = 1, donc f
n’est pas injective.

(iv)Funktion oder Abbildung
(v)Definitionsmenge
(vi)Zielmenge
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Composition; inverse Soient A,B et C trois ensembles, f : A→ B et g : B → C. Alors
on définit la composition de g et f comme la fonction g ◦ f : A→ C ou

(g ◦ f)(x) = g(f(x)), pour tout x ∈ A.

Attention! Pour composer deux fonctions, il faut que le domaine de définition de la première
soit le domaine d’arrivée de la deuxième. Si ce n’est pas le cas, la composition
n’est pas définie.

Quand f : A → B est une fonction bijective (et seulement dans ce cas), on peut définir
l’inverse de f comme la fonction f−1 : B → A ou, pour y ∈ B, f−1(y) est l’unique élément
x ∈ A tel que f(x) = y.

De plus, quand f : A→ B est bijective, f−1 est la seule fonction de B dans A telle que

(f−1 ◦ f)(x) = x, ∀x ∈ A et (f ◦ f−1)(y) = y, ∀y ∈ B.

Exercice 0.1.
Soient E,F,G trois ensembles et f : F → G et g : E → F deux fonctions.
(a) Montrer que si f ◦ g est injective, alors g est injective. Donner un exemple ou f ◦ g est

injective mais f ne l’est pas.
(b) Donner un exemple ou g est injective, mais f ◦ g ne l’est pas.
(c) Montrer que si f ◦ g est surjective, alors f est surjective. Donner un exemple ou f ◦ g

est surjective mais g ne l’est pas.
(d) Donner un exemple ou f est surjective, mais f ◦ g ne l’est pas.

0.3 Les énoncés mathématiques
Les mathématiques sont un ensemble d’énoncés (qu’on appelle souvent théorèmes, proposi-
tions, corollaires etc.) qui découlent de ce qu’on appelle les axiomes par des raisonnements
mathématiques qu’on appelle des preuves. On dit souvent que ces énoncés sont vrais; il serait
plus précis de dire qu’ils sont prouvable à partir des axiomes. Toutefois, on va s’autoriser cet
abus de langage.

Un axiome est un énoncé qu’on considère vrai, sans avoir besoin de preuve. Les mathé-
matiques sont fondées sur une liste fixe d’axiomes qui sont communément acceptées. On peut
dire que tous les mathématiciens se sont mis d’accord à considérer certaines choses vraies, et
qu’ils travaillent pour en déduire des conséquences.

Cela peut paraitre étrange de fonder une science entière sur certains principes qui sont,
a priori, arbitraires. Pourtant, ceci est plus ou moins le cas de toute science théorique. De
plus, les axiomes mathématiques sont très naturelles, elle seraient considérées des évidences
par une personne non-avisée.

En plus des énoncés de type théorème, proposition etc., on rencontre aussi en mathéma-
tique des définitions. Une définition ne fait que attribuer un nom à un certain type d’objet
mathématique; ainsi une définition n’est pas à prouver, il s’agit tout simplement d’une con-
vention.
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Tout comme un phrase en français, un énoncé mathématique, avant qu’il soit "vrai" ou
"faux", doit avoir un sens. Cela est garanti par certaines règles de syntaxe, tout comme les
règles de syntaxe du langage courent. Il est donc important, avant de se soucier de la validité
d’un énoncé, de s’assurer qu’il suit les règles de la syntaxe mathématique. Pourtant, les règles
formelles de la syntaxe mathématique sont compliques et donnent lieu à des énoncés difficile
à lire. Ainsi, on va suivre une règle approximative qui est la suivante.

Tout énoncé mathématique, lu à voit haute,
doit former une phrase qui a un sens en langage courent!

On mentionnent que toutes les symboles mathématiques ont une interprétation précise en
français. On donne ici quelques symboles communs et leur interprétation (pour d’autres
voir [3]):

∀ pour tout, ∃ il existe,
⇒ implique que, ⇔ est équivalent à,
x ∈ A x appartient à A, A ⊂ B A est contenu dans B.

En allemand:

∀x für alle Elemente x,
∃x es existiert mindestens ein Element x,
A⇒ B aus Aussage A folgt Aussage B,
A⇔ B Aussage A folgt aus Aussage B und umgekehrt,
x ∈ A das Element x ist in der Menge A enthalten,
A ⊂ B Aist echte Teilmenge von B.

0.4 Quelques éléments de logique
A chaque énoncé mathématique (et plus généralement à chaque énoncé dans un système de
logique) on associe une valeur de vérité VRAI (V) ou FAUX (F).

Les énonces peuvent être combinés par des connecteurs logiques. Les connecteurs utilises
le plus souvent sont le et logique (symbolisé souvent par ∧), le ou logique (symbolisé souvent
par ∨), l’implication (écrite ⇒) et l’équivalence (écrite ⇔). Ainsi, si A et B sont deux
énoncés, on peut en créer d’autres: A ∧ B, A ∨ B, A ⇒ B et A ⇔ B. La validité de
ces énonces est décidée directement de la validité de A et celle de B, sans avoir besoin de
connaitre la structure de A ou de B. La validité des quarte énoncés mentionnés ici est donnée
par le tableau suivant, qu’on appelle un tableau de vérité.

A B A ∧B A ∨B A⇒ B A⇔ B
F F F F V V
F V F V V F
V F F V F F
V V V V V V
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Pour un (ou plusieurs) énoncé E composé d’énoncés A,B,C, . . . par des connecteurs logiques,
le tableau de vérité est un tableau qui liste toutes les valeurs de vérité possibles pour
A,B,C, . . . (c.-à-d. toutes les combinaisons de VRAI ou FAUX pour chaque) et donne
les valeurs de vérité correspondantes de E.

En plus de ∧,∨,⇒,⇔, un connecteur logique commun est la négation, notée ¬. Elle
implique un seul énoncé: pour un énoncé A, l’énoncé ¬A a toujours la valeur de vérité
opposée à celle de A. Ainsi le tableau de vérité de la négation est le suivant:

A ¬A
F V
V F

Les énoncés ainsi créés, peuvent être encore combiner à l’aide des connecteurs logiques.
Pour illustrer l’ordre des connecteurs logiques, on utilise les parenthèses. En effet, les deux
énoncés suivants sont différents

(A ∧B)⇒ B et A ∧ (B ⇒ B).

Pour observer cela, on écrit tableaux de vérité des deux énoncés (les troisième et cinquième
colonnes sont seulement la pour nous aider a calculer le résultat):

A B A ∧B (A ∧B)⇒ B B ⇒ B A ∧ (B ⇒ B)
F F F V V F
F V F V V F
V F F V V V
V V V V V V

Une tautologie est une expression composée de un ou plusieurs énonces à l’aide des con-
necteurs logiques, qui est vraie pour toute valeurs de vérité des énoncés impliqués.

Exercice 0.2.
Ecrire les tableaux de vérité des énoncés suivants pour montrer qu’ils sont des tautologies.
(a) A⇔ A,
(b) (A⇒ B)⇔ [(¬B)⇒ (¬A)],
(c) (A⇔ B)⇒ (A⇒ B),
(d) [¬(A ∧B)]⇔ [(¬A) ∨ (¬B)],
(e) [(A⇒ B) ∧ (B ⇒ C)]⇒ (A⇒ C),
(f) (¬A)⇒ (A⇒ B).

0.5 La notion de preuve
Informellement, une preuve est un argument qui, à partir de faits établis, montre incon-
testablement un nouveau fait. C’est bien ce que une preuve mathématique est censée être.
Au cours de l’évolution de la science, les mathématiciens ont donné à la notion de preuve
un sens très précis. Ainsi, une preuve mathématique formelle est une liste d’énoncés (qu’on
considère prouvés) qui suit des règles spécifiques. Pour information, les règles sont (approx-
imativement) les suivantes,
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• à tout moment on peut écrire dans la liste un axiome,
• à tout moment on peut écrire dans la liste une tautologie,
• si la liste contient déjà un énoncé A et un énoncé de la forme A ⇒ B, alors on peut

inclure dans la liste l’énoncé B.

Une preuve écrite suivant ces règles serait très longue et difficile à déchiffrer. La façon com-
mune d’écrire des preuves mathématiques est donc d’écrire un argument dont tout mathé-
maticien peut facilement se convaincre qu’il peut être traduit dans une preuve au sens formel.
Pour savoir plus sur ce sujet voir [2, pg. 17].

Ce qu’il faut retenir de cette partie est qu’une preuve mathématique est une démarche
réglementé. En particulier, il ne s’agit pas d’essayer de convaincre un interlocuteur par des
exemples variés, ou en réfutant différents contre-exemples proposés.

0.5.1 Conseils pour écrire une preuve

Quelques principes de base qui aide à la lisibilité d’une preuve:

• Surtout s’il s’agit d’une preuve plus complexe, il est utile d’annoncer ce qu’on commence
à prouver. Cela devient absolument nécessaire quand la conclusion n’est pas donnée
dès le départ, par exemple dans un exercice du type: "Prouver que tout x ∈ A a la
propriété P , ou trouver un contre-exemple." Dans cette situation il est essentiel de
commencer la preuve en mentionnant si on montre ∀x ∈ A,P (x) ou si on exhibe un
contre exemple.
• A la fin d’une preuve ou d’une étape de preuve, il est conseillé de mentionner que la

preuve, ou l’étape, est achevée. On peut par exemple dire "Ainsi, P (x) est prouvé." ou
"Ce qui fini la preuve de . . . ".
• Ne jamais utiliser des variables qui n’ont pas étaient définies! Une erreur fréquente est

de parler d’une variable, disons x, sans l’avoir introduite. Cet type d’erreur peut venir
du fait que la variable en question est déjà apparu, mais seulement localement.
Par exemple x peut apparaitre dans la définition d’un sous-ensemble B d’un certain
ensemble A, comme ceci: B = {x ∈ A : P (x)}. Dans ce cas, il est important de retenir
que x est défini uniquement à l’intérieur des accolades, et qu’on ne peut pas parler de
x en dehors de le définition de B sans dire qui est x. Ainsi, si on veut utiliser x comme
élément générique de B, il faut écrire "soit x ∈ B. . . ".
Il est prudent de vérifier que toutes les objets dont on parle on était introduit plus tôt
dans la preuve, ou qu’ils étaient fixés dans l’exercice / le théorème / la proposition
qu’on est en train de prouver.
• On doit souvent démontrer des énoncés du type:

(a) pour tout x ∈ A, on a P (x),
(b) il existe x ∈ A, tel que P (x),

ou P est une certaine propriété.
Il est fortement conseillé de commencer la preuve de l’énoncé (a) par la phrase "Soit
x ∈ A". Cela signifie qu’on choisit un élément générique de A qu’on note x, avec lequel
on peut travailler dans la suite de la preuve. On ne peut rien supposer sur cet élément,
à part les propriétés garanties par le fait qu’il appartient à A.
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Pour l’énoncé (b) il suffit de trouver un exemple. Très souvent on peut exhiber un
exemple d’élément x de A qui a la propriété désirée. On peut alors commencer par
"Posons x = . . . ", ensuite démontrer que x ∈ A et que x a bien la propriété P . Il n’est
pas formellement nécessaire d’expliquer comment on a trouvé cet élément!

Les preuves les plus simples sont directes: à partir des hypothèses données on se dirige
directement vers la conclusion. Néanmoins, dans des cas plus compliqués, certaines méthodes
de preuves peuvent aider. On va en donner quelques-unes.

La preuve par contraposée Supposons qu’on veut prouver un énoncé du type A ⇒ B.
La logique formelle (voir partie 0.4) nous dit que (¬B ⇒ ¬A)⇒ (A⇒ B) est une tautologie.
Ainsi, pour prouver A⇒ B, il suffit de prouver ¬B ⇒ ¬A. L’énoncé ¬B ⇒ ¬A s’appelle la
contraposée de A⇒ B.

Si on décide de prouver A⇒ B en prouvant ¬B ⇒ ¬A, il faut annoncer ce fait au début
de la preuve par une phrase comme par exemple "On va prouver A⇒ B par contraposée”.

Exemple: Soit x ∈ N. Montrons que si x2 + 3x+ 2 est impaire, alors x est impair.
Preuve: On va procéder par contraposée. Supposons que x est pair et écrivons x = 2k

avec k ∈ N. Alors x2 + 3x+ 2 = 4k2 + 6k+ 2 = 2(2k2 + 3k+ 1) est pair.

La preuve par l’absurde Une méthode similaire à la preuve par contraposée est la preuve
par l’absurde. Supposons à nouveau qu’on veut montrer A⇒ B. La logique (voir partie 0.4)
nous dit que A ⇒ B est faux seulement si A est vrai et B est faux. Ainsi, ce qu’on peut
faire, c’est de supposer que A et ¬B sont vrais, et arriver à une contradiction.

Tout comme pour la preuve par contraposée, il faut annoncer en début de preuve qu’on
va procéder ainsi.

Exemple: Montrons qu’il y a une infinité de nombres premiers.
Preuve: On va procéder par l’absurde. Supposons qu’il existe seulement un nombre fini

de nombres premiers et notons les p1, . . . , pn. Posons q = p1p2 . . . pn+1. Alors
q n’est divisible par aucun des nombres p1, . . . , pn, donc par aucun nombre
premier. Il est donc premier et diffèrent de p1, . . . , pn, ce qui contredit le fait
que p1, . . . , pn sont tous les nombres premiers.

Vu que pour ces deux méthodes de preuve on utilise souvent la négation, il peut être
utile de retenir la négation de certains types d’énoncés. Soient P et Q deux énonces et A un
ensemble. Alors

• ¬(∀x ∈ A, P (x)) = ∃x ∈ A, ¬P (x),

• ¬(∃x ∈ A, P (x)) = ∀x ∈ A, ¬P (x),

• ¬(A⇒ B) = ¬B et A.
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La preuve par récurrence Supposons qu’on veut montrer un énoncé de la forme ∀n ∈
N, P (n), ou P est une certaine propriété. On peut alors procéder par récurrence. La preuve
par récurrence a trois étapes:
(i) On démontre la propriété P (0). Ceci est le pas initial de la récurrence.
(ii) On montre que, pour tout n ∈ N, P (n)⇒ P (n+ 1).
(iii) On conclut en disant: "Par récurrence, P (n) est vrai pour tout n ∈ N.
Le pas initial (i) est souvent une simple vérification. Néanmoins, il est essentiel au raison-
nement par récurrence et ne doit pas être omit. Pour le pas (ii), on commence souvent par
"Soit n ∈ N. Supposons P (n). . . ".

Différentes variantes de récurrence existent. Par exemple, dans le pas (ii), on peut sup-
poser que P (k) est vrai pour tout k ≤ n pour démontrer P (n+ 1).

Comme pour les méthodes précédentes, une preuve par récurrence doit être annoncée. Il
est utile à ce moment la de dire quelle est la propriété P qu’on désire montrer pour tout
nombre naturel.
NB: Le fait que la preuve par récurrence démontre en effet l’énoncé désiré est le résultat
d’un axiome spécifique.

Exemple: Montrons que pour tout n ∈ N, 2n ≥ n+ 1.
Preuve: On va montrer par récurrence P (n) pour tout n ∈ N, ou P (n) est la propriété

2n > n.
Pour n = 0, P (0) s’écrit 20 = 1 ≥ 1. Ainsi P (0) est vrai.
Soit n ∈ N. Supposons que 2n ≥ n+ 1. Alors 2n+1 = 2 · 2n ≥ 2(n+ 1) ≥

n+ 2 = (n+ 1) + 1. Ainsi P (n+ 1) est vrai.
Par récurrence, on déduit que P (n) est vrai pour tout n ∈ N.
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Chapter 1

Espaces vectoriels

Alors que la notion de nombre nous semble très naturelle, celle de vecteur peut nous paraitre
artificielle. Pourtant, la nécessité d’additionner des objets plus complexes que des simples
nombres apparait naturellement quand on essaye de modéliser mêmes des phénomènes sim-
ples. Les vecteurs (et la notion d’espace vectoriel) offre le cadre pour ce type d’opérations.

En physique, on travail avec des forces (ou encore avec des vitesses, accélérations, etc.)
qu’on peut additionner pour obtenir une force totale. Une telle force n’est pas un simple
nombre, elles est formé d’un nombre (le module) accompagné d’une direction spatiale; celle-
ci ayant une importance cruciale pour comprendre l’effet de la force. En effet, la somme
de deux forces de module 1 dépend fortement de leur directions. Suivant l’angle entre les
directions, la force totale peut avoir un module compris entre 0 et 2.

Un autre point de vu est le suivant: imaginons une situations ou plusieurs ressources
non-interchangeables sont disponibles. Dans cette situation, un avoir n’est pas un simple
nombre, mais une collection de nombres (un pour chaque ressource). Les avoirs de plusieurs
individus, comme les forces en physique, peuvent être additionnés pour obtenir un avoir total,
lui aussi représenté par une collection de nombres.

Dans les deux exemples, on rencontre des quantités représentées par plus qu’un simple
nombre, mais qu’on peut additionner avec des règles similaires à celles qu’on utilise pour
additionner des nombres. De plus, dans les deux cas, on peut aussi multiplier les quantités
en questions par des nombres. Ces deux opérations (et les règles qui les accompagnes) sont
les spécificités des espaces vectoriels.

En plus de leur intérêt comme outil de modélisation, les espaces vectoriels (avec la théorie
afférente de l’algèbre linéaire) offre un cadre pour donner de solutions simples et élégantes à
différents problèmes pratiques (voir les exemples à venir).

1.1 Définitions et exemples
On va étudier ici seulement les espaces vectoriels sur le corps des nombres réels R. On va
souvent appeler les nombres réels des scalaires.

Définition 1.1. Soient E un ensemble non-vide et + : E2 → E et · : R × E → E des
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opérations (c.-à-d. des fonctions). On dit que E est un espace vectoriel(i)(e.v.) si les
propriétés suivantes sont satisfaites pour tous éléments x, y, z ∈ E et λ, µ ∈ R:

(i) x+ y = y + x (commutativité de +);

(ii) (x+ y) + z = x+ (y + z) (associativité de +);

(iii) il existe un élément 0E ∈ E tel que u+ 0E = u pour tout u ∈ E;
(iv) pour chaque u ∈ E, il existe un élément −u ∈ E tel que u+ (−u) = 0E;

(v) λ · (µ · x) = (λµ) · x (associativité de ·);
(vi) (λ+ µ) · x = λ · x+ µ · x (distributivité pour +);

(vii) λ(x+ y) = λx+ λy (distributivité pour +);

(viii) 1 · x = x.

Les éléments de E sont appelés vecteurs(ii).

Proposition 1.2.
(a) L’élément 0E est unique et on l’appelle l’élément neutre(iii)pour l’addition.
(b) Pour chaque x ∈ E, l’élément −x qui satisfait la propriété (iv) est unique. On

l’appelle l’inverse(iv)de x.

Preuve: (a) Notons u, v ∈ E deux éléments avec la propriété (iii). Alors

u = u+ v = v + u = v,

ou la première égalité est donné par le fait que v satisfait (iii), et la dernière par le fait
que u satisfait (iii). Ainsi u = v.
(b) Soient x ∈ E et deux éléments u, v ∈ E tels que x+ u = x+ v = 0E . Alors

v = v + 0E = v + x+ u = 0E + u = u.

Proposition 1.3. (Quelques propriétés de base) Soient E un espace vectoriel, x ∈ E et
λ ∈ R. Alors
(a) 0 · x = 0E;
(b) (−1) · x = −x;
(c) λ · 0E = 0E;

(i)Vektorraum
(ii)Vektoren
(iii)neutralen Elements
(iv)inverses Element
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(d) si λ · x = 0E, alors λ = 0 ou x = 0E.

Preuve: Soit x ∈ E et λ ∈ R. (a) On a

0 · x+ 0 · x = (0 + 0) · x = 0 · x.

En additionnant le vecteur −(0 · x) à cette l’égalité on obtient

0 · x = 0 · x+ 0 · x+ (−0 · x) = 0 · x+ (−0 · x) = 0E .

(b) Par le point (viii) de la définition d’espace vectoriel, et par le point (a) déjà démontré,
on a

(−1) · x+ x = (−1) · x+ 1 · x = (−1 + 1) · x = 0 · x = 0E .

(c) Si λ = 0, on a bien λ0E = 0E par le point (a). On peut donc se limiter au cas λ 6= 0.
Alors, pour y ∈ E, on a

λ0E + y = λ · 0E + λ · 1
λ
· y = λ(0E +

1

λ
y) = λ · 1

λ
· y = y,

ce qui prouve que λ0E a la propriété définitoire de 0E . Par unicité de 0E on a bien
λ0E = 0E .
(d) Supposons que λx = 0E et que λ 6= 0. Montrons alors que x = 0E . En effet, on a

x =
1

λ
· λ · x =

1

λ
· 0E = 0E .

Remarque 1.4. Alors que les conditions de la définition 1.1, ainsi que leur conséquences
(propositions 1.2 et 1.3) peuvent sembler trop nombreuses et compliqués à retenir, ce dont
on doit se souvenir est:

Dans un espace vectoriel E on peut faire des sommes de vecteurs et on peut multiplier les
vecteurs par des nombres (qu’on appelle des scalaires). Les règles usuelles d’addition et
multiplication s’y appliquent.

Attention: Ce qu’on ne peut pas faire (pour λ ∈ R et x, y ∈ E) est

• faire la somme entre un scalaire et un vecteur (ne jamais écrire λ+ x);
• écrire un produit avec le scalaire à droite (ne pas écrire xλ);
• faire un produit de deux vecteurs. Pour l’instant x · y n’as aucun sens.

Désormais, quand aucune ambiguïté est possible, on supprime l’indice E de 0E.

1.2 Sous-espaces vectoriels
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Définition 1.5. Soit (E,+, ·) un espace vectoriel. Un ensemble F ⊂ E est appelé sous-
espace vectoriel(v)de E si (F,+, ·) est un espace vectoriel.

Attention! L’addition et la multiplication par une constante utilisées pour F sont celles de
l’espace vectoriel (E,+, ·).

Proposition 1.6. Soit (E,+, ·) un espace vectoriel et F ⊂ E un sous-ensemble non-vide
de E. Alors F est un sous-espace vectoriel de E si et seulement si les deux conditions
suivantes sont vérifiées:

(a) pour tout x, y ∈ F , x+ y ∈ F ,
(b) pour tout x ∈ F et λ ∈ R, λx ∈ F .

De plus, les deux conditions peuvent s’écrire de façon plus compacte comme:

pour tout x, y ∈ F et λ, µ ∈ R, λx+ µy ∈ F . (1.1)

Preuve: Soit (E,+, ·) un espace vectoriel et F ⊂ E un sous-ensemble non-vide de E.
Si F est un espace vectoriel, alors les conditions (a) et (b) sont évidement satisfaites.
Supposons maintenant que (a) et (b) sont satisfaites et montrons que F est un espace

vectoriel. Les hypothèses (a) et (b) montrent que les opérations + et · sont bien définies
sur F . Il suffit donc de vérifier les conditions de la définition 1.1.

Les conditions (i) (ii) (v) (vi) (vii) et (viii) sont des propriétés des opérations + et ·,
elles restent donc valables sur F . Il reste a montrer (iii) et (iv)

Soit x ∈ F (un tel élément existe car F 6= ∅ par hypothèse). Par (b) et la proposi-
tion 1.3, 0E = 0 · x ∈ F , ce qui prouve (iii). De même −x = (−1) · x ∈ F , donc (iv) est
aussi satisfait.

En fin, montrons que la condition (1.1) est équivalente à (a) et (b). En effet, supposons
que (a) et (b) s’appliquent à F . Soient x, y ∈ F et λ, µ ∈ R. Alors, en appliquant (b) on
obtient λx ∈ F et µy ∈ F . En appliquant (a) à λx et µy, on obtient λx+ µy ∈ F .

Inversement, supposons que (1.1) s’applique à F . Alors, en écrivant cette relation pour
µ = 0, on obtient(b). De plus, en écrivant (1.1) pour λ = µ = 1, on obtient (a).

Remarque: si F est un sous-espace vectoriel d’un espace vectoriel E, alors 0E ∈ F (voir la
preuve de la proposition pour l’explication de ce fait).

Exemples On donne ici quelques exemples d’espaces et sous-espaces vectoriels qu’on va
reprendre à plusieurs reprises plus tard dans le cours.

(v)Untervektorraum
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1. L’exemple le plus simple d’espace vectoriel qui vient à l’esprit est Rd pour d ≥ 1.
L’ensemble Rd est l’ensemble des d-uplets de nombre réels. Plus précisément, un élé-
ment générique de Rd s’écrit (x1, . . . , xd) avec x1, . . . , xd ∈ R.
L’addition et la multiplication par un scalaire sont définies comme suit. Pour x =
(x1, . . . , xd) ∈ Rd, y = (y1, . . . , yd) ∈ Rd et λ ∈ R,

x+ y := (x1 + y1, . . . , xd + yd) et λx := (λx1, . . . , λxd).

L’espace R3 s’identifie à l’espace de dimension 3 avec un système de coordonnées. En
effet, un point (x, y, z) ∈ R3 correspond au point de coordonnées x, y et z. Voir image:

0

z

x

y

(x, y, z)

2. L’ensemble R[X] des polynômes à coefficients réels, munit de l’addition standard et de
la multiplication par une constante standard est un R-espace vectoriel.

3. Soit X un ensemble quelconque et F(X,R) l’ensemble des fonctions de X dans R.
L’addition dans F(X,R) est définie composante par composante. La multiplication
par un scalaire aussi. Ainsi, pour f, g ∈ F(X,R) et λ ∈ R, les fonctions f + g : X → R
et λ · f : X → R sont définies par

(f + g)(x) = f(x) + g(x) et (λ · f)(x) = λf(x), pour tout x ∈ X.

Muni de ces deux opérations, F(X,R) est un espace vectoriel.

4. Un cas particulier du point précèdent est l’ensemble des suites `(R) = RN := F(N,R).
Une suite réelle, notée (an)n∈N est une famille de nombre réels indexée par les nom-
bres naturels. L’addition et la multiplication par un scalaire se font composante par
composante, comme pour les fonctions.

5. Les suites définies par une relation de récurrence forment un sous-espace vectoriel de
`(R) (voir section 1.4).

6. L’ensemble des solutions d’un système linéaire homogène forment un espace vectoriel
(voir la partie 2.4). Considérons par exemple le système suivant{

x+ y + 2z = 0

x− 2y − z = 0,
(1.2)

à deux équations et trois inconnues x, y, z ∈ R. L’ensemble S des solutions (x, y, z) est
un sous-espace vectoriel de R3. En effet, si (x, y, z) et (x′, y′, z′) sont des solutions de
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(1.2), alors (x, y, z) + (x′, y′, z′) := (x+x′, y+ y′, z+ z′) en est une aussi. De plus, pour
λ ∈ R, le triplet λ(x, y, z) := (λx, λy, λz) est aussi solution de (1.2).

On peut même calculer S et donner la forme générale de ses éléments. En effet, en
soustrayant la première ligne à la deuxième, le système (1.2) devient{

x+ y + 2z = 0

−3y + 3z = 0,

On divise la seconde équation par −3 pour obtenir:{
x+ y + 2z = 0

y + z = 0,

En fin, on soustrait deux fois la seconde équation à la première et on obtient{
x+ z = 0

y + z = 0,

Les opérations qu’on vient de faire ne change pas l’ensemble de solutions du système.
Ainsi, les solutions sont S = {(z, z,−z) ∈ R3 : z ∈ R}.
Géométriquement, S est une droite de R3, plus précisément c’est la droite qui passe
par les points (0, 0, 0) et (1, 1,−1). On verra par la suite que les sous-espaces vectoriels
(non-triviaux) de R3 sont les droites et les plans passant par l’origine (0, 0, 0). Ce
premier exemple témoigne de la nature géométrique des espaces vectoriels.

7. En physique les forces, vitesses, accélérations etc. sont représentées par des flèches dans
l’espace usuel à trois dimensions. On on appelle ces flèches des vecteurs. Une flèche
entre deux points O et A est notée

−→
OA. On peut additionner les flèches par la règle du

parallélogramme. De plus, pour un scalaire λ ∈ R, on peut multiplier la flèche
−→
OA par

le scalaire λ ∈ R. En effet λ
−→
OA est une flèche de longueur |λ| · |−→OA|, de même direction

que
−→
OA et de même sens si λ ≥ 0 ou de sens opposé si λ < 0.

Fixons le point O et notons G3
O l’ensemble des flèches d’origine O.

Le nom de vecteur qu’on donne à ces flèches n’est pas accidentel. En effet, G3
O est un

espace vectoriel (les conditions (i-viii) sont facilement vérifiées).

Une flèche
−→
AB dont le point d’origine n’est pas O est identifiée à la flèche parallèle,

de même longueur et même sens, mais dont l’origine est bien O (en autre mots on
considére que

−→
AB est la même flèche que sont translaté). Ainsi, en pratique on peut

se limiter à l’espace vectoriel G3
O.

Exercice 1.1.
Prenons E = R3.
(a) Soit F = {(x, y, z) ∈ R3 : z = 0} ⊂ E. Montrer que F est un s.e.v. de E.
(b) Soit G = {(x, y, z) ∈ R3 : x+ y + z = 0} ⊂ E. Montrer que G est un s.e.v. de E.
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O

B

A −→
OA+

−−→
OB

−→
OA

−→
OA

O
−→
OA

2 · −→OA
O

−→
OA

− 3
2 ·
−→
OA

−−→
OB

Figure 1.1: L’addition des vecteurs peut se faire par la règle du parallélogramme. Dans
l’image de gauche, les cotes opposées du parallélogramme sont le même vecteur. La mul-
tiplication par une constante se fait en gardant la même direction, mais en multipliant la
longueur du vecteur. Si la constant est négative, la flèche change de sens.

(c) Soit H = {(x, y, z) ∈ R3 : x+y+z = 1} ⊂ E. Montrer que H n’est pas un s.e.v. de E.

Exercice 1.2.
Prenons E = R[X].
(a) Soit F = {P ∈ R[X] : P (0) = 0} ⊂ E. Montrer que F est un s.e.v. de E.
(b) Soit G = {P ∈ R[X] : P (0) = 1} ⊂ E. Montrer que G n’est pas un s.e.v. de E.
(c) Soit H = {P ∈ R[X] : degP ≤ 4} ⊂ E. Montrer que H est un s.e.v. de E.
(d) Soit I = {P ∈ R[X] : degP = 4} ⊂ E. Montrer que I n’est pas un s.e.v. de E.

1.3 Base, dimension finie, dimension

1.3.1 Familles libres, génératrices

Fixons pour le reste du chapitre un espace vectoriel E. Dans cette partie on va considérer
à plusieurs reprises des familles finies de vecteurs x1, . . . , xn ∈ E. Pour une telle famille, on
appelle combinaison linéaire(vi) de x1, . . . , xn tout vecteur de la forme

λ1x1 + · · ·+ λnxn,

ou λ1, . . . , λn ∈ R sont des scalaires quelconques.

Définition 1.7. Soit x1, . . . , xn ∈ E une famille finie de vecteurs. Le sous-espace vectoriel
de E engendré par (x1, . . . , xn)(vii)est

Vect(x1, . . . , xn) := {λ1x1 + · · ·+ λnxn : λ1, . . . , λn ∈ R}.

On dit que la famille (x1, . . . , xn) est génératrice (pour E) si Vect(x1, . . . , xn) = E.

(vi)Linearkombination
(vii)lineare Hülle von (x1, . . . , xn), aussi notée span(x1, . . . , xn)
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En autre mots, Vect(x1, . . . , xn) est l’ensemble formé de toutes les combinaisons linéaires
de x1, . . . , xn. La famille (x1, . . . , xn) est dite génératrice si tout vecteur de E peut s’écrire
comme combinaison linéaire de x1, . . . , xn.

L’ordre des vecteurs x1, . . . , xn n’affecte pas l’espace qu’ils engendre, donc ni le fait que
la famille soit génératrice ou pas.

Remarque 1.8. La définition de Vect(x1, . . . , xn) ci-dessus nécessite une preuve. En effet
Vect(x1, . . . , xn) est défini comme un sous-ensemble de E, non-pas comme un sous-espace vec-
toriel. Il faut ainsi montrer (en utilisant la proposition 1.6 par exemple) que Vect(x1, . . . , xn)
est un effet un sous-espace vectoriel de E.
Preuve du fait que Vect(x1, . . . , xn) est un s.e.v.: Prenons x1, . . . , xn ∈ E une famille finie de

vecteurs. Alors, 0E = 0·x1+· · ·+0·xn ∈ Vect(x1, . . . , xn). En particulier Vect(x1, . . . , xn)
n’est pas vide.
Soit u, v ∈ Vect(x1, . . . , xn). Alors on peut écrire

u = λ1x1 + · · ·+ λnxn et v = µ1x1 + · · ·+ µnxn,

pour des scalaires λ1, . . . , λn ∈ R et µ1, . . . , µn ∈ R. Ainsi, pour tout ν ∈ R:

u+ v = (λ1 + µ1) · x1 + · · ·+ (λn + µn) · xn ∈ Vect(x1, . . . , xn) et
νu = νλ1 · x1 + · · ·+ νλn · xn ∈ Vect(x1, . . . , xn).

Par la proposition 1.6, on conclut que Vect(x1, . . . , xn) est un sous-espace vectoriel de E.

Exemple: Dans l’espace vectoriel R2 la famille ((0, 1); (1, 0)) est génératrice. En effet, tout
vecteur (a, b) ∈ R2 s’écrit (a, b) = b · (0, 1) + a · (1, 0).
Dans l’espace vectoriel R3, la famille ((1, 1, 0); (0, 0, 1)) n’est pas génératrice. En
effet, le vecteur (0, 1, 0) ne peut pas s’écrire comme α · (1, 0, 0) + β · (0, 1, 1) avec
α, β ∈ R.
On peut voir que

Vect((1, 1, 0); (0, 0, 1)) = {(a, b, c) ∈ R3 : a = b}.

On peut aussi facilement se convaincre que Vect((1, 1, 0); (0, 0, 1)) est un s.e.v. de
R3. Il s’agit du plan vertical qui passe par la diagonale x = y du plan horizontal.
Voir l’image.

0

(0, 0, 1)

x

y

z

(1, 1, 0)
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Définition 1.9. Soit x1, . . . , xn ∈ E une famille finie de vecteurs. On dit que la famille
(x1, . . . , xn) est liée (ou linéairement dépendante)(viii)s’il existe des scalaires λ1, . . . , λn ∈ R
non tous nuls, tels que

λ1x1 + · · ·+ λnxn = 0.

Une famille qui n’est pas liée est dite libre (ou linéairement indépendante)(ix).

En autre mots, une famille est liée s’il existe une combinaison linéaire non-triviale de ses
vecteurs qui vaut 0. Bien évidement, le fait qu’une famille de vecteurs est libre ou liée ne
dépend pas de l’ordre des vecteur.

Si on désire montrer qu’une famille (x1, . . . , xn) de vecteurs est libre, on peut considérer
des scalaires λ1, . . . , λn ∈ R tels que λ1x1 + · · ·+ λnxn = 0 et déduire que λ1 = · · · = λn = 0.
Inversement, si on veut montrer que la famille est liée, le plus simple est d’exhiber une
combinaison linéaire non-triviale de x1, . . . , xn qui vaut 0.

Exemple: Dans l’espace vectoriel R2 la famille ((0, 1); (1, 0)) est libre. En effet, si λ, µ ∈ R
sont tels que λ · (0, 1) + µ · (1, 0) = (λ, µ) = (0, 0), alors λ = ν = 0.
Par contre, la famille ((0, 1); (1, 0); (1, 1)) est liée. En effet, on a

1 · (0, 1) + 1 · (1, 0) + (−1) · (1, 1) = (0, 1) + (1, 0)− (1, 1) = (0, 0).

Remarque 1.10. Le fait qu’une famille (x1, . . . , xn) de vecteurs d’un espace vectoriel E est
libre est quelque chose qui dépend uniquement de x1, . . . , xn pas de l’espace ambiant E. Plus
précisément, si F est un s.e.v. de E et x1, . . . , xn ∈ F , alors le fait que famille (x1, . . . , xn)
est libre ne dépend pas de si on la considère comme famille de E ou de F . A l’opposé, le fait
qu’une famille est génératrice dépend essentiellement de l’espace global E. En effet, même si
(x1, . . . , xn) n’est pas génératrice pour E, elle est toujours génératrice pour Vect(x1, . . . , xn).

Ainsi, dit tout simplement qu’une famille est libre ou liée, mais insiste souvent qu’une
famille est génératrice pour un espace E.

Le lemme suivant offre un critère pratique pour montrer qu’une famille de vecteurs est
liée.

Lemme 1.11. Soit (x1, . . . , xn) une famille de vecteurs de E. Alors elle est liée si et seule-
ment si il existe un vecteur xi qui s’écrit comme combinaison linéaire des autres. Plus pré-
cisément si et seulement si il existe i ∈ [1, . . . , n] et des scalaires λ1, . . . , λi−1, λi+1, . . . , λn
tels que

xi = λ1x1 + · · ·+ λi−1xi−1 + λi+1xi−1 · · ·+ λnxn =
∑
j 6=i

λjxj.

(viii)linear abhängig
(ix)linear unabhängig
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Exemple: En général le fait qu’une famille est libre ou liée n’implique pas le fait qu’elle est
génératrice ou pas. Donnons des exemples pour les quatre situations possibles;
on va se placer dans l’espace vectoriel R2:
La famille (1, 0); (0, 1) est génératrice et libre.
La famille (1, 0); (1, 1); (0, 1) est génératrice et liée (car (1, 1) = (1, 0) + (0, 1)).
La famille formée uniquement du vecteur (1, 0) est libre mais pas génératrice.
La famille (1, 0); (0, 0); (2, 0) n’est pas génératrice et est liée.

Exercice 1.3.
Démontrer le lemme 1.11

Exercice 1.4.
Montrer que dans un espace vectoriel E:
(a) Toute famille de vecteurs contentant le vecteur 0E est liée.
(b) Toute famille de vecteurs contentant deux fois le même vecteur est liée.
(c) Soit (x1, . . . , xn) une famille de vecteurs de E, i ∈ [1, n] et λ ∈ R, λ 6= 0. Alors les

affirmations suivantes sont équivalentes
(i) (x1, . . . , xn) est libre,
(ii) (x1, . . . , xn + xi) est libre,
(iii) (x1, . . . , λxn) est libre.

Exercice 1.5.
Montrer que pour une famille finie de vecteurs x1, . . . , xn ∈ E, Vect(x1, . . . , xn) est le plus
petit sous-espace vectoriel de E contenant x1, . . . , xn.
En autres mots, si F est un sous-espace vectoriel de E contenant x1, . . . , xn, montrer que
Vect(x1, . . . , xn) ⊂ F .

Exercice 1.6.
Soit (x1, . . . , xn) une famille de vecteurs de E. Montrer que

(i) Si (x1, . . . , xn) est libre, alors (x1, . . . , xn−1) est aussi libre;
(ii) Si (x1, . . . , xn−1) est génératrice, alors (x1, . . . , xn) est aussi génératrice.

Plus généralement, montrer que Vect(x1, . . . , xn−1) ⊂ Vect(x1, . . . , xn).

Exercice 1.7.
Soit (x1, . . . , xn) une famille génératrice de E. Montrer que, si xn ∈ Vect(x1, . . . , xn−1), alors
(x1, . . . , xn−1) est aussi génératrice.

1.3.2 Dimension finie; théorèmes essentiels

Définition 1.12. Un espace vectoriel E est dit de dimension finie(x), s’il existe une famille
finie de vecteurs de E qui soit génératrice pour E.

(x)endlich dimensional
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Définition 1.13. Soit E un espace vectoriel. On dit qu’une famille x1, . . . , xn ∈ E est
une base(xi)de E si et seulement si (x1, . . . , xn) est libre et génératrice.

Exemple: Considérons l’espace vectoriel Rd avec d ≥ 1 et la famille de vecteurs E =
(e1, . . . , ed) ou les composantes de ei sont toutes 0 à part la ieme qui vaut 1:

ei =



0
...
0
1
0
...
0


← ieme ligne

Alors, E est une base de Rd. En effet
E est génératrice car x = (x1, . . . , xd) ∈ Rd, s’écrit x = x1e1 + · · ·+ xded.
E est libre car, si λ1x1 + · · ·+ λdxd = 0 avec λ1, . . . , λn ∈ R, alors 0

...
0

 = λ1e1 + · · ·+ λded =

 λ1
...
λd

 ,

donc λ1 = · · · = λd = 0.
Cette base est souvent appelée la base canonique de Rd. Toutefois, cette base
n’est pas l’unique base de Rd; pour tout d ≥ 1, il existe une infinité de bases des
de Rd.

Théorème 1.14 (Théorème de la base extraite). Soit E un espace vectoriel de dimension
finie et x1, . . . , xm ∈ E, avec m ≥ 0 une famille génératrice. Alors il existe n ≤ m et des
indices i1, . . . , in ∈ [1, . . . ,m] tels que (xi1 , . . . , xin) soit une base de E.

En autre mots, tout famille génératrice finie de E contient une base.

Preuve: Dans le cas dégénéré ou E = {0}, la famille vide est une base de E, elle est donc contenue
dans toute famille génératrice. Supposons désormais que E 6= {0}.

On va procéder par l’absurde. Supposons qu’il existe au moins une famille génératrice
de E ne contenant pas de base de E. On peut alors fixer une telle famille x1, . . . , xm avec
un nombre m de vecteurs minimal. Comme E 6= {0}, on a m ≥ 1.

(xi)Basis
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Par hypothèse la famille (x1, . . . , xm) n’est pas une base. Comme elle est génératrice,
elle est nécessairement liée. Ainsi, par le lemme 1.11 il existe un vecteur xi avec 1 ≤ i ≤ m
et des scalaires λ1, . . . , λm tels que

xi =
∑
j 6=i

λjxj .

On peut supposer sans perte de généralité que i = m.
Il s’en suit que xm ∈ Vect(x1, . . . , xm−1). Par l’exercice 1.7, la famille (x1, . . . , xm−1)

est donc génératrice. De plus, comme il s’agit d’une sous famille de (x1, . . . , xm), elle ne
contient pas de base de E. Ceci contredit la minimalité dem, et la preuve est complète.

Une autre façon de voir le preuve du théorème 1.14 est d’éliminer des vecteurs de la famille
génératrice (x1, . . . , xn) jusqu’à ce qu’elle devienne libre. On va faire cela sur un exemple.

Exemple: L’espace vectoriel qu’on considère est R2[X], l’espace des polynômes de degré au
plus 2. Soient P la famille formée des polynômes suivants de R2[X]:

P (X) = X2 + 2X + 1, Q(X) = X2 + 2X + 2,

R(X) = X2 +X + 3, S(X) = 2X + 2, T (X) = 0.

On va admettre pour l’instant que P est génératrice (on va le prouver plus tard).
Est-ce que P est libre? Ce n’est pas le cas, car P contient le vecteur nul (à

savoir T ). Eliminons ce vecteur de P . Ainsi, on pose P ′ = (P,Q,R, S).
On se pose à nouveau la question: est-ce que P ′ est libre? Ce n’est toujours pas
le cas. En effet

− 2P (X) + 3Q(X)−R(X)− 1

2
S(X)

= (−2 + 3− 1)X2 + (−4 + 6− 1− 1)X + (−2 + 6− 3− 1) = 0.

Ainsi, R ∈ Vect(P,Q, S), on peut donc éliminer R de P ′. On pose P ′′ = (P,Q, S).
Montrons maintenant que (P,Q, S) est libre. Soient λ, µ, ν ∈ R tels que

λP (X) + µQ(X) + νS(X) = 0. Cela revient à

(λ+ µ)X2 + (2λ+ 2µ+ 2ν)X + (λ+ 2µ+ 2ν) = 0.

Ca s’écrit de façon équivalente
λ+ µ = 0

2λ+ 2µ+ 2ν = 0

λ+ 2µ+ 2ν = 0.

Ce système se résout facilement (on va le résoudre un peu plus bas en toute
généralité) et on obtient λ = µ = ν = 0. Ainsi (P,Q, S) est une famille libre.

En fin, montrons que (P,Q, S) est génératrice. Pennons donc un élément
U ∈ R2[X]; U(X) = aX2 + bX + c et montrons qu’il existe α, β, γ ∈ R tels que
αP (X) + βQ(X) + γS(X) = U(X). Cela revient à

α + β = a

2α + 2β + 2γ = b

α + 2β + 2γ = c.
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On résout le système comme suit. En soustrayant la troisième ligne à la deuxième
on se ramène au système équivalent:

α + β = a

α = b− c
α + 2β + 2γ = c.

On soustrait la deuxième équation à la première pour trouver
β = a− b+ c

α = b− c
α + 2β + 2γ = c.

En fin, cela est équivalent à 
β = a− b+ c

α = b− c
γ = −a+ 1

2
b.

Ainsi on trouve que le système admet une unique solution. L’existence des so-
lutions nous indique que (P,Q, S) est génératrice pour R2[X]; l’unicité indique
qu’elle est une base.

Corollaire 1.15. Tout espace vectoriel de dimension finie admet une base finie.

Preuve: Soit E un espace vectoriel de dimension finie et (x1, . . . , xn) une famille génératrice de
E (une telle famille existe par la définition de la dimension finie). Par le théorème 1.14,
(x1, . . . , xn) contient une base de E.

Théorème 1.16 (Théorème de la base incomplète). Soit E un espace vectoriel de dimen-
sion finie et x1, . . . , xm ∈ E, avec m ≥ 0 une famille libre. Alors il existe n ≥ m et des
vecteurs xm+1, . . . , xn tels que la famille (x1, . . . , xn) soit une base de E.

Preuve: Soit b1, . . . , bd une famille génératrice de E (l’existence d’une telle famille est garantie par
le fait que E est de dimension finie). On va décrire ici un algorithme pour trouver une
base à partir de (x1, . . . , xm).

Soit i0 le plus petit indice i tel que bi /∈ Vect(x1, . . . , xm), si un tel indice existe, et
posons xm+1 = bi0 . S’il n’existe pas de tel indice, l’algorithme est fini et on a b1, . . . , bd ∈
Vect(x1, . . . , xm).

On reprend le processus. Ainsi, pour k ≥ 1, soit ik le plus petit indice i tel que
bi /∈ Vect(x1, . . . , xm+k), si un tel indice existe, et posons xm+k+1 = bik . S’il n’existe pas
de tel indice, l’algorithme finit et on a b1, . . . , bd ∈ Vect(x1, . . . , xm+k).
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Remarquons que cet algorithme finit bien en un nombre fini d’étapes. En effet, par
construction, la suite i0, i1, . . . est strictement croissante, elle a donc au plus d éléments.

Soit k ∈ [0,m] l’étape à laquelle l’algorithme finie (c.-à-d. c’est le plus petit k pour
lequel ik n’est pas défini). Alors b1, . . . , bd ∈ Vect(x1, . . . , xm+k), d’ouE = Vect(b1, . . . , bd) ⊂
Vect(x1, . . . , xm+k). En conclusion la famille x1, . . . , xm+k est génératrice.

Pour montrer qu’elle est une base de E il nous reste à montrer que x1, . . . , xm+k est
libre. Supposons que ce n’est pas le cas et prenons λ1, . . . , λm+k ∈ R une famille de
scalaires non-tous nuls, tels que λ1x1 + · · ·+ λm+kxm+k = 0.

Soit j le plus grand indice tel que λj 6= 0. Il y a deux possibilités. Soit j ≤ m. Dans
ce cas la, λ1x1 + · · · + λmxm = 0, ce qui contredit le fait que x1, . . . , xm est libre. Soit
j > m. Ecrivons alors j = m+ `+ 1, avec ` ≥ 0. On a

xj = bi` =
−λ1
λj

x1 + · · ·+
−λm+`

λj
xm+` ∈ Vect(x1, . . . , xm+`).

Cela contredit le choix de i` dans l’algorithme décrit ci-dessus.

Théorème 1.17. Toutes les bases d’un espace vectoriel de dimension finie ont le même
nombre de vecteurs. Ce nombre est appelé la dimension de E et est noté dim(E).

Le théorème précédent est très important. En effet, quand on pense à Rd on dit na-
turellement qu’il s’agit d’un espace de dimension d. Cela vient du fait qu’on pense à la base
canonique (e1, . . . , ed) qui contient d vecteurs. Il est en effet naturel de définir la dimension
comme le nombre de vecteurs d’une base. Pourtant, si on regarde Rd comme espace vectoriel,
il n’y a pas de raison de distinguer la base (e1, . . . , ed) des autres bases. Ainsi, on a besoin
de savoir que le nombre de vecteurs des différentes bases d’un espace vectoriel ne dépend pas
de la base.

La preuve du théorème qu’on donne ici est conceptuellement compliquée. Une preuve
basée sur le Pivot de Gauss (voir la partie 2.4.2) est plus facile à comprendre.

Preuve: On va procéder par l’absurde. Supposons qu’il existe un espace vectoriel E avec deux
bases ne contenant pas le même nombre de vecteurs. Soit (x1, . . . , xm) une base avec un
nombre minimal de vecteurs. Prenons une autre base (y1, . . . , yn) de E, avec strictement
plus de vecteurs, mais avec un nombre maximal de vecteurs en commun avec (x1, . . . , xm).

Sans perte de généralité, on peut supposer que les vecteurs communs de ces deux bases
sont x1 = y1, . . . , xk = yk, pour un certain 0 ≤ k ≤ m.

Si k = m, alors, comme (x1, . . . , xm) est génératrice, ym+1 ∈ Vect(x1, . . . , xm) =
Vect(y1, . . . , ym). Cela contredit le fait que la famille (y1, . . . , yn) est libre.

Si k < m, on va construire deux bases de tailles différentes contentant k + 1 vecteurs
en commun. Comme xk+1 ∈ Vect(y1, . . . , yn) il existe λ1, . . . , λn ∈ R tels que

xk+1 = λ1y1 + · · ·+ λnyn. (1.3)

Soit λ` le dernier des λ1, . . . , λn qui est non-nul (il existe au moins un λi non-nul car
xk+1 6= 0). Si ` ≤ k, alors

xk+1 = λ1y1 + · · ·+ λ`y` = λ1x1 + · · ·+ λ`x`,
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ce qui contredit le fait que x1, . . . , xm est libre.
On peut donc se limiter au cas ` > k. Alors on peut écrire y` = 1

λ`
(xk+1−

∑`−1
i=1 λiyi).

Ainsi y` ∈ Vect(y1, . . . , y`−1, xk+1, y`+1, . . . , yn). Mais comme la famille (y1, . . . , ym) est
génératrice, on déduit que (y1, . . . , y`−1, xk+1, y`+1, . . . , yn) l’est aussi.

Montrons que la famille (y1, . . . , y`−1, xk+1, y`+1, . . . , yn) est aussi libre, pour déduire
que c’est une base de E. Soit µ1, . . . , µn ∈ R tels que

µ1y1 + · · ·+ µ`−1y`−1 + µ`xk+1 + µ`+1y`+1 + · · ·+ µnyn = 0.

Alors, vu (1.3), on a

(µ1 + µ`λ1)y1 + · · ·+ (µ`−1 + µ`λ`−1)y`−1 + µ`λ`y` + µ`+1y`+1 + · · ·+ µnyn = 0.

Vu que la famille (y1, . . . , yn) est libre, on a

µ1 + µ`λ1 = · · · = µ`−1 + µ`λ`−1 = µ`λ` = µ`+1 = · · · = µn = 0.

Comme λ` 6= 0, on déduit que µ` = 0, puis que

µ1 = · · · = µn = 0.

On viens donc de montrer que (y1, . . . , y`−1, xk+1, y`+1, . . . , yn) est une base. De plus, elle
a k + 1 vecteurs en commun avec (x1, . . . , xm), ce qui contredit la minimalité de k.

Proposition 1.18. Soient E un espace vectoriel de dimensions d <∞ et E = (e1, . . . , en)
une famille de vecteurs de E.
(i) Si E est libre, alors n ≤ d. De plus, si n = d, alors E est une base de E.
(ii) Si E est génératrice, alors n ≥ d. De plus, si n = d, alors E est une base de E.

Preuve: Commençons par le point (i). Supposons que E = (e1, . . . , en) est libre. Par le théorème 1.16,
on peut compléter (e1, . . . , en) en une base (e1, . . . , en+m) pour un certain m ≥ 0. Mais
le théorème 1.17 indique alors que m + n est la dimension de E, à savoir d. Ainsi
n = d−m ≤ d.

De plus, si n = d, alors m = 0, donc la famille (e1, . . . , en) est une base.
Passons au point (ii). Supposons que E = (e1, . . . , en) est génératrice de E. Par le

théorème 1.14, (e1, . . . , en) contient une base de E. De plus, par le théorème 1.17, cette
base contient exactement d vecteurs. Ainsi d ≤ n.

De plus, si d = n, la base contenue dans E contient n vecteurs, donc est égale à E .

Exercice 1.8.
Montrer qu’un espace de vectoriel E n’est pas de dimension finie si et seulement s’il existe
une suite infinie de vecteurs x1, x2, . . . telle que pour tout n, (x1, . . . , xn) est libre. (Dans ce
cas la on va dire que la famille infinie x1, x2, . . . est libre)
Cet exercice donne un moyen de démontrer qu’un espace vectoriel n’est pas de dimension
finie.

– 27 –



CHAPTER 1. ESPACES VECTORIELS

Exercice 1.9.
Quels des espaces suivants sont de dimension finie et quels ne le sont pas? (Pour ceux de
dimension finie, exhiber une famille génératrice finie; pour ceux de dimension infinie, exhiber
une famille libre infinie.)
(a) L’espace `(R) des suites à valeurs réelles
(b) L’espace `0(R) des suites à valeurs réelles stationnaires à 0

(c) L’espace R[X] des polynômes à coefficients réels.
(d) L’espace Rd[X] des polynômes de degré au plus d.
(e) L’sous-espace vectoriel E de R[X] des polynômes qui s’annule en 0.
(f) Le sous-espace vectoriel F de Rd des vecteurs x = (x1, . . . , xd) tels que

∑
i xi = 0.

Exercice 1.10.
On se place dans l’espace vectoriel R3. Quelles des familles suivantes de vecteurs sont des
bases? Motivez vos réponses
(a)

(
(1, 0, 0); (0, 1, 0); (0, 0, 3)

)
(b)

(
(1, 1, 1); (0, 2, 0); (1, 0, 1)

)
(c)

(
(1, 0, 0); (1, 1, 0); (0, 1, 0); (0, 0, 1)

)
(d)

(
(1, 1, 0); (0, 0, 1)

)
(e)

(
(1, 1, 1); (x, y, z); (x2, y2, z2)

)
pour x, y, z ∈ R (la réponse peut dépendre de x, y et z).

1.3.3 Sous-espaces vectoriels de dimension finie; rang

Soit F un sous-espace vectoriel d’un espace vectoriel E, ce dernier n’étant pas forcement
de dimension finie. Par définition, F est aussi un espace vectoriel, et les définitions de
dimension finie et dimension données au-dessus s’y applique également. Il est généralement
possible que F soit de dimension finie, alors que E ne l’est pas. L’inverse n’est pas possible,
comme l’affirme la proposition suivante.

Proposition 1.19. Soit E un espace vectoriel de dimension finie et F un sous espace
vectoriel de E. Alors F est aussi de dimension finie et dim(F ) ≤ dim(E).
De plus, si dim(F ) = dim(E), alors F = E.

Preuve: Soit F un s.e.v. d’un espace vectoriel E de dimension finie d. Soit (e1, . . . , en) une
famille libre dans F . Alors (e1, . . . , en) est aussi une famille libre dans E, donc, par la
proposition 1.18, n ≤ d.

Ainsi, F ne contient pas de famille libre arbitrairement grande. Par la contraposée
de l’exercice 1.8, F est de dimension finie. De plus, si (f1, . . . , fk) est une base de F ,
alors c’est en particulier une famille libre, donc, comme expliqué avant k ≤ d. Ainsi
dim(F ) = k ≤ d = dim(E).

Supposons maintenant que k = d. Alors (f1, . . . , fk) est une famille libre de E con-
tenant k = dim(E) vecteurs. Par le proposition 1.18 (a), (f1, . . . , fk) est une base de E.
Ainsi F = Vect(f1, . . . , fk) = E.
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Ainsi, l’espace vectoriel R3 admet des sous-espaces de dimension 0, 1, 2 et 3. Les uniques
espaces de dimension 0 et 3 sont {(0, 0, 0)} et R3, respectivement. Les sous-espaces de
dimension 1 sont les droites passant par 0; ceux de dimension 2 sont les plans passant par 0.

La terminologie s’étend aux espaces de dimension plus grande: si E est un espace vectoriel
de dimension finie d, ses sous-espaces vectoriels de dimension 1 sont appelés des droites et
ceux de dimension d− 1 sont appelés des hyperplans.

Exercice 1.11.
Utiliser les exemples de l’exercice 1.9 pour illustrer les affirmations suivantes.

• Un espace qui n’est pas de dimension finie admet des sous-espaces vectoriels qui ne sont
pas de dimension finie.
• Un espace qui n’est pas de dimension finie admet des sous-espaces vectoriels de dimen-

sion finie.
• Un espace de dimension finie admet des sous-espaces de dimension finie.

Définition 1.20. Soit x1, . . . , xn ∈ E une famille de vecteurs. Le rang(xii)de (x1, . . . , xn)
est noté rang(x1, . . . , xn) et est défini par rang(x1, . . . , xn) = dim(Vect(x1, . . . , xn)).

Corollaire 1.21. Soit x1, . . . , xn ∈ E une famille de vecteurs. Alors
(i) rang(x1, . . . , xn) ≤ n. De plus, rang(x1, . . . , xn) = n si et seulement si la famille est

libre.
(ii) rang(x1, . . . , xn) ≤ dim(E). De plus, rang(x1, . . . , xn) = dim(E) si et seulement si

la famille est génératrice pour E.

Preuve: Soit x1, . . . , xn ∈ E une famille de vecteurs. Alors, x1, . . . , xn est génératrice pour
Vect(x1, . . . , xn), donc par proposition 1.18, n ≥ dimVect(x1, . . . , xn) = rang(x1, . . . , xn).

En outre, si n = rang(x1, . . . , xn), alors le proposition 1.18 indique que (x1, . . . , xn)
est une base de Vect(x1, . . . , xn), donc qu’elle est libre.

Inversement, si (x1, . . . , xn) est libre, alors elle est une base de Vect(x1, . . . , xn) (on
a déjà mentionné qu’elle est génératrice pour Vect(x1, . . . , xn)). Ainsi rang(x1, . . . , xn) =
dimVect(x1, . . . , xn) = n

1.3.4 Représentation d’un vecteur dans une base

Une base d’un espace vectoriel E sert essentiellement à décomposer les vecteurs de E dans
cette base. La proposition suivante donne un sens précis à la décomposition d’un vecteur
dans une base.

(xii)Rang
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Proposition 1.22. Soit E un espace vectoriel de dimension finie n et B = (e1, . . . , en) une
base de E. Alors, pour tout x ∈ E, il existe une unique famille de scalaires λ1, . . . , λn ∈ R
telle que

x = λ1e1 + . . . , λnen. (1.4)

Preuve: Soit x ∈ E. Comme B est une base de E, x ∈ Vect(B) = E. Ainsi, il existe λ1, . . . , λn ∈ R
tels que x = λ1e1 + . . . , λnen.

Maintenant qu’on a prouvé l’existence de la famille de scalaires désirée, montrons aussi
son unicité. Soit λ1, . . . , λn, µ1, . . . , µn ∈ R tels que

x = λ1e1 + . . . , λnen = µ1e1 + . . . , µnen.

Alors, (λ1−µ1)e1+ · · ·+(λn−µn)en = 0E . La famille e1, . . . , en étant libre, cela implique
λ1 − µ1 = · · · = λn − µn = 0. En autre mots, les familles (λ1, . . . , λn) et (µ1, . . . , µn) sont
égales, ce qui prouve l’unicité.

A chaque x ∈ E on associe le vecteur VB(x) := (λ1, . . . , λn) ∈ Rn, ou λ1, . . . , λn sont les
scalaires tels que (1.4) soit vérifié. Pour des raisons qu’on va voir plus tard, on va désormais
écrire VB(x) verticalement, a savoir:

VB(x) =

λ1...
λn

 .

On appellera le vecteur VB(x) l’écriture de x dans la base B.

Proposition 1.23. Pour tout espace vectoriel E avec B une base, x, y ∈ E et λ ∈ R.
Notons

VB(x) =

x1...
xn

 et VB(y) =

y1...
yn

 .

Alors:

VB(x+ y) = VB(x) + VB(y) :=

x1 + y1
...

xn + yn

 et VB(λx) = λVB(x) :=

λx1...
λxn

 .

De plus, la fonction VB : E → Rn est une bijection.

Rappel: le fait que VB est bijective revient à dire que, pour tout vecteur X ∈ Rn, il existe
un unique vecteur x ∈ E tel que VB(x) = X.
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Ainsi, les vecteurs de E et ceux de Rn sont en correspondance exacte par la fonction
VB. De plus cette fonction est cohérente avec les opérations d’espace vectoriel: somme
et multiplication par scalaires. On s’aperçoit donc que E et Rn ont exactement la même
structure.

Toutefois, la correspondance entre E et Rd dépend de la base B de E qu’on a choisi.

Preuve: Soient, E, B = (b1, . . . , bn), x et y comme dans l’énoncé. Alors

x =
n∑
i=1

xibi et y =
n∑
i=1

yibi,

donc

x+ y =

n∑
i=1

(xi + yi)bi et λx =

n∑
i=1

λxibi.

Par unicité de l’écriture dans la base B de x+y et de λx on obtient les expressions désirées
pour VB(x+ y) et VB(λx), respectivement.

Montrons maintenant que VB est bijective. Pour cela on va montrer qu’elle est surjec-
tive, puis qu’elle est aussi injective.

Soit

A =

α1
...
αn

 ∈ Rn.

Considérons le vecteur u = α1b1 + · · ·+αnbn. Par l’unicité de l’écriture de u dans la base
B, VB(u) = A. Ainsi VB est surjective.

Prenons u, v ∈ E tels que VB(u) = VB(v) =

α1
...
αn

. Alors, u =
∑n

i=1 αibi = v, donc

VB est injective.

Exemple: Evidement, on peut décomposer un même vecteur dans deux bases différentes.

Pour R2, on dispose de la base canonique E = (e1, e2) =
((1

0

)
,

(
0
1

))
. Mais on

peut égalément considérer la base F = (f1, f2) ou

f1 =

(
1
1

)
et f2 =

(
1
−1

)
.

(On vérifie facilement que F est en effet une base de R2.) Le vecteur x =

(
3
5

)
se décompose alors dans les bases E et F comme suit(

3
7

)
= 3e1 + 7e2 = 5f1 − 2f2.

Ainsi

VE(x) =

(
3
7

)
et VF(x) =

(
5
−2

)
.

– 31 –



CHAPTER 1. ESPACES VECTORIELS

1.4 Application: suites définies par récurrence
Le modèle de Fibonacci (1202) Fibonacci a proposé un modèle pour décrire le développe-
ment d’une population de lapins. Il admet les hypothèses suivantes:

• Les lapins sont immortels et vivent fidèlement en couples qui sont formés à la naissance.
Les partenaires d’un couple ont donc le même âge et nous parlerons de l’âge du couple.
• Dès l’âge de 2 mois chaque couple donne naissance, chaque mois, à un nouveau couple.
• le temps t est discret, l’unité étant le mois. A t = 0, la population consiste d’un unique

couple de nouveau-nés.

Le problème est de trouver une formule simple pour le nombre de couples après t mois.
Notons ut le nombre de couples à temps t. Alors on a

ut+2 = ut+1 + ut, pour tout t ≥ 0 et (1.5)
u0 = 1, u1 = 1. (1.6)

En effet, (1.5) s’explique comme suit. Juste avant le moment t + 2, le nombre de couples
de lapins en vie est ut+1. Pour obtenir ut+2, on doit y rajouter les couples nées au moment
t + 2. Chaque couple de lapins âgé d’au moins deux mois au moment t + 2 en crée un. Les
couples âgés d’au moins deux mois sont exactement les couples en vie au moment t; il y en
a donc ut tels couples. Ainsi, le nombre total de couples de lapins au moment t+ 2 est égal
à ut+1 + ut, ce qui donne (1.5).

Au moment initial il y a un seule couple, qui pendant le premier mois est trop jeune pour
procréer. Ainsi u0 = u1 = 1, d’ou (1.6).

Comment faire pour déduire de (1.5) et (1.6) une forme générale pour ut?
On rappelle que RN, l’ensemble des suites à valeurs réelles, a une structure de R-espace

vectoriel (voir la section 1.1). Posons:

S :=
{

(vn)n∈N ∈ RN : (vn) satisfait (1.5)
}
.

Une première observation est que S est un sous-espace vectoriel de RN de dimension 2.
Montrons ce fait.

Par la proposition 1.6, pour montrer que S est un sous-espace vectoriel, il suffit de montrer
que pour (vn)n∈N ∈ S, (wn)n∈N ∈ S et λ ∈ R, (vn + wn)n∈N ∈ S et (λvn)n∈N ∈ S. Il s’agit
d’une simple vérification qu’on laisse en exercice. Il faut en outre montrer que S est non-vide.
Pour cela on observe que la suite nulle (0, 0, . . . ) est bien un élément de S.

Montrons maintenant que dim(S) = 2. Posons (an)n∈N et (bn)n∈N les suites définies par

an+2 = an+1 + an, et bn+2 = bn+1 + bn pour tout t ≥ 0 et (1.7)
a0 = 1, a1 = 0, b0 = 0, b1 = 1. (1.8)

On prétend que la famille formée des suites (an) et (bn) est une base de S (donc qu’elle est
libre et génératrice).

Montrons que
(
(an), (bn)

)
est libre. Soit λ, η ∈ R tels que λ ·(an)+µ ·(bn) = 0. Ce dernier

fait signifie que
λan + µbn = 0, pour tout n ∈ N.
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En particulier
λa0 + µb0 = λ = 0 et λa1 + µb1 = µ = 0.

Ainsi λ = µ = 0 donc la famille est bien libre.
Montrons maintenant que

(
(an), (bn)

)
est génératrice pour S. Soit (cn) ∈ S. On va

montrer que la suite (cn) est égale à la suite c0 · (an) + c1 · (bn), à savoir que

cn = c0an + c1bn, pour tout n ∈ N. (1.9)

Montrons (1.9) par récurrence sur n.
Pour n = 0, 1 on a bien

c0a0 + c1b0 = c0 et c0a1 + c1b1 = c1.

Soit n ≥ 1 et supposons que ck = c0ak + c1bk pour tout k ≤ n. Alors

cn+1 = cn + cn−1 car (cn) vérifie (1.5)
= c0an + c1bn + c0an−1 + c1bn−1 par l’hypothèse de récurrence
= c0an+1 + c1bn+1 car (an) et (bn) vérifient (1.5).

Ainsi, par récurrence (1.9) est vrai, donc (cn) ∈ Vect
(
(an), (bn)

)
. On a donc montré que(

(an), (bn)
)
est une base de S. En particulier dim(S) = 2.

Malheureusement
(
(an), (bn)

)
n’est pas une base de S qui s’écrit de façon confortable. Il

est plus intéressant de chercher des suites géométriques qui forment une base de S.
Soit α et β les deux solutions de l’équation

x2 = x+ 1. (1.10)

Plus précisément, α = 1+
√
5

2
et β = 1−

√
5

2
. On va montrer que les suites (αn)n∈N et (βn)n∈N

appartiennent à S et qu’elles en forment une base.
Montons que (αn)n∈N et (βn)n∈N vérifient (1.5). Soit n ∈ N. On a

αn+2 − αn+1 − αn = (α2 − α− 1)αn = 0 et
βn+2 − βn+1 − βn = (β2 − β − 1)βn = 0,

ce qui monte bien (1.5) pour (αn)n∈N et (βn)n∈N.
Vu que S est de dimension 2, pour montrer que la famille

(
(αn)n∈N, (β

n)n∈N
)
est une base,

il suffit de montrer qu’elle est libre. Soient λ, µ ∈ R tels que

λαn + µβn = 0 pour tout n ∈ N.

En particulier on a

λα0 + µβ0 = α + β = 0 et λα1 + µβ1 =
λ+ µ+

√
5(λ− µ)

2
= 0.

On en déduit
λ+ µ = 0 et λ− µ = 0,
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d’ou λ = 0 et µ = 0. Donc
(
(αn)n∈N, (β

n)n∈N
)
est libre, donc une base.

En fin, vu que la suite (un) qui nous intéresse depuis le début fait partie de S, on peut
écrire

(un)n∈N = A(αn)n∈N +B(βn)n∈N, (1.11)

pour une certaine (unique) parie de scalaires A,B ∈ R.
Trouvons A et B en utilisant (1.6). Si on écrit (1.11) pour n = 0, 1 on trouve

u0 = 1 = A+B et u1 = 1 =
A+B +

√
5(A−B)

2
.

Ce système se résout facilement et on trouve A = 1+
√
5

2
√
5

= α√
5
et B =

√
5−1
2
√
5

= − β√
5
. Ainsi,

un =
αn+1

√
5
− βn+1

√
5
, for all n ∈ N.

Suites récurrentes générales

Exercice 1.12.
Soit a, b ∈ R et considérons la suite définie par

un+1 = aun + bun−1, pour tout n ≥ 1 (1.12)

et avec conditions initiales u0, u1 données (par exemple u0 = 0, u1 = 1). Le but c’est de
déterminer un algorithme général pour évaluer un.
(i) Considérons l’équation quadratique

x2 − ax− b = 0. (1.13)

Donner la condition pour que cette équation ai deux solutions réelles α1 6= α2.
(ii) Supposons que l’équation (1.13) admet deux solutions réelles α1 6= α2. En s’inspirant

de l’exemple précédent, donner une forme générale des suites qui satisfont (1.12). Ex-
pliquer comment exprimer (un)n≥0 en termes des puissances de α1 et α2.

(iii) Supposons que l’équation (1.13) admet une solution double réelle α. En s’inspirant
de l’exemple précédent, donner une suite qui satisfait (1.12). Vérifier que la suite
(nαn)n≥0 = (0, α, 2α2, 3α3, . . . ) satisfait également (1.12). Conclure.

(iv) Que faire si (1.13) n’admet pas de solutions réelles? Remarquer que l’équation admet
quand même deux solutions complexes. Pouvez vous conclure?

(v) Donner une stratégie générale pour trouver la forme des suites définie par récurrence
de tout ordre, c.-à-d. les suites de la forme

vn = a1vn−1 + a2vn−2 + · · ·+ akvn−k, pour tout n ≥ k,

ou a1, . . . , ak sont des nombres fixés.
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À retenir
• Un espace vectoriel (e.v.) E est un ensemble pour lequel on peut additionner les

éléments entre eux et multiplier les éléments par des nombres. Ces opérations suivent
des règles intuitives.

• Les éléments d’un e.v. sont appelés des vecteurs ; les nombres sont appelés des scalaires.

• Un sous-espace vectoriel (s.e.v.) F de E est un sous ensemble de E stable par les
opérations de E (addition et multiplication par scalaire).
Un sous-espace vectoriel contient nécessairement le vecteur nul 0E.

• Pour une famille (x1, . . . , xn) de vecteurs de E, Vect(x1, . . . , xn) est le sous-espace vec-
toriel de E engendrée par x1, . . . , xn. Il est composé de toutes les combinaisons linéaires
de x1, . . . , xn.
Si Vect(x1, . . . , xn) = E on dit que x1, . . . , xn est génératrice pour E.

• Une famille (x1, . . . , xn) de vecteurs de E est dite liée (ou linéairement dépendante) si
un des vecteur s’écrit comme combinaison linéaire des autres.
Si elle n’est pas liée, la famille est dite libre (ou linéairement indépendante).

• Une base d’un e.v. E est une famille finie de vecteurs qui est libre et génératrice.

• Un e.v. E est dit de dimension finie s’il admet une famille génératrice finie.
Si c’est le cas, alors E admet des bases et tout ses bases ont le même nombre de vecteurs.
On appelle ce nombre la dimension de E et on l’écrit dim(E).

• Dans un espace vectoriel de dimension finie d:
(i) une famille libre a au plus d vecteurs;
(ii) une famille génératrice a au moins d vecteurs.

• Pour une famille x1, . . . , xn on défini le rang de la famille par

rang(x1, . . . , xn) = dim(Vect(x1, . . . , xn)).

On a rang(x1, . . . , xn) ≤ n.

• Si B = (e1, . . . , ed) est une base de E, alors tout vecteur x ∈ E s’écrit de façon unique
comme combinaison linéaire de e1, . . . , en:

x = λ1e1 + · · ·+ λded, avec λ1, . . . , λd ∈ R.

On écrit alors

VB(x) =

λ1...
λd

 .
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Zu wissen
• Ein Vektorraum E ist eine Menge, deren Elementen können addiert und mit Zahlen

multipliziert werden können. Diese Operationen folgen elementaren Regeln.

• Die Elemente eines Vektorraums heissen Vektoren; eine Zahl heisst ein Skalar.

• Ein Untervektorraum F von E ist eine Untermenge von E, die bezüglich der Vektorad-
dition und der Skalarmultiplikation abgeschlossen ist.
Ein Untervektorraum enthält notwendigerweise den Nullvektor 0E.

• Für eine Familie (x1, . . . , xn) von Vektoren aus E, definiert man Vect(x1, . . . , xn) (oder
Span(x1, . . . , xn)) als die lineare Hülle von (x1, . . . , xn). Es besteht in allen Linearkom-
binationen von x1, . . . , xn; es ist der Untervektorraum von E den von x1, . . . , xn erzeugt
ist.
Wenn Vect(x1, . . . , xn) = E, sagt man, dass x1, . . . , xn E erzeugt.

• Eine Familie (x1, . . . , xn) von Vektoren im E sind linear abhängig, wenn sich irgendein
Vektor aus (x1, . . . , xn) als Linearkombination der anderen Vektoren schreiben lässt.
Sonst ist die Familie linear unabhängig.

• Eine Basis eines Vektorraumes E ist eine endliche Familie von Vektoren die linear
unabhängigen ist und die erzeugt E.

• Ein Vektorraum E heisst endlich-dimensional, falls er von einer endlichen Familie
erzeugt wird.
In diesem Fall, gibt es Basen von E. Alle Basen enthalten gleichviel Vektoren. Diese
Zahl ist die Dimension von E und wird durch dim(E) beschrieben.

• In einem endlich dimensionalen Vektorraum von Dimension d:
(i) eine lineare unabhängige Familie enthält höchstens d Vektoren;
(ii) eine erzeugende Familie enthält mindestens d Vektoren.

• Der Rang einer Familie von Vektoren x1, . . . , xn ist definiert durch

rang(x1, . . . , xn) = dim(Vect(x1, . . . , xn)).

Es gilt rang(x1, . . . , xn) ≤ n.

• Falls B = (e1, . . . , ed) eine Basis von E ist, dann lassen sich alle Vektoren x ∈ E als
eindeutige Linearkombinationen von e1, . . . , en:

x = λ1e1 + · · ·+ λded, mit λ1, . . . , λd ∈ R.

Man schreibt dann

VB(x) =

λ1...
λd

 .
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Applications linéaires et matrices

2.1 Applications linéaires: généralités

Définition 2.1. Soient E et F deux espaces vectoriels et u : E → F une fonction. On dit
que u est une application linéaire(i)de E dans F si les conditions suivantes sont satisfaites
(i) pour tout x, y ∈ E, u(x+ y) = u(x) + u(y).
(ii) pour tout x ∈ E et λ ∈ R, u(λx) = λu(x).

L’ensemble des applications linéaires de E dans F est noté L(E,F ).

Tout comme pour vérifier qu’un sous-ensemble est un sous-espace vectoriel, on dispose
d’une formule abrégée pour vérifier qu’un application est linéaire.

Lemme 2.2. Soient E et F deux espaces vectoriels et u : E → F une fonction. Alors u
est une application linéaire si et seulement si

u(λx+ µ y) = λu(x) + µu(y) pour tout x, y ∈ E et λ, µ ∈ R.

Exercice 2.1.
Soient E et F deux espaces vectoriels. Montrer que pour u ∈ L(E,F )

(a) u(0E) = 0F ,
(b) pour tout x ∈ E, u(−x) = −u(x).

Exercice 2.2.
Prouver le lemme 2.2.

Dans la suite les applications linéaires d’un espace vectoriel E dans lui-même vont jouer
un rôle plus important. On les appelle des automorphisme de E et on note l’ensemble des
automorphisme de E par L(E) := L(E,E).

(i)Lineare Abbildung oder Vektorraumhomomorphismus
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Exemple: Pour d ≥ 1, les applications suivantes de Rd dans Rd sont linéaires, c.-à-d.
appartiennent à L(Rd). Pour x = (x1, . . . , xn) ∈ Rn:

f(x) = (−x1, x2 . . . , xn),

g(x) = (x1, 2x2 . . . , nxn),

h(x) = (x1 + x2, x2 + x3, . . . , xn−1 + xn, xn + x1).

Par contre, l’application i : Rn → Rn définie par i(x) = (x1 + 1, x2, . . . , xn) n’est
pas linéaire.
Les applications suivantes sont linéaires, de Rn dans R:

j(x) = x1 + · · ·+ xn

k(x) = x1 − x2.
Par contre `,m : Rd → R définies par `(x) = max{x1, x2, . . . , xn} et m(x) = |x1|
ne sont pas linéaires.
Prenons maintenant un espace vectoriel de dimension infinie. Pour a = (an)n∈N ∈
`(R) posons

u(a) = a1 ∈ R,
v(a) = (a1 − a0, a2 − a1, . . . ) ∈ `(R),

σg(a) = (a1, a2, . . . ) ∈ `(R),

σd(a) = (0, a0, a1, . . . ) ∈ `(R). (2.1)

Alors u ∈ L(`(R),R) et v, σg, σd ∈ L(`(R)).

Exercice 2.3.
Soit E un espace vectoriel, x ∈ E un vecteur et λ ∈ R un scalaire. Quelles des deux
applications suivantes sont linéaires?

u :E → E v : E → E

y 7→ y + x y 7→ λy.

Exercice 2.4.
Soient E,F deux espaces vectoriels et u ∈ L(E,F ). Montrer que, si G est un sous-espace
vectoriel de E, alors u(G) = {u(x) : x ∈ G} est un sous-espace vectoriel de F .

Exercice 2.5.
Quelles parmi les fonctions suivantes sont linéaires? Motivez vos réponses.

f :R2 → R2 g :R2 → R2 h : R2 → R2(
a
b

)
7→
(
b
a

) (
a
b

)
7→
(
a+ b
a− b

) (
a
b

)
7→
(
a+ 1
b− 1

)

u : R[X]→ R v : R[X]→ R w : R[X]→ R
P 7→ P (1) P 7→ P (0) + P (1) P 7→ max

t∈[0,1]
P (t)
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L’ensemble L comme espace vectoriel et algèbre Fixons pour la suite de cette partie
deux espaces vectoriels E,F .L’ensemble L(E,F ) est lui-même munit d’une structure d’espace
vectoriel, héritée de F . La multitude d’espaces vectoriels peut créer des confusions dans une
première phase; ainsi on va re-introduire brièvement l’indice pour le 0 qui marque l’espace
vectoriel au quel il appartient.

Les opérations d’addition et multiplication par une constante sont naturellement définies
sur L(E,F ) comme suit. Soient u, v ∈ L(E,F ) et λ ∈ R. On définit les fonctions u + v et
λu de E dans F par

(u+ v)(x) = u(x) + v(x) et (λu)(x) = λu(x), pour tout x ∈ E.
Il est facile de vérifier que les applications ainsi définies sont en effet des applications linéaires,
donc des membres de L(E,F ).

Avec ces opérations, L(E,F ) est un espace vectoriel. La preuve est simple et on la laisse
en exercice. On mentionne uniquement que l’élément neutre est la fonction nulle 0L définie
par

0L(x) = 0F pour tout x ∈ E.
Exercice 2.6.
Montrer que, pour u, v ∈ L(E,F ) et λ ∈ R, on a u+ v ∈ L(E,F ) et λu ∈ L(E,F ). Montrer
que (L(E,F ),+, ·) est bien un espace vectoriel.

Si on se restreint de plus aux automorphisme d’espaces vectoriels (à savoir à L(E)), on
voit apparaitre une structure encore plus riche.

Pour u, v ∈ L(E) on peut définir la composition des deux fonctions, qu’on note u ◦ v. On
rappelle qu’il s’agit de la fonction de E dans E définie par

(u ◦ v)(x) = u(v(x)) pour tout x ∈ E.
On peut facilement vérifier que u ◦ v est une application linéaire de E dans E.

Ainsi L(E) est muni de trois opérations: l’addition +, la multiplication par un scalaire ·
et la composition ◦. En plus des propriétés d’espace vectoriel, L(E) a les propriétés suivantes.
On dit que L(E,+, ·, ◦) est une algèbre.

Proposition 2.3.
(i) Pour tout u, v, w ∈ L(E) on a u◦ (v+w) = u◦v+u◦w et (u+v)◦w = u◦w+v ◦w;
(ii) pour tout u, v ∈ L(E) et λ ∈ R on a λ(u ◦ v) = (λu) ◦ v = u ◦ (λv);
(iii) pour tout u ∈ L(E) on a u ◦ 0L = 0L ◦ u = 0L;
(iv) il existe un unique élément de L(E) qu’on note id tel que pour tout u ∈ L u ◦ id =

id ◦ u = u.

Mentionnons que le l’élément neutre pour la composition est l’application id ∈ L(E)
définie par

id(x) = x, pour tout x ∈ E. (2.2)
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Preuve: On commence par le point (i). Soient u, v, w ∈ L(E). Alors, pour x ∈ E, par linéarité de
u, on a:

[u ◦ (v + w)](x) = u(v(x) + w(x)) = u(v(x)) + u(w(x)) = (u ◦ v)(x) + (u ◦ w)(x),

ce qui prouve (i).
(ii) Soient u, v ∈ L(E) et λ ∈ R. Alors, pour x ∈ E, par linéarité de u, on a:

[u ◦ (λv)](x) = u(λv(x)) = λu(v(x)) = λ(u ◦ v)(x) = [(λu) ◦ v](x),

ce qui prouve (ii).
(iii) Soit u ∈ L(E) et x ∈ E. On a

(u ◦ 0L)(x) = u(0L(x)) = u(0E) = 0E et (0L ◦ u)(x) = 0L(u(x)) = 0E ,

ce qui prouve (iii).
(iv) On prend id ∈ L(E) défini par (2.2). Alors, pour tout u ∈ L(E) et x ∈ E,

(u ◦ id)(x) = u(id(x)) = u(x) et (id ◦ u)(x) = idu((x)) = u(x),

ce qui prouve (iv).

2.1.1 Image et noyau

Définition 2.4. Soit u ∈ L(E,F ).
(i) On appelle l’image(ii)de u le sous-ensemble de F

Im(u) := {u(x) : x ∈ E}.

(ii) On appelle le noyau(iii)de u le sous-ensemble de E

Ker(u) := {x ∈ E : u(x) = 0F}.

Proposition 2.5. Soit u ∈ L(E,F ). L’image et le noyau de u sont des sous-espaces
vectoriels de F et de E, respectivement.

(ii)Bild
(iii)Kern
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Preuve: Commençons par l’image. Comme u(0E) = 0F (voir l’exercice 2.1), l’image de u n’est pas
vide. Soit y1, y2 ∈ Im(u) et λ ∈ R. Par la définition de l’image, il existe x1, x2 ∈ E tels
que u(x1) = y1 et u(x2) = y2. Alors, par linéarité de u,

u(x1 + x2) = u(x1) + u(x2) = y1 + y2 et u(λx1) = λu(x1) = λy1.

On en déduit que y1 + y2 ∈ Im(u) et λy1 ∈ Im(u). Par la proposition 1.6, Im(u) est un
sous-espace vectoriel de F .

Passons à Ker(u). On a u(0E) = 0F , donc 0E ∈ Ker(u), et en particulier Ker(u) n’est
pas vide. Soit x1, x2 ∈ Ker(u) et λ ∈ R. On a

u(x1 + x2) = u(x1) + u(x2) = 0F et u(λx1) = λu(x1) = 0F ,

donc x1 + x2 ∈ Ker(u) et λx1 ∈ Ker(u). Par la proposition 1.6 encore, Ker(u) est un
sous-espace vectoriel de E.

Bien évidement, u ∈ L(E,F ) est surjective si et seulement si Im(u) = F . Un critère
similaire pour l’injectivité est donné par la proposition suivante.

Proposition 2.6. Soit u ∈ L(E,F ). Alors u est injective si et seulement si Ker(u) =
{0E}.

Preuve: Supposons pour commencer que u est injective. Il est toujours vrai que u(0E) = 0F ,
et comme u est injective, il n’y a pas d’autre élément x ∈ E tel que u(x) = 0F . Ainsi
Ker(u) = {0E}.

Inversement, supposons que Ker(u) = {0E}. Soient x, y ∈ E tels que u(x) = u(y).
Afin de montrer que u est injective, il faut montrer que x = y. Par linéarité de u,

u(x− y) = u(x)− u(y) = 0F ,

donc x− y ∈ Ker(u). Ainsi x− y = 0E , d’ou x = y.

2.1.2 Inverses des applications linéaires

Soit u ∈ L(E,F ). Rappelons-nous que u est avant tout une fonction, il existe donc une
notion d’inverse de u en tant que fonction. On va utiliser cette même notion d’inverse dans
le cadre des applications linéaires.

Comme toute fonction, u admet un inverse si et seulement si elle est bijective. On dira
souvent que u est inversible pour dire simplement que u est bijective. Si u est inversible,
l’application inverse de u, notée u−1 : F → E, est définie par:

pour tout y ∈ F , u−1(y) est le seul vecteur de E tel que u(u−1(y)) = x.

– 41 –



CHAPTER 2. APPLICATIONS LINÉAIRES ET MATRICES

Proposition 2.7. Si u ∈ L(E,F ) est inversible, alors u−1 ∈ L(F,E).

Preuve: Soit u ∈ L(E,F ) inversible. Prenons x, y ∈ F et λ ∈ R. On veut montrer que

u−1(x+ y) = u−1(x) + u−1(y) et u−1(λx) = λu−1(x).

Pour cela il suffit d’observer que, par linéarité de u,

u
(
u−1(x) + u−1(y)

)
= u

(
u−1(x)

)
+ u
(
u−1(y)

)
= x+ y et

u
(
λu−1(x)

)
= λu

(
u−1(x)

)
= λx.

Mais u est inversible, donc u−1(x + y) est l’unique élément e de E tel que u(e) = x + y.
De même, il existe un unique élément f ∈ E tel que u(f) = λx, à savoir u−1(λx).

Comme on vient de voir que u−1(x) + u−1(y) et λu−1(x) remplissent ces conditions,
on conclut que u−1(x+ y) = u−1(x) + u−1(y) et u−1(λx) = λu−1(x).

Il peut être utile de se souvenir de ce lemme qui montre comment les fonctions inversibles
agissent sur les familles génératrices / libres de vecteurs.

Lemme 2.8. Soit u ∈ L(E,F ) une application linéaire inversible et soit e1, . . . , en ∈ E.
Alors,
(i) (e1, . . . , en) est génératrice pour E si et seulement si (u(e1), . . . , u(en)) est génératrice

pour F ;
(ii) (e1, . . . , en) est libre si et seulement si (u(e1), . . . , u(en)) est libre.

Exercice 2.7.
Prouver le lemme 2.8.

Exercice 2.8.
Soit u, v ∈ L(E) et supposons que u est bijective. Monter que
(a) Ker(u ◦ v) = Ker(v),
(b) Im(v ◦ u) = Im(v),

Exercice 2.9.
On se place sur l’espace des polynômes a coefficients réels R[X]. Soit D : R[X]→ R[X] qui
associe à chaque polynôme P ∈ R[X] sa dérivée par rapport àX. (Par exempleD(X3+2X) =
3X2 + 2).
(a) Montrer que D ∈ L(R[X]).
(b) Trouver Ker(D) et Im(D). Est-ce que D est injective/surjective/bijective?
(c) Et si on se restreint aux polynômes de degré au plus n, Rn[X]? Plus exactement, soit

Dn : Rn[X] → Rn[X] défini comme D (noter que c’est une fonction différente de D,
car les domaines de départ et d’arrivée ne sont pas les mêmes). Trouver Ker(Dn) et
Im(Dn).

(d) Est-ce que D est inversible?
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(e) Trouver une application linéaire I ∈ L(R[X]) telle que D◦I = id (c.-à-d. D(I(P )) = P
pour tout P ∈ R[X]).
Pourquoi cela n’implique pas que D est inversible? (Indication: Calculer I(D(P )) pour
P ∈ R[X].)

2.1.3 Applications linéaires en dimension finie

Fixons deux espaces vectoriels E,F . On va supposer que E est de dimension finie. Le
théorème suivant est un outil très puissant pour l’étude des applications linéaires.

Théorème 2.9 (Théorème du rang). Soit u ∈ L(E,F ). Alors

dim(Ker(u)) + dim(Im(u)) = dim(E).

Preuve: Soit e1, . . . , ek une base de Ker(u). Par le théorème 1.16, on peut compléter e1, . . . , ek
en une base e1, . . . , en de E (ou n ≥ k est la dimension de E).

Alors on prétend que la famille (u(ek+1), . . . , u(en)) est une base de Im(u), donc que
dim(Im(u)) = n− k = dim(E)− dim(Ker(u)), ce qui est la conclusion désirée.

Montrons que Vect(u(ek+1), . . . , u(en)) = Im(u). Le fait que Vect(u(ek+1), . . . , u(en)) ⊂
Im(u) est évident, on va donc se concentrer sur l’inclusion inverse.
Soit y ∈ Im(u). Alors on peut écrire y = u(x) pour un certain x ∈ E. De plus, on peut
écrire x = λ1e1 + · · ·+ λnen avec λ1, . . . , λn ∈ R. Ainsi, par linéarité de u,

y = u(x) =

n∑
i=1

λiu(ei) =

n∑
i=k+1

λiu(ei),

car les premiers k termes de la première somme sont nuls. On a donc prouvé que y ∈
Vect(u(ek+1), . . . , u(en)), donc que Vect(u(ek+1), . . . , u(en)) = Im(u).

Montons maintenant que (u(ek+1), . . . , u(en)) est libre. Soient λk+1, . . . , λn ∈ R tels
que

λk+1u(ek+1) + · · ·+ λnu(en) = u(λk+1ek+1 + · · ·+ λnen) = 0F .

Ainsi λk+1ek+1 + · · ·+ λnen ∈ Ker(u). Comme e1, . . . , ek est une base de Ker(u), il existe
λ1, . . . , λk ∈ R tels que

λk+1ek+1 + · · ·+ λnen = λ1e1 + · · ·+ λkek.

Mais cela revient à

λ1e1 + · · ·+ λkek − λk+1ek+1 − · · · − λnen = 0E ,

et comme e1, . . . , en est libre, à λ1 = · · · = λn = 0. On vient donc de prouver que
(u(ek+1), . . . , u(en)) est libre, ce qui finit la preuve du théorème.

Un corollaire immédiat du théorème du rang est le suivant.
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Corollaire 2.10. L’image de u est de dimension finie et dim(Im(u)) ≤ dim(E).

La dimension de Im(u) est souvent appelée le rang de u et est notée

rang(u) := dim(Im(u)).

Deux conséquences qui témoignent de la puissance du théorème 2.9 sont les suivantes

Corollaire 2.11. S’il existe une application linéaire inversible u ∈ L(E,F ), alors dim(E) =
dim(F ).

Preuve: Soit u ∈ L(E,F ) inversible. Alors dim(E) = dim(Ker(u)) + dim(Im(u)) = dim(F ), car
Ker(u) = {0}, donc dim(Ker(u)) = 0 et Im(u) = F , donc dim(Im(u)) = dim(F ).

Corollaire 2.12. Soit u ∈ L(E). Alors on a équivalence de:
(i) u est injective;
(ii) u est surjective;
(iii) u est inversible.

Preuve: Evidement (iii)⇒ (i) et (iii)⇒ (ii). On va montrer les deux implications inverses.
Soit u ∈ L(E) injective. Alors dim(Ker(u)) = 0, donc par le théorème 2.9, dim(E) =

dim(Im(u)). Mais Im(u) est un s.e.v. de E; la proposition 1.19 implique alors que Im(u) =
E, donc que u est surjective. Ainsi u est surjective et injective, donc bijective.

Supposons maintenant que u ∈ L(E) est surjective. Alors le théorème 2.9 dit que
dim(E) = dim(Ker(u))+dim(Im(u)) = dim(Ker(u))+dim(E), donc que dim(Ker(u)) = 0.
En autres mots Ker(u) = {0E}, ce qui veut dire que u est injective, donc bijective.

Exercice 2.10.
Soit E = R3 et soient u, v : R3 → R3 définies par

u

ab
c

 =

 3a+ 2c
a+ b+ c
c− a

 et v

ab
c

 =

 3a+ 2c
a+ b+ c
b+ 2c

 ,

pour a, b, c ∈ R.

(a) Montrer que u, v ∈ L(R3)

(b) Est-ce que u ou v est inversible?
Indication: Chercher à voir si le noyaux est réduit à {0}.
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2.2 Introduction aux matrices
Les matrices sont des objets omniprésentes dans les différentes domaines des mathématiques.
De plus elles sont très souvent utilisées dans les applications des mathématiques. Une de leur
utilisations essentielles est la description des applications linéaires.

On commence par donner une descriptions des matrices et des opérations s’y appliquant,
ensuite on va aborder le lien avec les applications linéaires.

Définition 2.13. Soient m,n ∈ N. Une matrice A de taille m × n à coefficients dans R
est une famille (ai,j)1≤i≤m

1≤j≤n
d’éléments de R. Elle est représenté par un tableau rectangulaire

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

... . . . ...
am,1 am,2 · · · am,n

 .

L’indice i est l’indice des lignes et l’indice j est celui des colonnes.
L’ensemble de matrices de taille m× n à coefficients dans R est notéMm,n(R).

2.2.1 Opérations sur les matrices

Les matrices peuvent être additionnées, multipliées par des constantes et dans certains cas
multipliées entre elles.

Soient m,n ∈ N et deux matrices A = (ai,j) et B = (bi,j) de Mm,n(R). De plus, soit
λ ∈ R. On défini les matrices A+B ∈Mm,n(R) et λ · A ∈Mm,n(R) par

A+B =

 a1,1 + b1,1 · · · a1,n + b1,n
... . . . ...

am,1 + bm,1 · · · am,n + bm,n

 et λ · A =

λa1,1 · · · λa1,n
... . . . ...

λam,1 · · · λam,n

 .

Proposition 2.14. L’ensemble Mm,n(R) avec les opérations définies au-dessus est un
espace vectoriel. L’élément neutre est la matrice

0m,n =

0 · · · 0
... . . . ...
0 · · · 0

 ∈Mm,n(R).

Exercice 2.11.
Démontrer la proposition 2.14. (Il s’agit simplement de vérifier que les conditions de la
définition 1.1.)
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Soient m,n, p ∈ N. Pour A = (ai,k) ∈ Mm,n(R) et B = (bk,j) ∈ Mn,p(R) on définit le
produit des matrices A et B comme la matrice AB = (ci,j) ∈ Mm,p(R) (aussi notée A× B)
dont les entrées sont données par

ci,j =
n∑
k=1

ai,kbk,j pour 1 ≤ i ≤ m et 1 ≤ j ≤ p.

Attention! pour des matrices A, B dont les tailles ne sont pas compatibles (comme dans la
définition au-dessus) le produit de A et B n’est pas définit.

La multiplication matriciélle suit des règles intuitives, similaires aux règles de la multi-
plication des nombres. Elles sont décrites dans la proposition suivante.

Proposition 2.15. Soient m,n, p, q ∈ N.
(i) Pour tout A ∈Mm,n(R) et B,C ∈Mn,p(R) on a A(B + C) = AB + AC.
(ii) Pour tout A,B ∈Mm,n(R) et C ∈Mn,p(R) on a (A+B)C = AC +BC.
(iii) Pour tout A ∈Mm,n(R) et B ∈Mn,p(R) et C ∈Mp,q(R) on a (AB)C = A(BC).
(iv) Pour tout A ∈ Mm,n(R) et B,C ∈ Mn,p(R) et λ ∈ R on a λ(AB) = (λA)B =

A(λB).

On va surtout utiliser la multiplication des matrices pour les matrices carrées, à savoir
les matrices de Mn,n(R) pour un n ∈ N. On écrira Mn(R) à la place de Mn,n(R) pour
raccourcir la notation. La proposition 2.15 est surtout importante dans ce contexte; on la
complète par propriété suivante.

Proposition 2.16. Soit n ∈ N. Alors la matrice

In =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1


est l’unique matrice deMn(R) telle que, pour tout A ∈Mn(R),

AIn = InA = A. (2.3)

On appelle In la matrice identité de taille n.
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Preuve: Commençons par montrer que 2.3 est satisfait pour tout A ∈ Mn(R). Par la règle de
multiplication des matrices, pour une matrice A = (ai,j) ∈Mn(R), on a

A · In =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

 ·

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
an,1 an,2 · · · an,n

 = A.

De même In ·A = A.
Montrons maintenant l’unicité de la matrice In. Soit J ∈ Mn(R) telle que A · J =

J · A = A pour tout A ∈ Mn(R). En appliquant cela à A = In, et en utilisant (2.3) on
trouve

In = In · J = J.

Attention! Généralement la multiplication des matrices n’est pas commutative. En effet,
pour n ≥ 2 il existe A,B ∈Mn(R) tels que AB 6= BA.

Exercice 2.12.
Trouver pour tout n ≥ 2 des matrices A,B ∈Mn(R) tels que AB 6= BA.

2.2.2 Matrices inversibles

Définition 2.17. Soit n ∈ N et A ∈ Mn(R). On dit qu’une matrice B ∈ Mn(R) est un
inverse de A si AB = BA = In. Si une telle matrice existe, on dit que A est inversible(iv).

L’étude des matrices inversibles est particulièrement intéressant. On donne une première
proposition les concernant; on va y revenir dans les parties 2.3.3 et 2.3.4.

Proposition 2.18.
(i) Si A est inversible, alors il existe un unique inverse qu’on note A−1.
(ii) Soient A,B ∈Mn(R) deux matrices inversibles. Alors AB est une matrice inversible

et (AB)−1 = B−1A−1.

Exercice 2.13.
Démontrer la proposition 2.18.

Exercice 2.14.
Soient A,B ∈Mn(R) telles que AB = 0. Montrer que A et B ne sont pas inversibles.
Exemple: Calculer (

0 0
0 1

)
×
(

0 1
0 0

)
Déduire des exemples de matrices non-nulles mais non-inversibles.
(iv)Reguläre Matrix
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2.2.3 La transposition

Une opération spécifique aux matrices est la transposition. Elle consiste à échanger les lignes
et les colonnes d’une matrice. On peut aussi la voir comme une réflexion de la matrice suivant
sa diagonale.

Définition 2.19. Soient m,n ∈ N et A = (ai,j)1≤i≤m
1≤j≤n

∈ Mm,n(R). La transposée de A

est la matrice AT = (aTi,j) 1≤i≤n
1≤j≤m

∈ Mn,m(R) définie par aTi,j = aj,i pour tout 1 ≤ i ≤ n et

1 ≤ j ≤ m.

Donnons quelques exemples pour illustrer la notion.(
1 2 3
4 5 6

)T
=

1 4
2 5
3 6

 ,

(
a b
c d

)T
=

(
a c
b d

)
.

Proposition 2.20. Soit A,B ∈Mn(R). Alors (AB)T = BTAT .

Preuve: Montrons l’égalité élément par élément. Notons A = (ai,j)1≤i,j≤n et B = (bi,j)1≤i,j≤n. On
va aussi noter aTi,j = aj,i et bTi,j = bj,i les entrées de AT et BT .

Soient k, ` ∈ [1, n]. L’entrée de la ligne k et la colonne ` de (AB)T est égale à l’entrée
de la ligne ` et la colonne k de AB. Il s’agit donc de

(AB)Tk,` = a`,1b1,k + · · ·+ a`,nbn,k.

D’autre part, l’entrée de la ligne k et la colonne ` de BTAT est

(BTAT )k,` = bTk,1a
T
1,` + · · ·+ bTk,na

T
n,` = b1,ka`,1 + · · ·+ bn,ka`,n.

Ainsi (AB)T = BTAT .

Corollaire 2.21. Soit A ∈Mn(R). Alors A est inversible si et seulement si AT l’est. Quand
les deux sont inversibles, (AT )−1 = (A−1)T .

Preuve: En utilisant la proposition 2.20 on vérifie que si A est inversible

(A−1)TAT = (AA−1)T = In = (A−1A)T = AT (A−1)T .

Donc AT est inversible et (AT )−1 = (A−1)T .

Exercice 2.15.
Trouver toutes les matrices A ∈Mn(R) telles que
(a) A = AT .
(b) A = −AT .
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2.2.4 Formes particulières

Il est souvent commode d’écrire une matrice comme une collection de lignes ou de colonnes.
Soit A = (ai,j) ∈Mm,n(R). On peut alors écrire

A =

C1 . . . Cn

 =

L1
...
Lm

 ,

ou C1, . . . , Cn sont les colonnes de A et L1, . . . , Lm sont les lignes. Plus précisément, pour
1 ≤ i ≤ m et 1 ≤ j ≤ n,

Li = (ai,1, . . . , ai,n) ∈M1,n et Cj =

a1,j
...

am,j

 ∈Mm,1.

Pour les matrices carrées, certaines formes de matrices sont particulièrement intéressantes.

Définition 2.22. Soit A = (ai,j) ∈ Mn(R). On dit que A est une matrice triangulaire
supérieure si ai,j = 0 pour tout i > j, et triangulaire inférieure, si ai,j = 0 pour tout i < j.

On dit que A est une matrice diagonale si ai,j = 0 pour tout i 6= j.

Les formes générales des matrices triangulaires supérieures, triangulaires inférieures et diag-
onales, respectivement, sont:

a11 a12 . . . a1,n
0 a22 . . . a2,n
...

... . . . ...
0 0 . . . an,n

 ;


a11 0 . . . 0
a21 a22 . . . 0
...

... . . . ...
an,1 an,2 . . . an,n

 ;


a11 0 . . . 0
0 a22 . . . 0
...

... . . . ...
0 0 . . . an,n

 .

2.2.5 Puissance des matrices

Soit A ∈ Mn(R). Comme pour les nombres, on peut multiplier A par elle même plusieurs
fois pour obtenir les puissances de A. Ainsi on pose, pour k ∈ N, k ≥ 1:

Ak = A . . . A︸ ︷︷ ︸
k fois

.

On pose aussi par convention A0 = In.
Certaines propriétés des puissances des nombres sont conservées. Pour k, ` ∈ N on a bien

AkA` = Ak+` et
(
Ak
)`

= Ak`.

D’autres ne le sont pas. . .

Exercice 2.16.
Trouver trois solutions distinctes A ∈M2(R) de l’équation A2 = A.
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Formule du binôme pour les matrices.

Lemme 2.23. Soient A,B ∈ Mn(R) telles que AB = BA (on dit que A et B commutent).
Alors

(A+B)n =
n∑
k=0

(
n

k

)
AkBn−k. (2.4)

Attention! Si A et B ne commutent pas, l’équation (2.4) n’est plus valable.

Exercice 2.17.
Soient

A =

0 0 0
0 0 0
1 0 0

 et B =

0 1 0
0 0 1
0 0 0


Calculer (A+B)2 et A2 + 2AB +B2.
Proposer une forme générale pour le carré de la somme de deux matrices. Pouvez vous la
généraliser à la puissance neme de deux matrices?

Matrices nilpotentes

Définition 2.24. Une matrice A ∈ Mn(R) est dite nilpotente s’il existe k ∈ N tel que
Ak = 0.

La notion de nilpotent n’existe pas pour les nombres. En effet, il n’existe pas de x ∈ R
(ou x ∈ C) non-nul tels que xk = 0. Ca vient essentiellement du fait que tout nombre non-nul
admet un inverse; ce n’est pas le cas pour les matrices.

Exemple: Soit

N =

0 1 0
0 0 1
0 0 0

 .

On peut alors calculer les puissances successives de la matrice N :

N2 =

0 0 1
0 0 0
0 0 0

 et N3 =

0 0 0
0 0 0
0 0 0

 .

Ainsi, N3 = N4 = · · · = 0.

Exercice 2.18.
Prenons toujours la matrice N de l’exemple précèdent. A l’aide du la formule du binôme,
calculer (I3 +N)n pour n ∈ N. (Motivez bien les étapes du calcul).
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Exercice 2.19.
Soit A ∈Mn(R) une matrice triangulaire supérieure avec 0 sur la diagonale. Plus précisément
A est de la forme

A =


0 a12 . . . a1,n
0 0 . . . a2,n
...

... . . . ...
0 0 . . . 0

 .

Calculer A2, A3, . . . . Que pouvez vous déduire sur Ak? Montrez que An = 0.

Puissance des matrices diagonales Soit A ∈Mn(R) une matrice diagonale:

A =


a11 0 . . . 0
0 a22 . . . 0
...

... . . . ...
0 0 . . . an,n

 .

On peut alors facilement calculer les puissances de A:

Ak =


ak11 0 . . . 0
0 an22 . . . 0
...

... . . . ...
0 0 . . . ann,n

 , pour tout k ∈ N. (2.5)

Exercice 2.20.
Montrer la formule (2.5) par récurrence sur n.

Exercice 2.21 (difficile).
Soit n ∈ N et A ∈Mn(R). Montrer que la famille

(
In, A,A

2, . . . , An
2−1) est liée.

Le calcul des puissances d’une matrice est un problème très intéressant d’un point de vu
pratique. On a vu quelques exemples ou le calcul est possible, mais en général, il s’agit d’un
problème compliqué. Illustrons son utilité par un exemple.

2.2.6 Les matrices comme outil de modélisation

On a déjà vu comment l’algèbre linéaire peut être utile pour la résolution d’équations de
récurrence comme celle de Fibonacci (voir partie 1.4). En utilisant les matrices on peut décrire
(et résoudre, comme on va le voir plus tard) des équations de récurrence plus complexes.

Exemple: population de deux types de bactéries Supposons qu’on a une population
de bactéries de deux types A et B. A chaque instant, une bactérie de type A donne naissance
à une bactérie de type A et quatre de type B, puis meure. Une bactérie de type B donne
naissance à une bactérie de type A et une de type B. Quelle est la population après n étapes,
sachant qu’on commence par une seule bactérie de type A?
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On peut modéliser cela comme suit. Notons an et bn le nombre de bactéries de type A et
B, respectivement, à l’étape n. Alors on a la formule suivante:

an+1 = an + bn et bn+1 = 4an + bn. (2.6)

De plus la condition initiale est a0 = 1 et b0 = 0.
La population totale de bactéries après n étapes s’écrit pn = an + bn. Remarquons qu’on

n’a pas une simple équation de récurrence pour pn comme celles traitées dans la partie 1.4.

Par contre, si on note Xn =

(
an
bn

)
pour chaque n ∈ N, on observe que

Xn+1 =

(
an + bn
4an + bn

)
=

(
1 1
4 1

)
Xn.

Ainsi
Xn =

(
1 1
4 1

)n
X0 =

(
1 1
4 1

)n(
1
0

)
.

Malheureusement il n’est pas evident de deviner la forme générale de la matrice
(

1 1
4 1

)n
.

On va voir dans la partie 3 une technique pour le faire. Il se trouve que dans le cas présent,
si on pose cn = 2an − bn et dn = 2an + bn pour tout n, alors

cn+1 = −cn et dn+1 = 3dn, ∀n ∈ N.

Ainsi (
cn
dn

)
=

(
−1 0
0 3

)n(
c0
d0

)
=

(
(−1)nc0

3nd0

)
=

(
2 · (−1)n

2 · 3n
)
.

Cela suffit de retrouver an et bn car

an =
1

4
(cn + dn) =

1

2
(3n + (−1)n) et bn =

1

2
(dn − cn) = 3n − (−1)n.

Matrices d’adjacente et matrices stochastiques. Un graphe est un couple d’ensembles
G = (V,E) ou les éléments de V sont les sommets de G et E ⊂ V ×V représente les arêtes de
G. Il symbolise un réseau avec des arêtes orientées (ou pas, suivant la définition exacte) entre
certains de ses sommets. Pour un graphe fini G (c.à-d. avec V fini), on définit sa matrice
d’adjacente comme suit.

On commence par noter V = {v1, . . . , vn}. La matrice d’adjacence A = (ai,j)1≤i,j≤n ∈
Mn(R) est définie par

ai,j = 1 si et seulement si (vi, vj) ∈ E,
donc si et seulement si il y a une arête de vi vers vj. Sinon, on pose ai,j = 0. Ainsi la matrice
d’adjacence décrit parfaitement le graphe G.

Si de plus le graphe G a un poids positif we associé à chaque arête e ∈ E, on peut rajouter
cette information à la matrice A, en posant

ai,j =

{
w(vi,vj) si (vi, vj) ∈ E,
0 si (vi, vj) /∈ E.
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Un vecteur colonne X ∈Mn,1(R) (avec des entrées positives) peut être interprété comme
une attribution de “masse” à chaque sommet: chaque sommet vi a une masse xi.

Imaginons la dynamique suivante: à chaque étape, chaque sommet vi transfère une pro-
portion ai,j de sa masse au sommet vj. Pour que cela ai un sens, il faut que

n∑
j=1

ai,j = 1, ∀1 ≤ i ≤ n. (2.7)

Alors, si on commence par une attribution de masse X, après une étape, on aura une distri-
bution de masse Y , ou

X =

x1...
xn

 , Y =

y1...
yn

 ou yj =
n∑
i=1

ai,jxi, ∀1 ≤ j ≤ n.

On peut écrire cela de façon plus compacte comme Y = ATX. Plus généralement, après k
étapes, on aura une distribution (AT )kX.

La condition (2.7) garantie qu’il y a conservation de la masse totale dans le graphe. Si
cette condition est satisfaite, on dit que A est une matrice stochastique à gauche et AT une
matrice stochastique à droite.

Cette dynamique décrit une marche aléatoire sur le graphe G (un cas particulier d’une
chaine de Markov). Imaginons qu’on dispose d’un kilo de sable. On se donne un vecteur
colonne X = (xi)1≤i≤n ∈Mn,1 avec

xi ≥ 0, pour tout 1 ≤ i ≤ n et
n∑
i=1

xi = 1.

Pour chaque i, on place xi kilos de sable au sommet vi de G. On lance ensuite la dynamique
décrite avant: le sable de vi est distribué entre ses voisins, vj recevant de vi une proportion
ai,j de sable.

Supposons qu’un grain de sable est coloré en rouge et qu’on le suit pendent cette évolution.
Alors, à chaque étape, si le grain se trouve à vi, il a une probabilité ai,j d’être envoyé au
sommet vj. On va supposer que cette dynamique est markovienne, c.à-d. que l’évolution
future du grain de sable dépend uniquement de sa position actuelle, pas de son évolution
passée.

Ainsi, la positon du grain rouge après k étapes est décrite par le vecteury1...
yn

 =
(
AT
)k
X.

En effet, il y a une quantité yi de sable au sommet vi, donc une probabilité yi que le grain
rouge s’y trouve.
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Exemple: la parade nuptiale des bourdons. Comme discuté avant, les matrices peu-
vent être utilisées pour décrire certaines évolutions aléatoires appelées des chaines de Markov.
On va illustrer cela par un exemple concret.

L’accouplement des bourdons suit une procédure à plusieurs étapes. Celles-ci peuvent
être classées comme suit:

(App) Approche: un mâle se dirige vers la reine. Il s’approche à courte distance de la reine,
et peut continuer la parade, ou se retirer (c’est le plus souvent la cas).

(IF) Inspection de la femelle: le mâle suit la reine avec ses antennes tendues vers elle.
Il inspecte souvent la reine au niveau de la tête (région où se trouvent les glandes
produisant les phéromones sexuelles), mais parfois au niveau de l’abdomen.

(T) Tentative d’accouplement: le mâle s’approche de la reine, il s’accroche à elle. Il frotte
de ses pattes antérieures l’extrémité de l’abdomen de la femelle. Il sort ses génitalias
(appareil reproducteur) et tente de pénétrer la reine.

(Acc) Accouplement: lors de l’accouplement, le comportement du mâle se caractérise par des
mouvements de battements des pattes sur l’extrémité de l’abdomen de la reine.

Pour observer la séquence, on place 80 bourdons dans un milieu favorable, et on les observe
pendant 15 minutes. Les bourdons passent par les différentes phases de la parade nuptiale.
On observe chaque bourdon chaque minute pour déterminer les phases par les quelles il passe.
On rajoute quelques états dans notre tableau:

(D) depart: la situation de depart.
(AA) Accouplement accompli: le mâle quitte la séance après accouplement.
(AM) Abandon du mâle: lors de la séquence, le bourdon mâle peut adopter un comportement

indifférent vis-à-vis de la reine; il sort de la parade nuptiale et n’y revient jamais.

Les observations sont classées dans le tableau suivant:
Vers

De ↓ App IF T Acc AM Total
D 80 0 0 0 0 80
App 102 51 10 0 41 204
IF 16 6 28 0 7 57
T 6 0 0 22 10 38

Si on suppose l’évolution des bourdons markovienne, on peut estimer à partir de ces obser-
vations les probabilités de passage d’une phase à une autre. Elles sont obtenues en divisant
chaque ligne du tableau précédent par le nombre total d’observations y correspondent. Ra-
joutons les transition à partir des états Acc, AM et AA:

App IF T Acc AM AA
D 1 0 0 0 0 0
App 102

204
= 0.5 51

204
= 0.25 10

204
= 0.05 0 41

204
= 0.2 0

IF 16
57

= 0.3 6
57

= 0.1 28
57

= 0.5 0 7
57

= 0.1 0
T 6

38
= 0.15 0 0 22

38
= 0.6 10

38
= 0.25 0

Acc 0 0 0 0 0 1
AM 0 0 0 0 1 0
AA 0 0 0 0 0 1

(2.8)
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Cette évolution peut étre décrite par le graphe suivant

Depart

(AM)

1

0.5

0.05

0.2

0.25
0.3

0.1

0.5

0.1

1

1

1

0.6
0.2

0.2

(T)
(App)

(IF)

(Acc)

(AA)

La matrice associé à ce graphe (en ignorant l’état D) est

A =


0.5 0.25 0.05 0 0.2 0
0.3 0.1 0.5 0 0.1 0
0.15 0 0 0.6 0.25 0

0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 0 1

 et AT =


0.5 0.3 0.15 0 0 0
0.25 0.1 0 0 0 0
0.05 0.5 0 0 0 0

0 0 0.6 0 0 0
0.2 0.1 0.25 0 1 0
0 0 0 1 0 1

 .

Exercice 2.22.
Vérifier que les matrices A et AT sont stochastiques (à gauche et à droite, respectivement).
Si on suppose que les bourdons se comportent de façon markovienne, donner une distribution,
minute par minute, des bourdons entre les différents états de la parade nuptiale. Pour
cela, prenons X0 le vecteur colonne avec 80 en première coordonnée et 0 ailleurs, et posons
Xk+1 = ATXk pour k ≥ 0. Alors Xk contient le nombre moyen de bourdons dans chaque
état de la parade après k minutes.
Est-ce que les observations sont cohérentes avec les simulations? Pour cela il faut voir si le
nombre total (sur toutes les étapes de l’algorithme) de bourdons observés dans chaque état
est le même dans notre simulation que dans le tableau (2.8).

Exemple: Page rank algorithm. Comment décider quelles pages internet sont plus
importantes que d’autres lors une recherche? Le contenu individuel de chaque page (par
exemple le nombre de fois que le mot recherché y apparait) n’est évidement pas un bon
indicateur. On peut par contre considérer que plus il y a de liens vers une page, plus cette
page est importante. Cette observation est à l’origine des algorithmes utilisés par les moteurs
de recherche.

Imaginons l’internet comme un graphe G = (V,E) dirigé, chaque sommet étant une page
internet, et chaque arête symbolisant un lien. Posons n = |V | et donnons pour commencer
une importance égale à chaque page:

X0 =

1/n
...

1/n

 ∈Mn,1(R).
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v1

v3 v4

v2

v5

1

1
2

1
2

1
2

1
2

1

1
3

1
3

1
3

1/5

1/5

1/5

1/5

1/5

v1

v3 v4

v2

v5

1

1
2

1
2

1
2

1
2

1

1
3

1
3

1
3

1/10

4/15

1/6

3/10

1/6

Figure 2.1: Un graphe avec les proportions transmise par chaque arête. A gauche une
commence avec chaque sommet ayant une importance égale, à savoir 1/5. Après un pas de
redistribution, on obtient X1, décrit à droite.

Cette attribution d’importance n’est pas réaliste. On va donc considérer en première ap-
proximation, que chaque page est aussi importante, qu’il y a d’arêtes pointant vers elle. On
considère ainsi que chaque page vi distribue son importance uniformément parmi ses voisins.

Notons d(vi) le nombre d’arêtes sortantes de vi et posons

A = (ai,j) ∈Mn(R) avec ai,j =

{
1

d(vi)
si (vi, vj) ∈ E

0 sinon.

La matrice A est stochastique à gauche. L’importance de chaque sommet vi est alors donné
en cette première approximation par X1 = ATX0.

Cette façon de classer les pages n’est pas parfaite non-plus: une page devrait être plus
importante si d’autres pages importantes y sont reliées. Ainsi on pose

X2 = ATX1, X3 = ATX2, etc.

Prenons l’exemple du graphe de la figure 2.1. Dans ce cas la matrice A s’écrit

A =


0 1

2
1
2

0 0
1
3

0 0 1
3

1
3

0 0 0 1 0
1
2

0 0 0 1
2

0 1 0 0 0

 et AT =


0 1

3
0 1

2
0

1
2

0 0 0 1
1
2

0 0 0 0
0 1

3
1 0 0

0 1
3

0 1
2

0


Si on applique AT de façon répétée on trouve

X ATX (AT )2X (AT )3X (AT )4X (AT )5X (AT )6X (AT )7X (AT )8X
v1 20% 17% 23% 18% 20% 21% 19% 20% 20%
v2 20% 30% 25% 35% 28% 30% 31% 29% 31%
v3 20% 10% 8% 12% 9% 10% 10% 10% 10%
v4 20% 27% 20% 17% 23% 18% 20% 21% 19%
v5 20% 17% 23% 18% 20% 21% 19% 20% 20%
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2.3 Applications linéaires et matrices
Fixons pour l’intégralité de cette partie deux espaces vectoriels E,F de dimension finie n et
m respectivement. De plus, soient E = (e1, . . . , en) un base de E et F = (f1, . . . , fm) une
base de F .

2.3.1 Représentation des applications linéaires par des matrices

On rappelle que tout vecteur x ∈ E admet une écriture dans la base E qu’on a noté VE(x).
(Voir la partie 1.3.4.) De plus, on a fait la convention d’écrire VE(x) verticalement, ainsi
VE(x) ∈Mn,1(R).

Dans la partie précédente on a vu queMn,1(R) admet une structure d’espace vectoriel.
Dans le langage des applications linéaires, la proposition 1.23 nous dit que la fonction VE :
E →Mn,1(R) est une application linéaire bijective.

Dans cette partie, on va voir que les applications linéaires admettent une représentation
similaire par des matrices.

Définition 2.25. Soit u ∈ L(E,F ). La matrice MatF ,E(u) = (ai,j) ∈ Mm,n(R) définie
par a1,j

...
am,j

 = VF
(
u(ej)

)
, pour tout j ∈ [1, n], (2.9)

est la matrice de u dans les bases E , F .

Le plus souvent on va traiter le cas des automorphisme de E. Dans ce cadre il est naturel
d’utiliser la même base pour l’espace d’arrivée et de départ. Ainsi, pour u ∈ L(E), on écrit
MatE(u) = MatE,E(u) ∈Mn(R).

Théorème 2.26. Soit u ∈ L(E,F ) et x ∈ E. Alors

VF
(
u(x)

)
= MatF ,E(u)VE(x). (2.10)

De plus MatF ,E(u) est l’unique matrice qui a cette propriété.

Preuve: On va commencer par montrer (2.10) pour les vecteurs de la base E . Soit ej un vecteur
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de E . Alors

VE(ej) =



0
...
0
1
0
...
0


ou l’entrée 1 est sur la jeme ligne. Ainsi,

MatF ,E(u)VE(ej) =

a1,j
...

am,j

 = VF
(
u(ej)

)
. (2.11)

La première égalité vient de la règle de multiplication des matrices, la deuxième vient de
la definition de MatF ,E(u)

Montrons maintenant (2.10) pour un vecteur quelconque x. Soit x ∈ E. Comme E est
une base de E, il existe des scalaires λ1, . . . , λn ∈ R tels que x = λ1e1 + · · ·+ λnen. Alors,
par la linéarité de u, u(x) = λ1u(e1) + · · ·+ λnu(en). Ainsi

MatF ,E(u)VE(x)
= MatF ,E(u)

(
λ1VE(e1) + · · ·+ λnVE(en)

)
par linéarité de VE

= λ1MatF ,E(u)VE(e1) + · · ·+ λnMatF ,E(u)VE(en) par linéarité de multip. matricielle
= λ1VF

(
u(e1)

)
+ · · ·+ λnVF

(
u(ej)

)
par (2.11)

= VF
(
λ1u(e1) + · · ·+ λnu(en)

)
par linéarité de VF

= VF
(
u(λ1e1 + · · ·+ λnen)

)
par linéarité de u

= VF
(
u(x)

)
.

En fin, observons que MatF ,E(u) est l’unique matrice qui satisfait (2.10) pour tout
x ∈ E. En effet si on applique (2.10) au vecteur ei de la base E , on obtient (2.9). Ainsi
(2.9) n’est qu’un cas particulier de (2.10).

Quand E = F on utilise par défaut la même base pour l’espace de depart et celui d’arrivé.
Ainsi, pour u ∈ L(E) et E une base de E, on écrit

MatE(u) = MatE,E(u).

Exemple: Considérons les transformations suivantes du plan R2: u est la rotation autour
de 0 d’angle θ (pour un certain θ ∈ [0, 2π]) et soit v la réflexion par rapport à la
diagonale principale de R2 (voir fig. 2.2) Les deux sont des applications linéaires.
On peut calculer leur matrices dans la base canonique E de R2, à savoir la base
formée de e1 = (1, 0) et e2 = (0, 1). On a

u(e1) =

(
cos θ
sin θ

)
= cos θe1 + sin θe2, u(e2) =

(
− sin θ
cos θ

)
= − sin θe1 + cos θe2,

et v(e1) =

(
0
1

)
= e2, v(e2) =

(
1θ
0

)
= e1.
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θ ~x

u(~x)

~x

v(~x)

00

Figure 2.2: L’effet des transformations u et v.

Ainsi

MatE(u) =

(
cos θ − sin θ
sin θ cos θ

)
et MatE(v) =

(
0 1
1 0

)
.

On peut également essayer d’écrire les mêmes transformations dans une autre
base. Posons f1 = e1 + e2 et f2 = −e1 + e2. Alors il est facile de voir que
F = (f1, f2) est une base de R2. Un calcul rapide nous montre que

MatF(u) =

(
cos θ − sin θ
sin θ cos θ

)
et MatF(v) =

(
1 0
0 −1

)
.

Exercice 2.23.
Soient A,B ∈Mm,n(R). Montrer que si AX = BX pour tout X ∈Mn,1(R), alors A = B.

2.3.2 Addition et multiplication par un scalaire

On voit ici une parallèle se créer entre les application linéaires et les matrices. De plus, on
a vu que les applications linéaires de L(E,F ) et les matrices de Mm,n(R) ont toutes les
deux une structure d’espace vectoriel. Il n’est pas surprenant que ces deux structures sont
équivalentes.

Proposition 2.27. L’application MatF ,E : L(E,F ) → Mm,n(R) est linéaire et bijective.
Plus précisément, pour u, v ∈ L(E,F ) et λ ∈ R,
(a) MatF ,E(u+ v) = MatF ,E(u) + MatF ,E(v),
(b) MatF ,E(λu) = λMatF ,E(u),
(c) MatF ,E(u) = 0 si et seulement si u = 0,
(d) pour toute matrice M ∈Mm,n(R), il existe w ∈ L(E,F ) telle que MatF ,E(w) = M .
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Preuve:
Montrons (a). Soient u, v ∈ L(E,F ). Alors, pour tout x ∈ E,

VF
(
(u+ v)(x)

)
= VF

(
u(x) + v(x)

)
= VF

(
u(x)) + VF

(
v(x))

= MatF ,E(u)VE(x) +MatF ,E(v)VE(x)
=
(
MatF ,E(u) +MatF ,E(v)

)
VE(x).

Ainsi MatF ,E(u) +MatF ,E(v) satisfait (2.10) pour u+ v, donc

MatF ,E(u+ v) = MatF ,E(u) +MatF ,E(v).

Le même raisonnement fonctionne pour montrer le point (b).
Passons au point (c). Supposons que u est telle que MatF ,E(u) = 0. Alors, pour tout

x ∈ E,

VF
(
u(x)

)
= MatF ,E(u)VE(x) = 0.

Mais VF est une fonction injective, donc u(x) = 0. Comme x était choisi arbitrairement
dans E, u est l’application nulle. L’implication inverse (c.à-d. le fait que MatF ,E(0) = 0)
est evident par la linéarité de MatF ,E .

Comme MatF ,E : L(E,F ) → Mm,n(R) est linéaire (on vient de le montrer au points
(a) et (b)), le fait que Ker(MatF ,E) = {0} (ce qu’on a montré au point (c)) nous indique
que MatF ,E est injective.

Montrons la surjectivité, notamment (d). Soit M ∈ Mm,n(R). On a vu déjà que
la fonction VF : F → Mm,1(R) est bijective (proposition 1.23). Ainsi on peut définir
w : E → F par

w(x) = V −1F
(
MVE(x)

)
, ∀x ∈ E.

La linéarité de V −1F , VE et de la multiplication matricielle nous montre que w ∈ L(E,F ).
Il est évident que w satisfait

VF
(
w(x)

)
=MVE(x), ∀x ∈ E,

donc que MatF ,E(w) =M .

Exercice 2.24.
De la proposition 2.27 et du corollaire 2.11 on déduit que L(E,F ) etMm,n(R) ont la même
dimension. Trouver leur dimension et exhibant une base deMm,n(R).

2.3.3 Composition vs. multiplication; inverse

Introduisons un troisième espace vectoriel G de dimension p et une base G = (g1, . . . , gp)
de G.

Dans certaines situations, on peut composer des applications linéaires. De même, si elles
ont la bonne taille, on peut multiplier deux matrices. Les deux opérations sont intimement
liées.
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Proposition 2.28. Soit u ∈ L(E,F ) et v ∈ L(F,G). Alors,

MatG,E(v ◦ u) = MatG,F(v)MatF ,E(u).

Preuve: Soit x ∈ E. Alors, par (2.10) appliqué trois fois,

MatG,F (v)MatF ,E(u)VE(x) = MatG,F (v)VF
(
u(x)

)
= VG

(
v(u(x))

)
= MatG,E(v ◦ u)VE(x).

On a déjà mentionné que la matrice satisfaisant (2.10) est unique. Ainsi MatG,F (v)MatF ,E(u) =
MatG,E(v ◦ u).

Dans le cadre de L(E) on a vu que certaines applications linéaires accepte des inverse.
Cette notion est bien sur reliée à celle d’inverse de matrice.

Proposition 2.29. Soit u ∈ L(E). Alors u est inversible si et seulement si MatE(u) est
inversible. Dans le cas ou les deux sont inversibles, on a

MatE
(
u−1
)

= MatE(u)−1.

Preuve: Supposons pour commencer que MatE(u) est inversible. Comme MatE : L(E) →Mn(R)
est bijective, il existe v ∈ L(E) telle que

MatE(v) = MatE(u)−1.

Alors

MatE(v ◦ u) = MatE(v)MatE(u) = Im = MatE(u)MatE(v) = MatE(u ◦ v).

En utilisant encore une fois le fait que MatE est bijective, on déduit v ◦u = u ◦ v = id. On
conclut donc que u est bien inversible et que v = u−1.

Inversement, si on suppose que u est inversible, alors

MatE
(
u−1

)
MatE

(
u
)
= MatE

(
u−1 ◦ u

)
= MatE(id) = Im = MatE

(
u ◦ u−1

)
= MatE

(
u
)
MatE

(
u−1

)
.

Donc MatE(u) est inversible et

MatE
(
u−1

)
= MatE(u)−1.

– 61 –



CHAPTER 2. APPLICATIONS LINÉAIRES ET MATRICES

2.3.4 Image, noyaux et rang des matrices

En pratique on travail souvent avec la forme matricielle des applications linéaires. Dans le
cas dégénéré ou les applications linéaires ne sont pas inversibles, il est utile d’identifier le
noyaux, l’image et le rang de l’application linéaire à partir de sa forme matricielle.

Commençons par définir l’image et le noyaux d’une matriceM ∈Mm,n(R).

Définition 2.30. On pose

Im(M) =
{
X ∈Mm,1(R) : ∃Y ∈Mm,1 t.q. MY = X

}
⊂ Rm,

Ker(M) =
{
X ∈Mn,1(R) : MX = 0

}
⊂ Rn,

rang(M) = dim(Im(M)).

Remarque 2.31. On peut facilement vérifier que Im(M) et Ker(M) sont des s.e.v. de Rm et
Rn, respectivement.

Les définition de image, noyaux et rang pour les matrices sont très similaires à ceux pour
les applications linéaire. Ce n’est pas par hasard, ce sont deux façons de voir le même objet.

Proposition 2.32. Soit u ∈ L(E,F ). Alors,

Im(MatF ,E(u)) = VF(Im(u)) et Ker(MatF ,E(u)) = VE(Ker(u)).

On laisse la preuve en exercice.
Un corollaire immédiat est la version du théorème du rang pour les matrices.

Corollaire 2.33. Soit M ∈Mm,n(R), alors

rang(M) + dim(Ker(M)) = n.

Pour les matrices, le rang peut se calculer de plusieurs manières, comme l’illustre la
proposition suivante.

Proposition 2.34.

Soit M ∈Mm,n(R), M =

C1 . . . Cn

 =

L1
...
Lm

 . Alors Im(M) = Vect(C1, . . . , Cn) et

rang(M) = rang(C1, . . . , Cn) = rang(L1, . . . , Lm).
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Preuve: On commence par montrer Im(M) = Vect(C1, . . . , Cn).
Pour i ∈ {1, . . . , n}, soit Yi ∈Mn,1(R) le vecteur contenant un 1 sur la ligne i et 0 partout
ailleurs. Alors Y1, . . . , Yn est la base canonique de Rn.

Une simple application de la règle de multiplication des matrices montre que

MYi = Ci, pour tout 1 ≤ i ≤ n.

Ainsi C1, . . . , Cn ∈ Im(M). Comme Im(M) est un espace vectoriel, Vect(C1, . . . , Cn) ⊂
Im(M).

Inversement, soit X ∈ Im(M) et Z ∈ Mn,1(R) avec X = MZ. Si on note z1, . . . , zn

les coefficients de Z, à savoir Z =

z1...
zn

, alors Z = z1Y1 + · · ·+ znYn. Ainsi

X =MZ =M(z1Y1 + · · ·+ znYn)

= z1MY1 + · · ·+ znMYn = z1C1 + · · ·+ znCn ∈ Vect(C1, . . . , Cn).

On a donc montré que Im(M) = Vect(C1, . . . , Cn).
Une conséquence directe est

rang(M) = dim(Im(M)) = dim(Vect(C1, . . . , Cn)) = rang(C1, . . . , Cn).

La dernière égalité (à savoir rang(C1, . . . , Cn) = rang(L1, . . . , Lm)) est plus délicate et
nécessite une construction qu’on ne traite pas dans ce cours. On va l’admettre.

Une conséquence immédiate de la proposition 2.32 et le critère suivant pour l’invisibilité
des matrices.

Corollaire 2.35. Soit M ∈Mn(R). Alors on a équivalence de
(i) la famille des colonnes C1, . . . , Cn est libre,
(ii) la famille des lignes L1, . . . , Ln est libre,
(iii) la matrice M est inversible.

Preuve: La matriceM est inversible si et seulement si rang(M) = n. Par la proposition précédente,
cela revient à rang(C1, . . . , Cn) = rang(L1, . . . , Ln) = n. Mais cela est équivalent au fait
que les familles (C1, . . . , Cn) et (L1, . . . , Ln) sont libres.

Lemme 2.36. Soit M ∈Mm,n(R), P ∈Mm(R) et Q ∈Mn(R). Alors
(i) si P est inversible, alors Ker(M) = Ker(PM) et rang(M) = rang(PM);
(ii) si Q est inversible, alors Im(M) = Im(MQ) et rang(M) = rang(MQ).

Ce qu’il faut retenir de ce lemme est que le rang d’une matrice n’est pas modifié si on la
multiplie, à gauche ou à droite, par des matrices inversibles.

On laisse la preuve en exercice.
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Exercice 2.25.
Démontrer la proposition 2.32. (La relation (2.10) peux être utile.)

Exercice 2.26.
Démonter le lemme 2.36.

Exercice 2.27.
Soient A,B ∈Mn(R) tels que AB = In. Montrer que A est inversible et que A−1 = B.
Trouver un couple de matrices A ∈ Mm,n(R) et B ∈ M(n,m)(R) pour m < n, tels que
AB = Im. Calculer BA. Que dire des images et noyaux de A et B?

2.3.5 Changement de base

En pratique il est des fois nécessaire de travailler avec plusieurs bases d’un même espace
vectoriel (voir par exemple les suites définies par récurrence traités dans la partie 1.4, ou
encore la diagonalisation des matrices traitée dans la partie 3). Ainsi, il est important d’avoir
un outil qui permet d’obtenir l’écriture d’un vecteur dans une base à partir de son écriture
dans une autre base. La solution est donnée par les matrices de changement de base.

Fixons E un espace vectoriel de dimension finie n et B = (b1, . . . , bn) et E = (e1, . . . , en)
deux bases de E.

Définition 2.37. La matrice de changement de base de E à B est la matrice notée PB,E =
(pij) ∈Mn(R) dont les entrées sont données colonne par colonne par

Ci =

p1,i...
pn,i

 = VB(ei) pour tout i ∈ {1, . . . , n}. (2.12)

Remarque 2.38. On peut voir la matrice de changement de base comme la matrice de
l’application linéaire identité id ∈ L(E):

PB,E = MatB,E(id). (2.13)

Proposition 2.39. Pour tout x ∈ E, VB(x) = PB,EVE(x).

Preuve: La démonstration découle directement de (2.13) et du théorème 2.26.

On aimerai dire que le changement de base de B à E est l’inverse de celui de E à B. La
proposition suivante en donne le sens précis.

– 64 –



CHAPTER 2. APPLICATIONS LINÉAIRES ET MATRICES

Proposition 2.40. La matrice PB,E est inversible et P−1B,E = PE,B.

Preuve: En appliquant la proposition 2.39 deux fois, on obtient que pour tout x ∈ E,

VB(x) = PB,EVE(x) = PB,EPE,BVB(x).

Le même calcul s’applique à PE,BPB,E . Comme VB etVE sont surjectives, on déduit que

PB,EPE,BX = PE,BPB,EX = X, pour tout X ∈Mn,1(R).

Il s’en suit (voir par exemple l’exercice 2.23) que PB,EPE,B = PE,BPB,E = In, donc que
PB,E = P−1E,B.

De plus, il est facile de voir que toute matrice inversible est une matrice de changement
de base. En effet, si P ∈ Mn(R) est inversible et B est une base de E, il suffit de créer la
base E par la formule (2.12), et on obtient P = PB,E .

Exercice 2.28.
Soient E un espace vectoriel de dimension n et E une base de E. Montrer que pour toute
matrice inversible M ∈Mn(R) il existe une base B de E telle que M = PB,E .

2.3.6 Matrices semblables

Définition 2.41. Soit A,B ∈ Mn(R) deux matrices. On dit qu’elles sont semblables s’il
existe P ∈M(R) inversible telle que

B = P−1AP. (2.14)

La notion de matrices semblable est motivée par la représentation des automorphisme
par les matrices carrées. Pour illustrer cela, on commence par une proposition qui donnent
la formule essentielle de changement de base pour des automorphisme.

Proposition 2.42. Soient E et B deux bases d’un espace vectoriel de dimension finie E
et soit u ∈ L(E). Alors,

MatB(u) = P−1E,BMatE(u)PE,B. (2.15)
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Preuve: Notons n la dimension de E et soit X ∈ Mn,1(R). Alors, par la surjectivité de VectB, il
existe x ∈ E, tel que X = VectB(x). Ainsi

MatB(u)X = MatB(u)VectB(x)
= VectB(u(x))
= PB,EVectE(u(x))
= PB,EMatE(u)VectE(x)
= PB,EMatE(u)PE,BVectB(x)

= P−1E,BMatE(u)PE,BX.

On a donc prouvé que MatB(u)X = P−1E,BMatE(u)PE,BX pour tout X ∈ Mn,1(R). Par
l’exercice 2.23, ceci implique l’égalité des deux matrices.

Soit A ∈Mn(R), E un espace vectoriel de dimension n et E une base de E. Il existe alors
une unique application linéaire u ∈ L(E) telle que MatE(u) = A (par bijectivité de MatE).
Une conséquence immédiate du lemme précédent est la suivante.

Proposition 2.43. Une matrice B ∈Mn(R) est semblable à A si et seulement si B est la
représentation de u dans une base B de E. De plus, la matrice P de (2.14) est alors PB,E .

Preuve: Si B = MatB(u) pour une certaine base B de E, alors, par la proposition 2.42, B =
PB,EAP−1B,E .

Inversement, supposons que B = PAP−1 pour une certaine matrice inversible P .
Alors il existe une base B de E telle que P = PB,E (voir l’exercice 2.28). Ainsi, par la
proposition 2.42,

B = PB,EAP−1B,E = MatB(u).

2.4 Systèmes linéaires

Définition 2.44. Soient m,n ∈ N et (ai,j)1≤i≤m
1≤j≤n

, (bi)1≤i≤m deux familles de scalaires (c.à

d. des éléments de R). Le système linéaire de m équations à n inconnues x1, . . . , xn avec
les coefficients (ai,j)i,j, (bi)i est l’ensemble d’équations

a1,1x1 + · · ·+ a1,nxn = b1

. . .

am,1x1 + · · ·+ am,nxn = bm.

(2.16)

Une solution du système est une famille (x1, . . . , xn) ∈ Rn qui satisfait toutes les équations
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de (2.16). On appelle S ⊂ Rn l’ensemble des solutions de (2.16).

On peut écrire le système (2.16) sous forme matricielle de la façon suivante. Soient

A =

a1,1 . . . a1,n
...

...
am,1 . . . am,n

 ∈Mm,n(R) et B =

 b1
...
bm

 ∈Mm,1(R).

Alors, (2.16) devient

AX = B, (2.17)

ou X ∈Mn,1(R) est le vecteur des inconnues x1, . . . , xn. On peut ainsi écrire

S =

X =

x1...
xn

 ∈Mn,1(R) : AX = B

 .

Ainsi, S 6= ∅ (c.à d. que le système admet au moins une solution) si et seulement si B ∈
Im(A). Supposons que B ∈ Im(A), et soit X0 ∈ Mn,1(R) une solution. Alors, pour toute
solution X ∈ S,

A(X −X0) = AX − AX0 = B −B = 0,

donc X −X0 ∈ Ker(A). Inversement, si X ∈Mn,1(R) est tel que X −X0 ∈ Ker(A), alors le
calcul précédent montre que X ∈ S. On arrive ainsi à la conclusion suivante.

Théorème 2.45. Soient A ∈ Mm,n(R) et B ∈ Mm,1(R). On note S l’ensemble des
solutions X ∈Mn,1(R) de AX = B. Alors
(i) si B /∈ Im(A), alors S = ∅,
(ii) si B ∈ Im(A), alors S 6= ∅. De plus, si X0 est une solution, on a

S = X0 + Ker(A) = {X0 + Y : Y ∈ Ker(A)}.

Dans le cas (ii) on dit que X0 est une solution particulière du système et que Y est une
solution générale du système homogène. Le fait que Y ∈ Ker(A) s’écrit aussi AY = 0, ou
encore, 

a1,1y1 + · · ·+ a1,nyn = 0

. . .

am,1y1 + · · ·+ am,nyn = 0.

On appelle ce système le système homogène associé à (2.16).
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Rappelons nous que Ker(A) est un s.e.v. de Rn. Ainsi, quand le système admet des
solutions, S est le translaté d’un espace vectoriel par un vecteur X0. On appelle ce type
d’espace un espace affine et on pose

dim(S) = dim(Ker(A)).

Une conséquence du théorème du rang qui peut être utile est que dim(Ker(A)) = n−rang(A).

Exercice 2.29.
Soit m ≤ n et A ∈ Mm,n(R). Supposons que la famille des lignes L1, . . . , Lm de A est libre.
Montrer que, pour tout B ∈Mm,1(R), l’équation AX = B admet des solutionsX ∈Mn,1(R),
et que l’ensemble des solutions est un espace affine de dimension n−m.

Exercice 2.30.
Soit n ∈ N, A ∈ Mn(R) et B ∈ Mn,1(R) tels que l’équation AX = B admet une unique
solution X ∈ Mn,1(R). Montrer que pour tout B′ ∈ Mn,1(R), l’équation AX = B′ admet
une unique solution X ∈Mn,1(R).

2.4.1 Opérations sur les lignes; forme échelonnée

Notons les équations du système comme suit
a1,1x1 + · · ·+ a1,nxn = b1 (L1)
. . .
am,1x1 + · · ·+ am,nxn = bm. (Lm)

(2.18)

Alors pour i 6= j et pour λ ∈ R, on peut rajouter à l’équation (Li) l’équation (Lj) multipliée
par λ, sans changer l’ensemble des solutions S. On dit que le système (2.16) est equivalent
au système

a1,1x1+ . . . +a1,nxn = b1 (L1)
...

...
...

...
(ai,1 + λaj,1)x1+ . . . +(ai,n + λaj,n)xn = bi + λbj (Li) + λ(Lj)

...
...

...
...

am,1x1+ . . . +am,nxn = bm. (Lm)

(2.19)

On peut également échanger deux équations du système entre elles et multiplier une équation
par un scalaire λ 6= 0, sans que l’ensemble des solutions change.

Vu l’écriture plus compacte en utilisant les matrices, on va désormais écrire les systèmes
linéaires sous forme matricielle. On identifie trois opérations pour les matrices:

• Addi;λ,j consiste à rajouter à la ligne i la ligne j multipliée par λ (ici i 6= j);
• Multλ,i consiste à multiplier la ligne i par λ (ici λ 6= 0);
• Echi;j consiste à échanger les lignes i et j (ici i 6= j).

Pour une matrice A, on va écrire Addi;λ,jA, Multλ,iA et Echi;jA pour la matrice obtenue
à partir de A par les opérations Addi;λ,j, Multλ,i et Echi;j, respectivement. Le fait que ces
opérations ne changent pas les solutions du système s’écrit de la manière suivante.
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Proposition 2.46. Soient A ∈ Mm,n(R), B ∈ Mm,1(R) et X ∈ Mn,1(R). Pour i 6= j et
λ ∈ R avec λ 6= 0 on a équivalence de

• AX = B,
• (Addi;λ,jA)X = Addi;λ,jB,
• (Multλ,iA)X = Multλ,iB,
• (Echi;jA)X = Echi;jB.

Preuve: Les opérations Addi;λ,j, Multλ,i et Echi;j consistent à multiplier à droite A par les matrices
suivantes deMm(R):

( )
1
1

1
1

. . .

i

jλ

0

0
0
0 ( )

1

1

1
. . .

i

i

0

0. . .
1
λ ( )

1

j

i

. . .

0
1

1.. .

0
1

1.. .

0
1

1.. .
1

1

1

i

j

00

0

0 0

0

On notera ces trois matrices aussi par Addi;λ,j, Multλ,i et Echi;j, respectivement. Ainsi
la notation Addi;λ,jA désigne simplement le produit matriciel. De plus ces trois matrices
sont inversibles, leurs inverses étant Addi;−λ,j, Mult1/λ,i et Echi;j, respectivement.

Soit P ∈ Mm(R) inversible. Alors si AX = B on a évidement aussi PAX = PB.
Inversement, si PAX = PB, alors, si on multiplie à droite par P−1 on obtient AX = B.
On a donc prouvé que AX = B si et seulement si PAX = PB.

En appliquant cette observation aux matrices inversibles Addi;λ,j, Multλ,i et Echi;j on
obtient l’équivalence des affirmations.

Définition 2.47. Soit A ∈ Mm,n(R). On dit que A est échelonnée selon les lignes(v)si A
est de la forme

A = ( )
1 ∗ . . . ∗ 0 ∗ . . . ∗ 0

0 . . . 0 1 ∗ . . . ∗ 0
0 . . . . . . . . . 10

0 . . . . . . . . . 10 ∗ . . . ∗

∗ . . . ∗
∗ . . . ∗
∗ . . . ∗

. . . . . .

. . .

. . .

. . .

0 0 0. . .. . . . . . . . . . . . . . .

...
...

...
. . .

...
...

...

0

0 0 0. . .. . . . . . . . . . . . . . .0

0 . . . 0
. . .
. . .

. . .

. . .

. . .

∗ 0
∗ 0∗
∗ 0

Dans la représentation de la matrice échelonnée, les ∗ représentent des nombres quelcon-
ques.
(vi)Reduzierte Stufenform
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Les matrices échelonnées sont particulièrement faciles à étudier. Par exemple, si A ∈
Mm,n(R) est échelonnée avec k lignes non nulles, alors rang(A) = k et par conséquence
dim(Ker(A)) = n − k. De plus, la résolution de AX = B est immédiate (voir la partie
suivante). Il est donc intéressant de transformer une matrice quelconque A en une matrice
échelonnée en utilisant les opérations sur les lignes décrites ci-dessus.

Théorème 2.48. Soit A ∈ Mm,n(R). Alors, en lui appliquant une série d’opérations
sur les lignes du type Addi;λ,j, Echi;j et Multλ,i, on peut la transformer en une matrice
échelonnée Ã.

La preuve du théorème nous donne aussi l’algorithme à suivre pour obtenir la forme
échelonnée de A. Cet algorithme, appelé le pivot de Gauss (vii), est présenté dans la partie
suivante dans le cadre des systèmes linéaires.

Soient P1, . . . , Pk les transformations sur les lignes appliquées à A pour arriver à la matrice
échelonnée Ã. La preuve de la proposition 2.46 nous dit que P1, . . . , Pk ∈ Mm(R) sont
inversibles et que

Ã = Pk . . . P1A.

Ainsi, si B ∈Mm,1(R), alors

AX = B si et seulement si ÃX = Pk . . . P1B.

En outre, comme Pk . . . P1 est inversible, rang(A) = rang(Ã).

Attention! L’application des transformations dans l’ordre P1, . . . , Pk correspond à la mul-
tiplication de A à gauche par P1, puis par P2 etc. Cela correspond bien à
Pk . . . P1A.

2.4.2 Pivot de Gauss pour la résolution des systèmes linéaires

Soient A ∈ Mm,n(R) et B ∈ Mm,1(R). Plutôt que de résoudre l’équation AX = B, on va
transformer A en une matrice échelonnée Ã par des opérations P1, . . . , Pk sur les lignes, pour
ensuite résoudre l’équation équivalente ÃX = Pk . . . P1B.

Vu que les opérations Addi;λ,j, Echi;j et Multλ,i doivent être appliquées à A et B simul-
tanément, il va être plus commode d’écrire A et B ensemble sous la forme réduite suivante.

(A|B) =

 a1,1 . . . a1,n b1
... . . . ...

...
am,1 . . . am,n bm

 (2.20)

On va procéder de façon itérative, suivant les colonnes. Supposons qu’on a une matrice
A dont les j − 1 premières colonnes forment une matrice échelonnée. Soit k − 1 ≤ j − 1 le
nombre des lignes non nulles de la matrice formée des les j − 1 premières colonnes. (Au pas
initial, on prend j = 1 et k = 1 et on applique la procédure décrite ci-dessous.)

On s’occupe de la colonne j, plus précisément de l’entrée ak,j. On distingue plusieurs cas:
(vii)Gaußsches Eliminationsverfahren
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(i) Si ak,j = 1, alors on soustrait la ligne k multiplié par ai,j à la ligne i pour chaque
i = 1, . . . , k − 1, k + 1, . . . , n. Plus précisément on applique

∏
i 6=k Addi;−ai,j,k à A.

Ainsi on obtient une matrice qui contient un coefficient 1 sur la position k, j et des
0 sur le reste de la colonne j. Les colonnes 1, . . . , j − 1 ne sont pas affectées par ces
transformations car la ligne k a ses premières j − 1 entrées égales à 0. On conclut que
les j premières colonnes de la matrice ainsi obtenue sont échelonnées; on peut donc
passer à la colonne suivante.

(ii) Si ak,j 6= 0 est une valeur quelconque, alors on divise la ligne k par ak,j (c.à-d. on
applique Multk, 1

ak,j

à A) et on obtient ainsi une matrice comme celle traitée au point (i).

On continue en appliquant le point (i) à Multk, 1
ak,j

A.

(iii) Si ak,j = 0 mais il existe ` > k tel que a`,j 6= 0, alors on échange les lignes k et `
(c.à-d. on applique Echk,` à A) et on se ramène ainsi à une matrice comme celle traité
au point (ii). On continue en appliquant le point (ii) à Echk,`A

(iv) Si ak,j = ak+1,j = · · · = am,j = 0, alors la matrice formée des j premières lignes est déjà
sous forme échelonnée et on peut passer à la colonne suivante.

L’algorithme fini quand j = n+ 1 ou k = m+ 1. On vérifie facilement que dans les deux cas,
la matrice résultante est bien sous forme échelonnée. Un exemple est donné plus bas.

Attention! Pendant tout l’algorithme, les opérations appliquées à A doivent aussi être
appliquées à B. Pourtant, on n’essaye pas de mettre B sous forme échelonnée.
L’ordre d’application des transformations est importante!

Résoudre un système sous forme échelonnée.
Supposons maintenant qu’on veut résoudre un système déjà écrit sous forme échelonnée:

(A|B) = ( )
1 ∗ . . . ∗ 0 ∗ . . . ∗

0 . . . 0 1 ∗ . . . ∗
0 . . . . . . . . . 10

0 . . . . . . . . . 10 ∗ . . .

∗ . . . b3

∗ . . . b2

∗ . . . b1

. . . . . .

. . .

. . .

. . .

0 0 bk+1. . .. . . . . . . . . . . . . . .

...
...

...
. . .

...
...

...

0

0 0 bm. . .. . . . . . . . . . . . . . .0

0 . . . 0
. . .
. . .

. . .

. . .

. . .

0 |∗∗∗∗0...
...
0

bk

j1 j1 j3 jk

0 0
0
0

∗
∗
∗

ou j1 < · · · < jk sont les colonnes contentant les premiers 1 de chaque ligne. Alors X ∈Mn,1

est solution du système si et seulement si

AX =



xj1 +
∑

j>j1
a1,jxj

...
xjk +

∑
j>jk

ak,jxj
0
...
0


=



b1
...
bk
bk+1
...
bm


← ligne k (2.21)
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Ainsi, le système admet des solutions que si bk+1 = · · · = bm = 0.
Supposons que bk+1 = · · · = bm = 0. Alors les solutions X de AX = B sont obtenues

comme suit. On choisi arbitrairement les valeurs de xj pour j /∈ {j1, . . . jk} et on pose, pour
chaque j`,

xj` = b` −
∑
j>jk

ak,jxj.

Vu (2.21), il est évident que les vecteurs obtenus comme cela sont biens les solutions de
AX = B.

En fin, mentionnons que dans le cas ou (2.21) admet des solutions (c.à-d. quand bk+1 =
· · · = bm = 0), l’espace vectoriel des solutions a dimensions n− k.
Exemple: Considérons le système suivant, au inconnues x1, . . . , x5 ∈ R,

4x1− 4x2− 4x3− 8x4− 8x5 = −8
3x1− 3x2− 3x3− x4+ 4x5 = 9
x1+ 2x3+ x4+ 5x5 = 5

2x1+ 4x3+ 6x5 = 4
−2x1+ x2− x3+ 4x4+ 3x5 = 6

On l’écrit sous forme matricielle réduite comme dans (2.20):
4 −4 −4 −8 −8 −8
3 −3 −3 −1 4 9
1 0 2 1 5 5
2 0 4 0 6 4
−2 1 −1 4 3 6


On applique l’algorithme pour mettre la matrice sous forme échelonnée: on com-
mence par k = j = 1. Vu que l’entrée en position 1, 1 est non-nulle, on applique
le point (ii), à savoir on divise la première ligne par 4 pour obtenir un 1 en haut
à gauche: 

1 −1 −1 −2 −2 −2
3 −3 −3 −1 4 9
1 0 2 1 5 5
2 0 4 0 6 4
−2 1 −1 4 3 6


L1/4

Ensuite on applique l’étape (i) de l’algorithme: on additionne la première ligne
multipliée par −3, −1, −2, 2 aux lignes 2, 3, 4 et 5, respectivement. Ainsi on
obtient des zéros sur le reste de la première colonne.

1 −1 −1 −2 −2 −2
0 0 0 5 10 15
0 1 3 3 7 7
0 2 6 4 10 8
0 −1 −3 0 −1 2


L2 − 3L1

L3 − L1

L4 − 2L1

L5 + 2L1

– 72 –



CHAPTER 2. APPLICATIONS LINÉAIRES ET MATRICES

La première colonne est maintenant échelonnée; on passe à la suivante, donc à
j = k = 2. Comme l’entrée en position 2, 2 est nulle, mais qu’il y a des valeurs
non-nulles sous cette entrée, on applique le point (iii) de l’algorithme: on échange
les lignes 2 et 3 pour mettre une valeur non-nulle à la position 2, 2.

1 −1 −1 −2 −2 −2
0 1 3 3 7 7
0 0 0 5 10 15
0 2 6 4 10 8
0 −1 −3 0 −1 2


L3

L2

L’entée à la position 2, 2 est maintenant déjà égale à 1, il n’est donc pas nécessaire
d’appliquer le point (ii), on passe directement au point (i). On additionne la ligne
2 multipliée par 1, −2 et 1 aux lignes 1, 3 et 5, respectivement, pour éliminer les
autres entrées de la colonne 2:

1 0 2 1 5 5
0 1 3 3 7 7
0 0 0 5 10 15
0 0 0 −2 −4 −6
0 0 0 3 6 9


L1 + L2

L4 − 2L2

L5 + L2

On passe à la colonne 3 (à savoir à j = k = 3). Toutes les entrées sous le niveau
déjà traité sont nulles (on est dans le cas (iv) de l’algorithme), on peut donc
passer à la colonne 4, à savoir à j = 4 et k = 3. On applique le point (ii): on
divise la ligne 3 par 5 pour obtenir l’entrée 1 en position 3, 4:

1 0 2 1 5 5
0 1 3 3 7 7
0 0 0 1 2 3
0 0 0 −2 −4 −6
0 0 0 3 6 9

 1
5
L3

Pour éliminer les autres entrées sur la colonne 4 on applique le point (i): on
additionne la ligne 3 multipliée par −1,−3, 2 − 3 aux lignes 1, 2, 4 et 5, respec-
tivement. 

1 0 2 0 3 2
0 1 3 0 1 −2
0 0 0 1 2 3
0 0 0 0 0 0
0 0 0 0 0 0


L1 − L3

L2 − 3L3

L4 + 2L2

L5 − 3L2

En fin on passe à la colonne 5 (j = 5, k = 4). On est à nouveau dans le cas (iv).
Comme toutes les colonnes ont été analysées, l’algorithme est fini. La matrice
ainsi obtenue est échelonnée de rang 3. Le système initial est équivalent à

x1 + 2x3 + 3x5 = 2
x2 + 3x3 + x5 = −2

x4 + 2x5 = 3
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Les solutions forment un espace affine de dimension 2. Elles sont obtenues en
choisissant x3 et x5 arbitrairement, puis en posant

x1 = 2− 2x3 − 3x5
x2 = −2− 3x3 − x5
x4 = 3− 2x5

(2.22)

Ainsi

S =




2− 2λ− 3µ
−2− 3λ− µ

λ
3− 2µ
µ

 : λ, µ ∈ R

 =




2
−2
0
3
0

+ λ


−2
−3
1
0
0

+ µ


−3
−1
0
−2
1

 : λ, µ ∈ R

 .

On peut aussi voir les solution comme la somme d’une solution particulière
et d’une solution générale du système homogène. Pour obtenir une solution
particulière X0 on pose x3 = x5 = 0 et on obtient par (2.22)

X0 =


2
−2

0
3
0

 .

Alors S = {X0 + Y : Y solution du système homogène}. Le système homogène
s’écrit 

x1 + 2x3 + 3x5 = 0
x2 + 3x3 + x5 = 0

x4 + 2x5 = 0

Ses solutions forment un espace Shom de dimension 2 dans R5. Une base est
formée de deux solutions linéairement indépendantes, par exemple celle obtenue
en posant x3 = 1 et x5 = 0 et celle obtenue avec x3 = 0 et x5 = 1:

Y1 =


−2
−3
1
0
0

 et Y2 =


−3
−1
0
−2
1

 .

Ainsi Shom = {λY1 + µY2 : λ, µ ∈ R} et S = {X0 + λY1 + µY2 : λ, µ ∈ R}.

Exercice 2.31.
Représenter dans l’espace R3 les solutions de{

2x+ 2y + z = 4

x+ y + z = 0

– 74 –



CHAPTER 2. APPLICATIONS LINÉAIRES ET MATRICES

Exercice 2.32.
Mettre sous forme échelonnée les systèmes suivantes calculer leur solutions:

a)


x+ 2y + z = 4

2x+ y + z = 3

x+ 5y + 2z = 7.

b)


3x+ 2z = 5y − 6

z = x+ 2

2x− y − z = 0.

c)


x+ 2y + z + t = 4

2x+ 3y + 3z − t = 3

x+ 5y + 2z + 3t = 7

2x+ 5y + 4z + 3t = 2.

d)


x+ y + z + t = 0

x− y + 2z − 2t = 0

x+ y + 4z + 4t = 0

x− y + 8z − 8t = 0.

2.4.3 Pivot de Gauss pour le calcul de l’inverse

Soit A ∈ Mn(R). Il est souvent intéressant de vérifier si A est inversible et de calculer son
inverse A−1. Le pivot de Gauss offre une procédure pratique pour faire cela.

Appliquons le pivot de Gauss à A et à la matrice identité In simultanément. Plus précisé-
ment, chaque transformation appliquée à A dans l’algorithme du pivot de Gauss, est aussi
appliquée à In. Notons Ã la forme échelonnée de A qui en résulte, et Ĩ le résultat pour In.

Proposition 2.49.
Si Ã 6= In, alors A n’est pas inversible.
Si Ã = In, alors A est inversible et A−1 = Ĩ.

Preuve: Rappelons que, pendant le pivot de Gauss, on applique des transformations à A qui
correspondent à des multiplications à gauche par des matrices inversibles. Notons ces
matrices P1, . . . , Pk. Ainsi Ã = Pk . . . P1A et Ĩ = Pk . . . P1In = Pk . . . P1.

Si Ã n’est pas égale à In, alors elle contient au moins une ligne nulle, donc n’est pas
inversible. Comme P = Pk . . . P1 est inversible, cela implique que A n’est pas inversible
non-plus (car le produit de deux matrices inversibles est forcement inversible – voir la
proposition 2.18).

Si Ã = PA = In alors A = P−1 est inversible et A−1 = P = Pk . . . P1 − Ĩ.

Exercice 2.33.
Déterminer si les matrices suivantes sont inversibles. Si c’est le cas, calculer leur inverse.
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Multiplier la matrice par le résultat pour vérifier.

a)

1 2 3
3 7 6
2 8 −5

 ∈M3(R); b)


0 0 0 1 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

 ∈M5(R);

c)


1 2 0 0 0
0 1 2 0 0
0 0 1 2 0
0 0 0 1 2
0 0 0 0 1

 ∈M5(R); d)


1 −1 . . . −1 −1
0 1 . . . −1 −1
...

... . . . ...
...

0 0 . . . 1 −1
0 0 . . . 0 1

 ∈Mn(R);

e)


1 0 . . . 0 0
2 1 . . . 0 0
...

... . . . ...
...

n− 1 n− 2 . . . 1 0
n n− 1 . . . 2 1

 ∈Mn(R); f)


1 1 . . . 1 1
0 1 . . . 1 1
...

... . . . ...
...

0 0 . . . 1 1
0 0 . . . 0 1

 ∈Mn(R).

2.4.4 Familles de vecteurs et pivot de Gauss

Soit C1, . . . , Cn ∈Mm,1 une famille de vecteurs de Rm écrits en format colonne. A l’aide du
pivot de Gauss on peut déterminer si la famille C1, . . . , Cn est libre; plus généralement on
peut calculer son rang.

En effet, posons A =
(
C1, . . . , Cn

)
∈ Mm,n la matrice formée des colonnes C1, . . . , Cn.

Alors rang(C1, . . . , Cn) = rang(A) = rang(Ã), ou Ã est la matrice échélonnée obtenue à partir
de A par le pivot de Gauss. En particulier, la famille C1, . . . , Cn est libre si et seulement si
rang(Ã) = n.

Mentionnons qu’on peut aussi déterminer les scalaires λ1, . . . , λn ∈ R tels que

λ1C1 + · · ·+ λnCn = 0. (2.23)

Si on pose Λ =

λ1...
λn

 , alors (2.23) s’ecrit

AΛ = λ1C1 + · · ·+ λnCn = 0,

ce qui revient à dire que Λ ∈ Ker(A) = Ker(Ã).
En conclusion, une famille λ1, . . . , λn satisfait (2.23) si et seulement si le vecteur colonne

qu’elle forme est dans Ker(A) = Ker(Ã). On peut donc, de façon alternative, voir si la famille
C1, . . . , Cn est libre en calculant Ker(Ã). La famille est libre si et seulement si l’unique famille
de scalaires satisfaisant (2.23) est nulle, donc si et seulement si Ker(A) = Ker(Ã) = {0}.
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À retenir
Applications linéaires:

• Pour deux espaces vectoriels E,F , une application u : E → F est linéaire si u(λx +
µy) = λu(x) + νu(y) pour tout x, y ∈ E et λ, ν ∈ R. L’ensemble des applications
linéaires est noté L(E,F ).

• Les applications peuvent être additionnées entre elles et multiplies par des scalaires.
Avec ces opérations, L(E,F ) est un espace vectoriel.

• Pour E,F,G des e.v. et u ∈ L(E,F ), v ∈ L(F,G), la composition de v et u, notée
v ◦ u, est donnée par x 7→ v(u(x)). C’est une application linéaire de L(E,G).

• Dans L(E) = L(E,E) on a trois opérations: +, · et ◦. L(E) est un algèbre.

• Une application u ∈ L(E,F ) est inversible, si et seulement si elle est bijective. Si elle est
inversible, alors u−1 ∈ L(F,E) est l’unique application telle que u ◦u−1 = u−1 ◦u = id.

• Pour u ∈ L(E,F ) on pose

Ker(u) = {x ∈ E : u(x) = 0} et Im(u) = {y ∈ F : ∃x ∈ E t.q. u(x) = y}.

Ce sont des sous-espaces vectoriels de E et F , respectivement.

• Si E est de dimensions finie, alors Im(u) l’est aussi. On note rang(u) = dim(Im(u)) et
on a

rang(u) + dim(Ker(u)) = dim(E).

Matrices:

• Une matrice de taille m × n est un tableau rectangulaire de m · n scalaires noté A =
(ai,j)1≤i≤m

1≤j≤n
. On écritMm,n(R) pour l’ensemble des matrices de taille m× n.

• On peut additionner deux matrices de même taille et multiplier une matrice par un
scalaire. Mm,n(R) est un espace vectoriel.

• On peut multiplier une matrice A ∈ Mm,n(R) avec B ∈ Mn,p(R) et on obtient AB ∈
Mm,p(R). Avec cette règle de multiplicationMn(R) =Mn,n(R) est une algèbre.
La multiplication des matrices n’est pas commutative!

• L’élément neutre pour la multiplication dansMn(R) est la matrice In =

1 · · · 0
... . . . ...
0 · · · 1

 .

Une matrice A est inversible s’il existe A−1 ∈Mn(R) telle que AA−1 = A−1A = In.

Applications linéaires représentées par des matrices:
Soient E et F deux espaces vectoriels de dimensions n et m respectivement. Soient E une
base de E et F une base de F .
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• Les matrices colonne deMn,1(R) représentent les vecteurs de E dans la base E . Plus
précisément, VE : E → Mn,1(R) est une application linéaire bijective. De la même
façonMm,1(R) représente les vecteurs de F dans la base F .

• Les matrices deMm,n(R) représente les applications linéaires de L(E,F ) dans les bases
E et F . Plus précisément, MF ,E : L(E,F ) → Mm,n(R) est une application linéaire
bijective. Pour tout u ∈ L(E,F ) et x ∈ E:

VF
(
u(x)

)
= MatF ,E(u)VE(x).

• La multiplication des matrices correspond à la composition des applications. Une ap-
plication linéaire est inversible si et seulement si la matrice associée l’est.

• La représentation des vecteurs et des applications linéaires par des matrices dépend des
bases E et F . Pour passer d’une base à une autre on utilise la matrice de changement
de base. Pour deux bases E et B de E et x ∈ E et u ∈ L(E),

VB(x) = PB,EVE(x) et MatB(u) = P−1E,BMatE(u)PE,B.

Image, noyaux et rang des matrices:

• Comme pour les applications, on pose pour une matrice M ∈Mm,n,

Ker(M) = {X ∈Mn,1 : MX = 0} et
Im(M) = {Y ∈Mm,1 : ∃X ∈Mn,1 avec MX = Y }.

Ce sont des sous-espaces vectoriels de Rn et Rm, respectivement.

• On défini le rang d’une matrice M ∈ Mm,n(R) par rang(M) = dim(Im(M)). C’est
également le rang de la famille des lignes de M (comme vecteurs de Rn) et celui de la
famille des colonnes (comme vecteurs de Rm).

• Une matrice M ∈Mn(R) est inversible si et seulement si rang(M) = n.

• Un système linéaire est une équation matricielle AX = B ou A ∈ Mm,n(R), B ∈
Mm,1(R) sont les coefficients et X ∈Mn,1(R) est l’inconnue. L’ensemble des solutions
S = {X ∈Mn,1(R) : AX = B} peut être vide (si B /∈ Im(A)) ou peut être une espace
affine de dimension dim(Ker(A)) = n− rang(A). Dans le second cas

S = X0 + Ker(A) = {X0 + Y : Y ∈Mn,1(R) est telle que AY = 0},

ou X0 est une solution particulière de AX = B.

• Les solutions d’un système linéaire peuvent être trouvées par l’algorithme du pivot de
Gauss. L’inverse d’une matrice peut aussi être calculé par ce même algorithme.
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Chapter 3

Matrices diagonalisables; valeurs et
vecteurs propres

Le chapitre va porter entièrement sur des matrices carrées. Fixons pour l’intégralité de ce
chapitre une matrice A ∈Mn(R). Comme avant, on identifieMn,1(R) avec Rn; on va appeler
parfois les éléments deMn,1(R) des vecteurs.

3.1 Valeurs et vecteurs propres

Définition 3.1. On dit que λ ∈ R est une valeur propre(i)de A s’il existe un vecteur
X ∈Mn,1(R), X 6= 0, tel que

AX = λX.

Dans ce cas on dit que X est un vecteur propre(ii)de A pour la valeur propre λ. L’ensemble
des valeurs propres de A s’appelle le spectre(iii)de A et est noté Sp(A). Pour λ ∈ Sp(A),
on note

Eλ(A) =
{
X ∈Mn,1(R) : AX = λX

}
.

Proposition 3.2.
(i) Pour chaque λ ∈ Sp(A), Eλ(A) est un sous-espace vectoriel de Rn qu’on appelle

l’espace propre(iv)de A associé à λ.
(ii) Si λ1, . . . , λk ∈ Sp(A) sont deux à deux distinctes et X1 ∈ Eλ1 , . . . , Xk ∈ Eλk sont

des vecteurs non-nuls, alors la famille (X1, . . . , Xk) est libre.
(iii) Le spectre de A a au plus n éléments.

(i)Eigenwert
(ii)Eigenvector
(iii)Spektrum
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Preuve: (i) Soit λ ∈ Sp(A). Alors X ∈ Eλ(A) si et seulement si AX − λX = (A − λIn)X = 0.
Ainsi

Eλ(A) = Ker(A− λIn).
En particulier on déduit que Eλ(A) est un s.e.v. de Rn.

(ii) Soient λ1, . . . , λk des valeurs propres de A distinctes, et X1, . . . , Xk des vecteurs
propres non-nuls associés. Soient µ1, . . . µk ∈ R tels que

µ1X1 + · · ·+ µkXk = 0.

Alors, pour tout j ≥ 1,

Yj := λj1µ1X1 + · · ·+ λjkµkXk = µ1A
jX1 + · · ·+ µkA

jXk

= Aj(µ1X1 + · · ·+ µkXk) = Aj0 = 0.

Un calcul standard (qu’on va admettre) montre que, vu que λ1, . . . , λn sont distincts, la
matrice 

1 1 . . . 1
λ1 λ2 . . . λk
...

...
. . .

...
λk−11 λk−12 . . . λk−1k

 ∈Mk(R).

est inversible. Ainsi la famille des lignes L1, . . . , Lk est génératrice pour Rk. Il existe donc
α1, . . . , αk ∈ R tels que

α1L1 + · · ·+ αkLk =
(
1 0 . . . 0

)
.

Alors, comme Y1 = · · · = Yn = 0,

0 = α1Y1 + · · ·+ αkYk = µ1X1.

Comme X1 6= 0, on déduit que µ1 = 0.
On peut de la même façon déduire que µ2 = · · · = µn = 0, ce qui fini la preuve.

(iii) Soient λ1, . . . , λk ∈ Sp(A) deux à deux distincts. On peut alors choisir des vecteurs
non-nuls X1 ∈ Eλ1 , . . . , Xk ∈ Eλk . Par le point précèdent (X1, . . . , Xk) est une famille
libre de Rn, donc k ≤ n. Ainsi |Sp(A)| ≤ n.

Remarque 3.3. On insiste sur l’importance du point (i) et de sa preuve. Vu que

Eλ(A) = Ker(A− λI),

les valeurs propres de A sont exactement les λ ∈ R pour lesquels A− λI n’est pas inversible.

Les mêmes notions de valeur propre, vecteur propre, et espace propre se généralisent aux
applications linéaires. Dans ce cours on va se limiter aux matrices. Il peut toutefois être
intéressant de remarquer le liens entre les deux.

(v)Eigenraum
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Proposition 3.4. Soient E un e.v. de dimension finie, B une base de E, u ∈ L(E) et x ∈ E,
x 6= 0. Alors on a équivalence de:
(i) x est vecteur propre de u avec valeur propre λ (c.-à-d. u(x) = λx);
(ii) MatB(u)VB(x) = λVB(x).

La preuve suit directement des propriétés de MatB et VB et on ne la donne pas ici.
On observe que, quand on parle de vecteur propre pour les applications linéaires on ne fixe

pas une base de l’espace vectoriel. Ainsi, il est naturel que les valeur propres d’une matrice
soient invariantes par changement de base.

Proposition 3.5. Soit P ∈Mn(R) une matrice inversible. Alors
(i) Sp(A) = Sp(P−1AP );
(ii) pour tout λ ∈ R, X ∈ Eλ(P−1AP ) si et seulement si PX ∈ Eλ(A).

Preuve: On commence par le point (ii). Soit λ ∈ R et X ∈ Mn,1(R). Supposons que X ∈
Eλ(P

−1AP ). Alors P−1APX = λX. Si on multiplie cette égalité par P à gauche, on
obtient APX = λPX, donc PX ∈ Eλ(A).

Inversement si PX ∈ Eλ(A), alors P−1APX = λP−1PX = λX, donc X ∈ Eλ(A).
Passons au point (i). Soit λ ∈ Sp(P−1AP ) etX ∈ Eλ(P−1AP ) non nul. Alors, par le point
précédent, PX ∈ Eλ(A). De plus, comme P est inversible, PX 6= 0, donc Eλ(A) 6= {0}.
On en déduit que λ ∈ Sp(A), donc que Sp(P−1AP ) ⊂ Sp(A).

Inversement, si λ ∈ Sp(A) et X ∈ Eλ(A) non nul, alors P−1X ∈ Sp(P−1AP ). A
nouveau P−1X 6= 0 car P−1 est inversible, donc λ ∈ Sp(P−1AP ). Il s’en suit que Sp(A) ⊂
Sp(P−1AP ). La double inclusion montre que Sp(A) = Sp(P−1AP ).

3.2 Matrices diagonalisables

Définition 3.6. On dit que A est une matrice diagonalisable(vi)(dans Mn(R)) s’il existe
une matrice inversible P ∈Mn(R) telle que P−1AP est une matrice diagonale.

L’intérêt de cette notion peut s’expliquer par l’observation suivante. Dans beaucoup
de situations pratiques il est intéressant de calculer les puissances d’une matrice carrée.
Comment peut-on donc calculer Ak pour une grande matrice A, ou k est une très grande
valeur, sans faire trop de calculs?

Si A est diagonalisable, le calcul est simple. Soit P ∈ Mn(R) inversible, telle que la
matrice D = P−1AP soit diagonale. Alors A = PDP−1, et

Ak = (PDP−1)k = PD��P
−1

��PD��P
−1 . . .��PDP

−1︸ ︷︷ ︸
k fois

= PDkP−1.

(vii)diagonalisierbar
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Mais D est une matrice diagonale de la forme D =


d1,1 0 . . . 0
0 d2,2 . . . 0
...

... . . . ...
0 0 . . . dn,n

. On peut donc

facilement calculer

Dk =


dk1,1 0 . . . 0
0 dk2,2 . . . 0
...

... . . . ...
0 0 . . . dkn,n

 .

Ainsi, le calcul des puissances des matrices diagonalisables est facile, surtout si on connait
la matrice P .

3.2.1 Lien avec les vecteurs propres

Théorème 3.7. La matrice A est diagonalisable si et seulement s’il existe une base E =
(X1, . . . , Xn) de Rn formée entièrement de vecteurs propres de A.

Preuve: Avant de commencer, définissons, pour i ∈ 1, . . . , n, le vecteur Yi ∈ Mn,1 comme ayant
l’entrée 1 à la position i et 0 partout ailleurs. (Y1, . . . , Yn forment la base canonique de
Rn.) Alors, pour toute matrice M ∈Mn(R), MYi est la ieme colonne de M (cela résulte
directement des règles de la multiplication matricielle).

Supposons pour commencer que A est diagonalisable, et soit P ∈Mn(R) une matrice
inversible, telle que

P−1AP =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 ,

pour des valeurs λ1, . . . , λn ∈ R (pas forcement distinctes). Posons, pour i ∈ {1, . . . , n},
Xi = PYi ∈ Mn,1; ainsi Xi est la ieme colonne de P . La forme diagonale de P−1AP
entraine que chaque Yi en est un vecteur propre, avec λi la valeur propre correspondante.
Ainsi

λiYi = P−1APYi = P−1AXi, pour chaque 1 ≤ i ≤ n.
En multipliant cette équation par P à gauche, on obtient λiXi = AXi. On conclut
X1, . . . , Xn est une famille de vecteurs propres de A.

De plus, comme P est inversible,

n = rang(P ) = rang(X1, . . . , Xn).

Ainsi (X1, . . . , Xn) est une base de Rn.

Supposons maintenant qu’il existe une base (X1, . . . , Xn) de Rn de vecteurs propres
de A. Soient λ1, . . . , λn ∈ R les valeurs propres associées.
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On défini la matrice P ∈Mn(R) comme la matrice dont les colonnes sont données par
X1, . . . , Xn. Alors, pour chaque 1 ≤ i ≤ n, PYi = Xi. Comme (X1, . . . , Xn) est une base
de Rn,

n = rang(X1, . . . , Xn) = rang(P ),

donc P est inversible. On peut alors calculer, pour chaque 1 ≤ i ≤ n,

P−1APYi = P−1AXi = λiP
−1Xi = λiP

−1PYi = λiYi.

On en déduit que les colonnes de P−1AP sont λ1Y1, . . . , λnYn, respectivement. On peut
donc écrire

P−1AP =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 ,

et on conclut que A est diagonalisable.

Remarque 3.8. Dans les faites, la matrice P n’est rien d’autre que la matrice de changement
de base de la base canonique de Rn à la base de vecteurs propres de A. On aimerait insister
sur le fait que la base de vecteurs propres (et donc la matrice P qui diagonalise A) ne sont
pas uniques!

Si A ∈ Mn(R) est diagonalisable et P est une matrice inversible telle que P−1AP = D
est diagonale, alors les valeurs propres de A sont exactement les éléments de la diagonale de
D. De plus, pour λ ∈ Sp(A), dim(Eλ(A)) est simplement le nombre d’apparitions de λ sur
la diagonale de D.

Le critère de diagonalisation suivant va nous servir par la suite; il découle du théorème
précédent.

Proposition 3.9. La matrice A est diagonalisable si et seulement si∑
λ∈Sp(A)

dim(Eλ(A)) = n.

Preuve: Supposons pour commencer que
∑

λ∈Sp(A) dim(Eλ(A)) ≥ n. On va prouver alors que∑
λ∈Sp(A) dim(Eλ(A)) = n et que A est diagonalisable.
Notons λ1, . . . , λk les éléments de Sp(A) et d1, . . . , dk les dimensions de Eλ1 , . . . , Eλk .

Pour chaque 1 ≤ j ≤ k, soit (X(j)
1 , . . . , X

(j)
dj

) une base de Eλj . On va montrer alors que la

famille (X
(j)
i )i,j est une famille libre de Rn.

Soit une famille (µ
(j)
i )i,j de scalaires telle que

k∑
j=1

dj∑
i=1

µ
(j)
i X

(j)
i = 0.
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Observons que, pour chaque j,
∑dj

i=1 µ
(j)
i X

(j)
i ∈ Eλj . La proposition 3.2(ii) indique alors

que
∑di

i=1 µ
(j)
i X

(j)
i = 0 pour chaque j. Mais, pour chaque j, les vecteurs X(j)

1 , . . . , X
(j)
kj

forment une famille libre (car ils sont une base de Eλj ). Ainsi µ(j)i = 0 pour tout i et
tout j.

On conclut que (X
(j)
i )i,j est une famille libre de Rn. Cette famille contient d1 + · · ·+

dk =
∑

λ∈Sp(A) dim(Eλ(A)) vecteurs. Comme on a supposé que
∑

λ∈Sp(A) dim(Eλ(A)) ≥
n, on conclut que

∑
λ∈Sp(A) dim(Eλ(A)) = n et que la famille (X(j)

i )i,j est une base de Rn.
On a donc crée une base de Rn contenant que des vecteurs propres de A; le théorème 3.7

nous dit alors que A est diagonalisable.

Supposons maintenant queA est diagonalisable et montrons que
∑

λ∈Sp(A) dim(Eλ(A)) =
n. Soit X = (X1, . . . , Xn) une famille de vecteurs propres de A qui forment une base de
Rn (l’existence d’une telle famille est donnée par le théorème 3.7). Alors, pour chaque λ ∈
Sp(A), les vecteurs de X qui appartiennent à Eλ forment une famille libre. De plus, tout
vecteurXi appartient à exactement un espace propre Eλ. Ainsi

∑
λ∈Sp(A) dim(Eλ(A)) ≥ n.

On vient de montrer que cela implique
∑

λ∈Sp(A) dim(Eλ(A)) = n, ce qu’on voulait dé-
montrer.

Malheureusement pas toutes les matrices sont diagonalisables.

Lemme 3.10. La matrice N =

(
0 1
0 0

)
n’est pas diagonalisable.

Preuve: On va procéder par l’absurde. Supposons que N est diagonalisable. Soit P ∈ M2(R)

inversible, telle que P−1NP =

(
λ1 0
0 λ2

)
soit une matrice diagonale. Alors

(
λ21 0
0 λ22

)
= (P−1NP )2 = P−1N2P = P−10P = 0,

donc λ1 = λ2 = 0. Cela implique que N = P−10P = 0, ce qui est clairement faux.

Comme les matrices diagonalisables sont souvent plus facile à traiter, il est intéressant
d’avoir des critères pour les reconnaitre. On commence par un critère suffisant, mais pas
nécessaire; il suit facilement des résultats déjà mentionnés.

Corollaire 3.11. Si A est telle que Sp(A) contient n valeurs propres distinctes, alors A
est diagonalisable.

Preuve: Si Sp(A) contient n valeurs propres distinctes λ1, . . . , λn, alors

dim(Eλ1) + · · ·+ dim(Eλn) ≥ n.

Mais on a vu que cette somme est toujours plus petite que n, donc

dim(Eλ1) + · · ·+ dim(Eλn) = n.

La proposition 3.9 implique que A est diagonalisable.

– 84 –



CHAPTER 3. MATRICES DIAGONALISABLES; VALEURS ET VECTEURS PROPRES

Matrices symétriques

Théorème 3.12. Si A ∈ Mn(R) est symétrique (c.-à-d. AT = A) alors A est diagonal-
isable. De plus ses valeurs propres sont toutes réelles et il existe une matrice P ∈Mn(R)
inversible, telle que P−1 = P T , avec

A = P TDP,

ou D est une matrice diagonale.

Une matrice P ∈ Mn(R) telle que P−1 = P T est dite orthogonale. Ce type de matrices
a une signification particulière dans l’interprétation géométrique des espaces vectoriels. On
va admettre ce théorème.

Matrices positives: Perron-Frobenius

Théorème 3.13. Soit A = (ai,j)1≤i,j≤n ∈ Mn(R) une matrice avec ai,j > 0 pour tout
1 ≤ i, j ≤ n. Alors il existe λ0 ∈ (0,+∞) une valeur propre de A telle que:
(i) pour toute autre valeur propre λ ∈ Sp(A) \ {λ0}, on a |λ| < λ0;
(ii) dimEλ0(A) = 1 (on dit que la valeur propre λ0 est simple);
(iii) il existe X ∈ Eλ0(A) avec toutes les entées de X réelles et strictement positives;
(iv) si X ∈ Mn,1(R) est un vecteur propre de A avec toutes les entrées positives ou

nulles, alors X ∈ Eλ0(A).

On va admettre ce théorème (il s’agit d’un théorème difficile).
Mentionnons que ce résultat se généralise à certaines matrices aux entrées positives ou

nulles (pas à toutes). On peut par exemple montrer que si A ∈Mn(R) est telle que ai,j ≥ 0
pour tout i, j et si toutes les entrées de An sont strictement positives pour un certain n ∈ N,
alors la conclusion du théorème est encore valable.

En pratique on rencontre souvent des matrices dont les entrées sont positives. Par ex-
emple, les matrices qui décrivent les évolutions de populations sont souvent de ce type (voir
exemple dans la partie 3.2.2). Le théorème de Perron Frobenius nous dit qu’il existe λ0 ≥ 0
et X ∈Mn,1((0,+∞)) avec AX = λ0X.

Si on suppose que A est diagonalisable, avec valeurs propres λ0, . . . , λn−1 et vecteurs
propres (X1, . . . , Xn). Alors, pour tout vecteur X =

∑
i αiXi avec α0 6= 0, on a

1

λn0
AnX =

∑
i

αi

(
λi
λ0

)n
Xi →n α0X0.

Ainsi le “taux” de croissance de AnX est positif et on observe une distribution (après nor-
malisation) proportionnelle à un vecteur positif.

Le même résultat asymptotique peut être montré même si A n’est pas diagonalisable. On
en parlera plus dans l’exemple donné dans la partie 3.2.2.
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Perron-Frobenius pour les matrices stochastiques Supposons que A ∈ Mn est une
matrice stochastique à droite. Alors tous les coefficients de A sont positifs ou nuls. Supposons
de plus qu’il existe N ≥ 1 tel que tous les coefficients de AN soit strictement positifs (on dit
alors que A est irréductible et apériodique). On peut alors appliquer le théorème de Perron-
Frobenius à A (une version un peu plus générale du théorème quand N > 1) et déduire

l’existence d’un vecteur propre X =

x1...
xn

 d’entrées strictement positives et de la valeur

propre λ associée, qui est strictement positive et satisfait les points (i) et (ii) du théorème.
Du fait que AX = λX on peut déduire

λ
n∑
i=1

xi =
n∑
i=1

(AX)i =
n∑
i=1

n∑
j=1

ai,jxj =
n∑
j=1

(
xj

n∑
i=1

ai,j

)
=

n∑
j=1

xj.

Dans la dérnière égalité on a utilisé que
∑

i=1n ai,j = 1 car A est stochastique à droite. En
fin, les xi sont tous strictement positifs, donc

∑n
i=1 xi =

∑n
j=1 xj > 0. On peut simplifier par

cette quantité pour trouver λ = 1.
On conclut que toutes les autres valeurs propres de A sont de module strictement plus

petit que 1 et que tout vecteur propre de valeur propre 1 est proportionnel à X. Si on choisie
X de sorte que

∑n
i=1 xi = 1 (ce qui le détermine uniquement) on peut voir X comme une

probabilité sur {1, . . . , n} (avec une probabilité xi associée à i).
De la discussion qui précède, on conclut que cette probabilité est

• invariante: car AX = X;
• asymptotique: car pour tout vecteur Y d’entrées positives se sommant à 1, on a

ANY −−−→
N→∞

X.

De plus, chaque propriété détermine X de manière unique.

Exercice 3.1.
Soient A ∈ Mn(R) une matrice diagonalisable, avec n valeurs propres distinctes. Soit B ∈
Mn(R) une matrice qui commute avec A (c.-à-d. telle que AB = BA).

Montrer que B est aussi diagonalisable. De plus, montrer que B admet les mêmes vecteurs
propres que A (mais pas forcement les mêmes valeurs propres).
Est-ce que le résultat reste vrai si les valeurs propres de A ne sont pas supposées distinctes?

Exercice 3.2.
Trouver une matrice diagonalisable A, et plusieurs matrices inversibles P telles que P−1AP
est diagonale.
Que dire de A si P−1AP est diagonale pour toute matrice inversible P ∈Mn(R).

3.2.2 Application: matrices de Leslie

Les matrices de Leslie sont un modèle d’évolution d’une population classée selon l’âge. On
considère une population qui évolue en temps discret (on peut par exemple supposer qu’on la
mesure tout les ans/mois) dont les individus peuvent avoir un âge compris entre 1 et d ∈ N.
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Ainsi, la population à tout moment t ∈ N est représenté par un vecteur N(t) =

n1(t)
...

nd(t)

 .

Supposons que l’évolution suit la dynamique suivante:

nk+1(t+ 1) = sknk(t), pour 1 ≤ k < d, et
n1(t+ 1) = a1n1(t) + · · ·+ adnd(t).

ou s1 . . . sd−1 ∈ (0, 1] et a1, . . . ad ∈ (0,+∞) sont des paramètres fixés. Ainsi 1−sk représente
la proportion d’individus d’âge k qui meurent avant d’arriver à l’âge k + 1; ak représente le
nombre moyen d’enfants d’un individu de la génération k.

On peut écrire l’évolution sous forme matricielle comme suit:

N(t+ 1) =


a1 a2 . . . ad−1 ad
s1 0 . . . 0 0
0 s2 . . . 0 0
...

... . . . ...
...

0 0 . . . sd−1 0

N(t) = AN(t),

ou A ∈ Md(R) est la matrice affichée. Même si la matrice A n’est pas strictement positive,
Ad l’est, et on peut appliquer le théorème de Perron Frobenius à A.

Cherchons λ (different de 0) et N ∈Md(R+) tels que AN = λN . Cela reviens à

nk+1 =
1

λ
sknk = · · · = 1

λk
s1 . . . skn1, pour 1 ≤ k < d, et

n1 =
1

λ
(a1n1 + · · ·+ adnd) =

( d∑
k=1

1

λk
s1 . . . sk−1ak

)
n1

Ainsi, λ est valeur propre de A (avec n1 6= 0) si et seulement si

φ(λ) :=
d∑

k=1

1

λk
s1 . . . sk−1ak = 1;

de plus pour cette valeur propre, un vecteur propre associé est donné par nk = s1...sk−1

λk−1 pour
k ≥ 1 (en particulier n1 = 1).

On voit bien que φ(λ) admet exactement une racine positive, qu’on va noter λ1.
Supposons que A est diagonalisable, avec Sp(A) = {λ1, . . . , λd}. Soient X1, . . . , Xd des

vecteurs propres associés; ils forment une base de Rd qu’on note X . Alors, si on suppose que
λ1 est la valeur propre positive,

|λi| < λ1 ∀i ≥ 2.

Soit N(0) une distribution de population initiale. On écrit alors N(0) =
∑

i αiXi ouα1
...
αd

 = VX (N(0)) ∈Md,1(C).
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Un calcule immédiat montre que

N(t) = AtN(0) =
d∑
i=1

αiλ
t
iXi.

Ainsi

λ−t1 N(t) = α1X1 +
d∑
i=2

αi

(
λi
λ1

)t
Xi −−−→

t→∞
α1X1. (3.1)

Cela doit être compris comme suit. Si α1 > 0, alors la population à un taux de croissance
λ1 et si on la normalise, elle devient proportionnelle à une distribution suivant l’âge donnée
par X1.

Une analyse plus approfondie des espaces propres des matrices montre que la convergence
de (3.1) est vraie même si A n’est pas diagonalisable.

3.3 Le déterminant
On a vu qu’une propriété importante des matrices est l’inversibilité. Le déterminant nous
offre un critère pratique pour vérifier si une matrice est inversible.

3.3.1 Définition et propriétés de base

Le déterminant associe à une matrice carrée A ∈ Mn(R) est un scalaire qu’on va noter
det(A) ∈ R. Il y a plusieurs façons de définir le déterminant, on choisie celle par récurrence.
On aura besoin de la notation suivante:

Définition 3.14. Soient A ∈ Mn(R) et 1 ≤ i, j ≤ n. Le mineur Ai,j de A est la matrice
deMn−1(R) obtenue en éliminant la ieme ligne et jeme colonne de A.

Définition 3.15. Soit A = (ai,j) ∈Mn(R).

• Si n = 1, detA = a1,1.
• Si n ≥ 2,

detA =
n∑
j=1

(−1)j+1a1,j detA1,j.

Donnons quelques conséquences de cette définition.

• Pour les matrices deM2(R) le déterminant est donné par :

det

(
a b
c d

)
= ad− bc;
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• Pour les matrices deM2(R) le déterminant est donné par :

det

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 = (3.2)

= a1,1(a2,2a3,3 − a3,2a2,3) + a1,2(a2,3a3,1 − a2,1a3,3) + a1,3(a2,1a3,2 − a3,1a2,2)
= a1,1a2,2a3,3 + a1,2a2,3a3,1 + a1,3a2,1a3,2 − a3,1a2,2a1,3 − a2,1a1,2a3,3 − a1,1a3,2a2,3.

Un moyen de se souvenir de cette formule est par l’image suivante.

a11 a12 a13

a21 a22 a23

a31 a32 a33
( )
a11 a12 a13

a21 a22 a23

a11 a12 a13

a21 a22 a23

a31 a32 a33
( )
a11 a12 a13

a21 a22 a23

−

• Plus généralement, le déterminant d’une matrice A ∈ Mn(R) est une somme de pro-
duits, chaque produit contenant n entrées, une par ligne et une par colonne. Ainsi il y
a n! produits dans l’expression du déterminant (certains ayant un signe +, certains un
signe −). Formellement

det(A) =
∑
σ

ε(σ)a1,σ(1) . . . an,σ(n), (3.3)

ou la somme porte sur toutes les bijections σ : {1, . . . , n} → {1, . . . , n} et ou ε vaut +1
ou −1 en fonction de σ.

Généralement le calcul du déterminant d’une matrice est compliqué. Pour les matrices
3× 3 le nombre de termes dans la somme de (3.2) est 6. On peut écrire une formule similaire
pour les matrices 4× 4; elle va contenir 24 termes . . .

Néanmoins, dans certains cas particulier, le déterminant se calcule facilement.

Proposition 3.16. Soit A ∈ Mn(R) une matrice triangulaire supérieure ou inférieure.
Alors,

detA = a1,1a2,2 . . . an,n.

Cette proposition se montre par récurrence sur la taille de A; on la laisse en exercice.

3.3.2 Déterminant et inversibilité

On va donner ici quelques propriétés essentielles du déterminant.

Proposition 3.17. Soient A,B ∈Mn(R). Alors,

det(AB) = detA · detB.
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Y1

Y2

Y3

O O

A

AY1

AY2

AY3

Figure 3.1: Une matrice A transforme les trois vecteurs de la base canonique de R3. L’image
du cube unité par A est marquée en bleu; son volume est (à signe près) le déterminant de A.

On va admettre cette proposition.

Théorème 3.18. Soit A ∈Mn(R). Alors, A est inversible si et seulement si detA 6= 0.

Une preuve rapide est basée sur le pivot de Gauss; on la donne dans la partie suivante.
Une façon géométrique de voir le déterminant d’une matrice A est comme le volume du

polyèdre déterminé par les vecteurs colonne de A. Rappelons nous de la base canonique de
Rn formé des vecteurs Y1, . . . , Yn. Le polyèdre déterminé par les vecteurs colonne de A est
alors l’image du cube [0, 1]n = {∑n

i=1 λiYi : λ1, . . . , λn ∈ [0, 1]} par A. Ainsi

| det(A)| = Vol
{ n∑

i=1

λiAYi : λ1, . . . , λn ∈ [0, 1]
}
.

On a déjà vu que A n’est pas inversible si et seulement si les vecteurs colonne de A, à savoir
AY1, . . . , AYn, sont liées. Cela reviens à rang(AY1, . . . , AYn) < n, donc à ce que le polyèdre
mentionné fasse partie d’un hyperplan de Rn. On voit bien que alors son volume est nul.

Exemple: Soit A =

(
a b
c d

)
∈M2(R). Alors A est inversible si et seulement si ad−bc 6= 0.

De plus, dans ce cas

A−1 =
1

ad− bc

(
d −b
−c a

)
.

3.3.3 Opérations sur lignes; pivot de Gauss

Rappelons nous des opérations sur les lignes utilisées pour le pivot de Gauss. Ces opérations
changent le déterminant comme suit.
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Proposition 3.19. Pour i 6= j et λ 6= 0,
• Addi;λ,j ne change pas le déterminant,
• Multλ,i multiplie le déterminant par λ,
• Echi,j change le signe du déterminant (c.à d. le multiplie par −1).

Rappelons nous que ces opérations correspondent à des multiplications à gauche par des
matrices spécifiques, qu’on a notées aussi Addi;λ,j, Multλ,i et Echi,j. Un calcul directe mène
au lemme suivant.

Lemme 3.20. Pour i 6= j et λ 6= 0,

det(Addi;λ,j) = 1 et det(Multλ,i) = λ et det(Echi,j) = −1.

Comme le déterminant est multiplicatif, la proposition suit directement du lemme.

Pour une matrice carrée de taille n, le calcul du déterminant par la formule récursive
qui le définit est extrêmement long. On peut voir par récurrence qu’il a une complexité
algorithmique d’ordre n!. Un moyen beaucoup plus rapide (de complexité n2) est offert par
le pivot de Gauss.

Soit A ∈Mn(R). Rappelons nous du théorème 2.48 qui nous dit qu’on peut transformer
la matrice A en une matrice échelonnée Ã en utilisant les opérations sur les lignes Addi;λ,j,
Multλ,i et Echi,j. Vu qu’on connait l’effet de ces opérations sur le déterminant, il suffit de
savoir calculer le déterminant d’une matrice carrée échelonnée.

Ce calcul est particulièrement facile vu la proposition 3.16. Une matrice carrée échelonnée
Ã ∈ Mn(R) est forcement triangulaire supérieure. Ses coefficients sur la diagonale valent
soit 0 soit 1. Ainsi le déterminant de Ã vaut soit 1 (si tous les coefficient diagonaux valent
1), soit 0. Rappelons également que l’unique matrice carrée échelonnée contenant que des 1
sur la diagonale est la matrice identité.

Ainsi, on arrive à la conclusion suivante.

Corollaire 3.21. Soit A ∈ Mn(R) et Ã = Pk . . . P1A la matrice échelonnée obtenue à
partir de A en utilisant les opérations P1, . . . , Pk de type Addi;λ,j, Multλ,i et Echi,j. Alors,

det(A) =

{
0, si Ã 6= In;

1
det(Pk)... det(P1)

, si Ã = In

Comme promis, on donne maintenant la preuve du théorème 3.18.

Preuve: [Théorème 3.18] Soit A ∈Mn(R) et Ã = Pk . . . P1A la matrice échelonnée obtenue à partir
de A en utilisant les opérations P1, . . . , Pk de type Addi;λ,j, Multλ,i et Echi,j. On a vu dans
la partie 2.4.3 que A est inversible, si et seulement si Ã = In. Mais le corollaire 3.21 nous
dit que cela est équivalent à det(A) 6= 0.
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Remarque 3.22. En général on n’est pas obligé de ramener A sous forme échelonnée pour
calculer son déterminant. Il suffit d’utiliser Addi;λ,j, Multλ,i et Echi,j pour la ramener sous
une forme triangulaire supérieure ou inférieure.
Dans certains cas on peut montrer par des moyens plus simple que le rang de A est strictement
plus petit que n. Cela implique que A n’est pas inversible, donc que det(A) = 0.

3.3.4 Compléments

Pour complétude, on mentionne le résultat suivant qui peut être utile en pratique. Il
s’applique également à l’écriture par lignes. On va admettre ce résultat, même s’il suit
directement de (3.3).

Proposition 3.23. Soient C1, . . . , Cn, C
′
i ∈ Mn,1(R) une famille de colonnes et λ ∈ R.

Alors,

det
(
C1 . . . Ci−1 Ci + C ′i Ci+1 . . . Cn

)
= det

(
C1 . . . Ci−1 Ci Ci+1 . . . Cn

)
+ det

(
C1 . . . Ci−1 C ′i Ci+1 . . . Cn

)
,

det
(
C1 . . . Ci−1 λCi Ci+1 . . . Cn

)
= λ det

(
C1 . . . Ci−1 Ci Ci+1 . . . Cn

)
.

On dit que le déterminant est une forme multi-linéaire de la famille des colonnes.

On viens de voir l’effet sur le déterminant de certaines opérations sur les lignes (proposi-
tion 3.19) et sur les colonnes (proposition 3.23). Les deux sont reliées par le lemme suivant.
On va admettre ce résultat (il peut être montré en utilisant (3.3)).

Lemme 3.24. Pour tout A ∈Mn(R), det(AT ) = det(A).

3.4 Polynôme caractéristique
Une façon de déterminer les valeurs propres d’une matrice est donnée par le critère suivant.
Fixons A ∈Mn(R).

Proposition 3.25. λ ∈ R est valeur propre de A si et seulement si det(λIn − A) = 0.

On peut vérifier (par exemple par récurrence sur la taille de A) que la fonction λ 7→
det(λIn − A) est un polynôme de degré n en λ (et de coefficient dominant 1). Il est appelé
le polynôme caractéristique(viii) de A. On le note χA(λ).

La proposition 3.25 nous dit que les valeurs propres de A sont exactement les racines
de χA.

(viii)Charakteristisches Polynom
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Preuve: On a déjà vu (remarque 3.3) que λ ∈ R est une valeur propre de A si et seulement si
A−λIn n’est pas inversible. Par ailleurs, le théorème 3.18 nous dit que cela est équivalent
à det(λIn −A) = 0.

Exercice 3.3.
Soit A = (ai,j) ∈Mn(R) une matrice triangulaire supérieure. Calculer χA et montrer que

Sp(A) = {a1,1, . . . , an,n}.

3.4.1 Application: recherche de vecteurs propres

On est maintenant en mesure de décrire un algorithme pour chercher les valeurs et vecteurs
propres d’une matrice A ∈Mn(R).

On commence par calculer le polynôme caractéristique de A, Ensuite on trouve ses racines,
notons les λ1, . . . , λk et notons m1, . . . ,mk ∈ N leur multiplicité.

Pour chaque 1 ≤ i ≤ k, en utilisant le pivot de Gauss, on résout l’équation matricielle
(λiIn − A)X = 0, pour X ∈ Mn(R). L’ensemble des solutions est Eλi = Ker(λiIn − A).
Vu que λiIn − A n’est pas inversible, on va trouver un espace de solutions de dimension au
moins 1. On a ainsi trouver les valeurs propres λ1, . . . , λk et les vecteurs propres associés.

Si on trouve des espaces propres avec dim(Eλ1) + · · ·+ dim(Eλk) = n, alors A est diago-
nalisable (voir la proposition 3.9). De plus, la preuve de la proposition 3.9, décrit comment
créer une base de Rn formée de vecteurs propres de A. Le théorème 3.7 (plus précisément
sa preuve) nous dit alors comment créer une matrice P ∈ Mn(R) qui diagonalise A. Si par
contre, dim(Eλ1) + · · · + dim(Eλk) < n, alors A n’est pas diagonalisable (voir à nouveau la
proposition 3.9). On distingue trois situations:
(i) χA admet n racines distinctes (c.à-d. si k = n et m1 = · · · = mn = 1). Alors la matrice

A est diagonalisable et chaque espace propre est de dimension 1. (Rappelons nous du
corollaire 3.11 qui nous dit que si |Sp(A)| = n, alors A est diagonalisable.)

Exemple: Posons

A =

5 −3 2
6 −4 4
4 −4 5

 .

On trouve par un calcul directe χA(λ) = λ3 − 6λ2 + 11λ− 6 = (λ− 1)(λ−
2)(λ− 3). Ainsi on déduit que A est bien diagonalisable et que ses valeurs
propres sont 1, 2 et 3. Un calcul rapide nous offre une base de vecteurs
propres associés, notamment1

2
1

 ,

1
1
0

 ,

1
2
2

 .
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(ii) χA est scindé, c.à-d. m1 + · · · + mk = n, mais certaines racines ont des multiplicités
plus grandes que 1. Alors, pour chaque i = 1, . . . , k, on calcule Ei = Ker(λiIn − A) et
on trouve

1 ≤ dim(Ei) ≤ mi.

(Le fait que dim(Ei) ≤ mi va être admis). La matrice est diagonalisable si et seulement
si dim(Ei) = mi pour chaque i.

Exemple: Posons

B =

 2 0 −1
1 1 −1
−1 0 2

 et C =

1 −3 4
4 −7 8
6 −7 7

 .

Par calcul directe χB(λ) = (λ− 1)2(λ− 3) et χC(λ) = (λ− 3)(λ+ 1)2. En
utilisant le pivot de Gauss, on peut calculer les espaces propres de B. On
trouve

Ker(I3−B) = Vect

0
1
0

 ,

1
0
1

 et Ker(3I3−B) = Vect

−1
−1
1

 .
On en déduit que B est diagonalisable; une base de vecteurs propres est
donnée par les bases de Ker(I3 − B) et Ker(I3 − B). Plus précisément, si
on pose

P =

0 1 −1
1 0 −1
0 1 1

 alors P−1BP =

1 0 0
0 1 0
0 0 3

 .

Le même type de calcul pour C nous permet d’obtenir ses espaces propres,
à savoir

Ker(3I3 − C) = Vect

1/2
1
1

 et Ker(−I3 − C) = Vect

1
2
1

 .
Ainsi C n’est pas diagonalisable.

(iii) Si on travaille sur R il se peut que le polynôme χA n’ai pas toutes ses racines réelles.
Si c’est le cas (c.à-d. si m1 + · · · + mk < n) alors A n’est pas diagonalisable dans R,
c.à-d. il n’existe pas P ∈Mn(R) inversible telle que P−1AP est diagonale. (Pour voir
si A est diagonalisable dans C, voir les points (i) et (ii).)

Exemple: Posons

D =

3 −1 0
6 −3 2
8 −6 5

 .
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Un calcul directe montre que χD(λ) = λ3−5λ2+9λ−5 = (λ−1)(λ2−4λ+5).
En utilisant la résolution des équations d’ordre 2, on voir que λ2 − 4λ + 5
n’as pas de racines réelles. Ainsi D n’est pas diagonalisable par une matrice
deMn(R).

Si on prend en compte les racines complexes, alors presque tout polynôme admet n racines
distinctes. Il faut avoir quelques notions d’analyse mathématique pour donner un sens précis
à cette affirmation. Informellement, on peut dire que, si A ∈ Mn(C) est prise “au hasard”,
alors elle est diagonalisable. Ou encore que toute matrice A ∈ Mn(C) peut être approchée
par des matrices diagonalisables.

En général, quand n ≥ 5, les racines de χA n’admettent pas d’expression exacte. Ainsi,
on doit se contenter d’approximations numériques pour trouver Sp(A).
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À retenir
• Pour une matrice carrée A ∈Mn(R) on dit qu’un vecteur non nul X ∈ Rn est vecteur

propre de A si AX = λX pour un λ ∈ R. Le scalaire λ s’appelle valeur propre de A.
L’ensemble des valeurs propres est le spectre de A, noté Sp(A).

• L’ensemble des vecteurs propres pour une valeur propre λ est le s.e.v.

Eλ(A) = Ker(A− λIn).

• λ ∈ Sp(A) si et seulement si A− λIn n’est pas inversible.

• La matrice A est dite diagonalisable si elle est semblable à une matrice diagonale, c.-à-
d. s’il existe P ∈Mn(R) inversible, telle que P−1AP est diagonale.
Pas toutes les matrices sont diagonalisables!

• A est diagonalisable si et seulement s’il existe une base de Rn formée entièrement de
vecteurs propres de A.

• A est diagonalisable si et seulement si
∑

λ∈Sp(A) dim(Eλ) = n.

• Si A est diagonalisable par une matrice inversible P ,

P−1AP =

λ1 . . . 0
... . . . ...
0 . . . λn

 , alors Ak = P

λ
k
1 . . . 0
... . . . ...
0 . . . λkn

P−1.

• Les matrices symétriques sont diagonalisables dansMn(R).

• Pour vérifier si une matrice est inversible, on utilise le déterminant: A ∈ Mn(R) est
inversible si et seulement si det(A) 6= 0.

• Pour A,B ∈Mn(R), det(AB) = det(A) det(B),

• L’effet des transformations sur les lignes:
– multiplier une ligne de la matrice par λ multiplie le déterminant par λ;
– échanger deux lignes multiplie le déterminant par −1;
– rajouter une ligne à une autre ne change par le déterminant.

Le déterminant peut se calculer par le pivot de Gauss.

• Le déterminant d’une matrice diagonale est le produit des coefficients diagonaux.

• Le polynôme caractéristique d’une matrice A ∈Mn(R) est χA(λ) = det(λIn −A). Ses
racines sont exactement les valeurs propres de A.

• La procédure de la partie 3.4.1 pour vérifier si une matrice est diagonalisable.
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