Part 1: without your calculator

EXERCISE 1

NAME: .

Determine

- a. $\log_3(27) =$
- b. $\log_4(0.5) =$
- c. $\log_{25}(125) =$
- d. $\log_x(1000000) = 3$, so x =

What is the question that you have to answer to determine the number $\lceil \log_a(b) \rceil$?

EXERCISE 2

2 pts)

Graph a function $f: \mathbb{R} \to \mathbb{R}$ that is injective but not surjective. You don't need to give its expression.

Name:

Part 2: without calculator

EXERCISE 3 (~5 pts)

We consider the function $f(x) = -2x^2 + 12x + 9$.

- a. Determine its domain and range so that it is a bijection. Give the two solutions.
- b. Give the expression of the inverse functions f_1^{-1} and f_2^{-1} , and give their domain.

EXERCISE 4 (7 4 pts)

We consider the functions $f(x) = 3x^2 - x$ and g(x) = -x + 5.

- a. Determine the simplified expressions of $(f \circ g)$, and of $(g \circ g \circ g \circ g \circ g)$.
- b. Determine g^{-1} the inverse of g.

EXERCISE 5 (~ 7 pts)

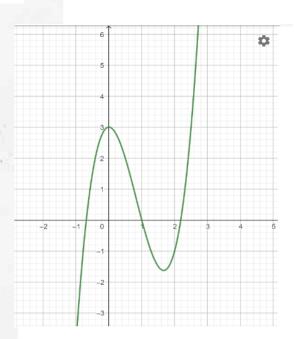
- a. Determine the number of digits and the 4 first digits of the number 99¹¹¹.
- b. Determine the domain of the function $f(x) = \frac{\log(10-x^2)}{x+2}$
- c. Rewrite $\log(\frac{10a^2}{b\sqrt{c}})$

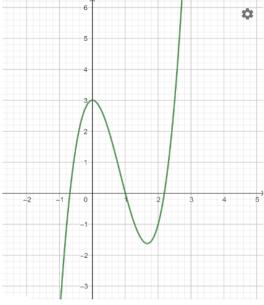
EXERCISE 6 ~ 12 pts)

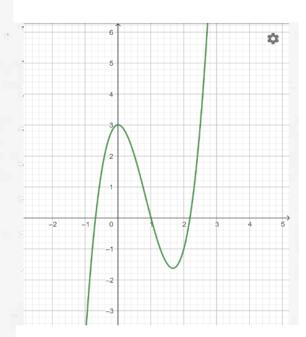
Solve the following equations:

a.
$$6^x = 666$$

b.
$$2\log(x) = \log(25)$$


c.
$$\log(1 - \log(2 + x)) = -1$$


d.
$$4^x - 3.5 \cdot 2^x - 2 = 0$$


EXERCISE 7 (~8 pts)

Here is the graph of the function f.

- a. Why isn't it a bijection from \mathbb{R} to \mathbb{R} ?
- **Color the largest possible part(s) of the graph so that it becomes a bijection
- c. Plot the graphs of g(x) = f(x+1) + 2 and of h(x) = -|f(x)|
- d. Use the graph to determine f(f(2))
- e. Use the graph to find 4 values of x such that f(f(x)) = 0. Make approximations if needed.

