2MG	Level2
2018.	05.29

SOLID GEOMETRY

TEST 6 - 75' Series B

Name: ____

Exercise 1 ~ 6 pts

Give the equation of the smallest sphere that contains the points (0; 1; 0) and (12; 13; -6).

2) Give the equation of the sphere centred at (-2; 0; 0) and tangent to d: $\begin{cases} x = 4 + 3\lambda \\ y = -6\lambda \\ z = 22\lambda \end{cases}$

Exercise 2 ~ 6 pts

Consider the spheres s_1 : $(x+7)^2 + y^2 + z^2 = 9$ and s_2 : $x^2 + (y-24)^2 + z^2 = 49$.

Determine the coordinates of a point that is at same distance from both spheres. Indicate that distance.

Exercise 3 ~ 6 pts

Give the equations of the planes that are perpendicular to the line $\begin{cases} x = -\lambda \\ y = 1 + 2\lambda \text{ and } \\ z = 2\lambda \end{cases}$ tangent to the sphere $x^2 + y^2 + z^2 + 16x - 10z + 8 = 0$.

Exercise 4 ~ 10 pts

The point A(5; 2; 0) belongs to the intersection circle of the plane $\pi: 3x + y - 5z + k = 0$ and the sphere $s: (x + 1)^2 + y^2 + (z - 3)^2 = t$.

- 1) Determine the values of the real numbers k and t.
- 2) Determine the radius and the centre of the intersection circle $c = s \cap \pi$.
- 3) Determine the equation of the line that contains *A* and that is tangent to the intersection circle. Illustrate that situation.