Exercise 1 Consider the function $f(x) = \frac{\sin^2(x)}{\cos(x)}$

- 1) Give the domain.
- 2) Find a stationary point with its abscissa in [9;10].

Exercise 2 Determine the inflexion point(s) for the function

$$f(x) = 9x^5 + 20x^4 - 10x^3 - 60x^2 + 60x + 1.$$

Exercise 3 1) Study the function
$$f(x) = \frac{4x}{x^2+1}$$
 (without $f''(x)$).

- 2) Add, on the graph, the inflexion point(s), if any.
- 3) Calculate the angle between the curve and the y-axis.
- 4) Determine, on the curve, we point for which the tangent is parallel to $\binom{25}{-12}$.

Exercise 4 Given the function
$$f(x) = \sqrt{4x^2 - 9} + k \cdot x$$
 $(k \in \mathbb{R})$.

- 1) Give the domain.
- 2) Show that there is no extremum if $k \in]-2;2[$.
- 3) Determine, in terms of k, the asymptote as $x \to \infty$ (\triangle here $k \in \mathbb{R}_+$).

Exercise 5 Find, with a calculus, on the line: 12x + 16y - 25 = 0 the closest point to the origin.

 Δ no variation table expected.