Given the function $f(x) = \frac{3x}{\sqrt{4x^4 - 5x^2 + 1}}$

- 1) Study the parity.
- 2) Give the domain.

Now consider the function $g(x) = \frac{3x^2 - 4x + 1}{\sqrt{4x^4 - 5x^2 + 1}}$

- 3) Determine all the asymptotes of the function g(x) in \mathbb{R}_+ .
- 4) Sketch the graph of g(x) in $\mathbb{R}_+[U:4s]$.

Exercise 2 Calculate the following limits:

1)
$$\lim_{x\to 3} \frac{3x^2 - 11x + 6}{2x^2 + x - 21}$$
 2) $\lim_{x\to 1} \frac{\sqrt{3x + 1} - 2}{2x - 2}$

2)
$$\lim_{x\to 1} \frac{\sqrt{3x+1}-2}{2x-2}$$

3)
$$\lim_{x\to 0} \frac{\sin(3x)}{x^2+2x}$$

4)
$$\lim_{x\to k} 2 - 3\frac{x}{x-2}$$
 a) $k=0$, b) $k=2$, c) $k=\infty$

Knowing that the function $f(x) = \sqrt{ax^2 + bx + c}$ has a slant asymptote Exercise 3 y=mx+h as $x\to\infty$, express m and h in terms of a, b and c.

Exercise 4 Using the definition, look for the derivative.

$$1) \quad f(x) = x^2 - 2x$$

2)
$$f(x) = \frac{3}{1-x}$$

Exercise 5 Find the derivative for the following functions:

1)
$$f(x) = (-x^2 + 3x - 1)^4$$

2)
$$f(x) = \frac{1}{\sin(\frac{x}{2})}$$

3)
$$f(x) = \frac{3x}{\sqrt{1-2x}}$$

Exercise 6 a) Find the equation of the tangent to the curve $f(x) = 2\sin\left(\frac{1}{x}\right)$ at the point with abscissa \frac{4}{\pi}: (CINA TRACT VALUES)

b) Determine a point for which the tangent to the curve f(x) is horizontal.