1.23 Exercises

1.1: Given the vectors \vec{a} and \vec{b} , precisely build the vectors

$$1) \quad \vec{c} = 2\vec{a} - \vec{b}$$

2)
$$\vec{d} = \vec{b} - 3\vec{a}$$

3)
$$\vec{e} = -2\vec{b} + \frac{1}{2}\vec{a}$$

$$4) \quad \vec{f} = -\frac{7}{5}\vec{b}$$

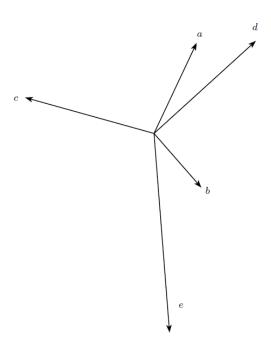
5)
$$\vec{g} = \frac{3}{5}\vec{a} + \frac{4}{3}\vec{b}$$

6)
$$\vec{h} = \sqrt{2}\vec{a}$$

7)
$$\vec{i} = -\sqrt{5}\vec{b}$$

- 8) Build \vec{m} so that $-\vec{a} + 2\vec{b} + \vec{m} = \vec{0}$. Then express \vec{m} as a linear combination of \vec{a} and \vec{b} .
- 9) \vec{n} is defined by the vector equation $-4\vec{a}+3\vec{b}+2\vec{n}=\vec{0}$. Draw \vec{n} , then express it as a linear combination of \vec{a} and \vec{b} .

1.2: Use a diagram to decompose \vec{c} , \vec{d} and \vec{e} in the basis $(\vec{a}; \vec{b})$. Then, indicate an estimation of the components of $\vec{c} = \begin{pmatrix} \cdots \\ \cdots \end{pmatrix}$, $\vec{d} = \begin{pmatrix} \cdots \\ \cdots \end{pmatrix}$ and $\vec{e} = \begin{pmatrix} \cdots \\ \cdots \end{pmatrix}$.

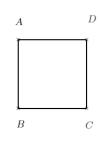


1.3: In the basis $(\vec{a}; \vec{b})$, we have $\vec{c} = -5\vec{a} + 4\vec{b}$ and $\vec{d} = \begin{pmatrix} 3 \\ y \end{pmatrix}$. Draw \vec{c} and \vec{d} given that they are linearly dependent. Then calculate the value of the unknown component y.

CHAPTER 3 PLANE GEOMETRY

1.4: Let ABCD be a square. Place the points E, F, G and H so that :

$$\vec{AE} = \vec{AC} + \vec{BC}$$
 $\vec{AF} = \vec{AO} - \vec{OC}$ $\vec{CG} = 2\vec{CB} + \frac{1}{2}\vec{BD}$ $\vec{OH} = \sqrt{2}\vec{CA}$



0

From now on, the basis is $(\vec{e_1}; \vec{e_2})$

1.5: Given the vectors $\vec{a} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$ and $\vec{c} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$.

- 1) Complete $\vec{a} /\!\!/ \begin{pmatrix} -6 \\ \dots \end{pmatrix}$ $\vec{b} /\!\!/ \begin{pmatrix} 7 \\ \dots \end{pmatrix}$ $\vec{c} /\!\!/ \begin{pmatrix} \dots \\ -11 \end{pmatrix}$
- 2) Calculate the components of the vectors : $2\vec{a}-3\vec{b}$ $\frac{1}{3}\vec{a}+\frac{3}{2}\vec{c}$ $-4\left(\vec{a}-\vec{b}\right)+3\left(-\vec{b}+\vec{c}\right)$
- 3) Show that $(\vec{a}; \vec{b})$ is a basis. Then determine the components of \vec{c} in the basis $(\vec{a}; \vec{b})$. Hint: look for α, β so that $\vec{c} = \alpha \vec{a} + \beta \vec{b}$ and solve a 2x2 system.
- 4) Write \vec{b} as a linear combination of \vec{a} and \vec{c} .

1.6:

- 1) Show that the vectors $\vec{a} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ are linearly independent.
- 2) Decompose $\vec{c} = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$ in the basis $(\vec{a}; \vec{b})$, by calculation and by drawing.
- 3) Determine m so that $\binom{7}{m} /\!\!/ \vec{a}$
- 4) Determine n so that $\binom{n}{-12}$ and $(\vec{a} + \vec{b})$ are linearly dependent.

1.7: Determine the vectors \vec{a} and \vec{b} that simultaneously satisfy the following three conditions: $\vec{a} /\!\!/ \vec{e_1}$, $\vec{b} /\!\!/ (2\vec{e_1} + \vec{e_2})$ and $3\vec{a} + \vec{b} = 7\vec{e_1} - \vec{e_2}$.

1.8: We consider the points A(3;4) and B(-2;1), and we define some more points by:

$$\vec{OC} = \vec{AB}$$
, $\vec{OD} = -\vec{AB}$, $\vec{BE} = \vec{OA}$, $\vec{BF} = -\vec{OA}$, $\vec{AG} = \vec{OB}$, $\vec{AH} = -\vec{OB}$

Draw these points and use Chasles' relation to calculate their coordinates.

1.9:

1) Complete thanks to Chasles' relation:

$$\begin{array}{lll} A(7;5) & B\left(-4;1\right) & \longrightarrow & \vec{AB} = \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) \\ A\left(\ldots;\ldots\right) & B\left(2;\frac{1}{3}\right) & \longrightarrow & \vec{AB} = \left(\begin{array}{c} -3 \\ 2 \end{array} \right) \\ A\left(\ldots;-2\right) & B\left(0;\ldots\right) & \longrightarrow & \vec{AB} = \left(\begin{array}{c} \cdots \\ 5 \end{array} \right) \# \left(\begin{array}{c} 7 \\ -4 \end{array} \right) \\ A\left(\frac{1}{2};3\right) & B\left(\ldots;-1\right) & \longrightarrow & \vec{AB} = \left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) \# \vec{e_2} \end{array}$$

- 2) Determine by computations the coordinates of the midpoint of the segment CD with C(2; -3) and D(-1; -2)
- 3) Determine the coordinates of the point E, the reflection point of C(2; -3) in D(-1; -2). Sketch the situation.
- 4) Determine the coordinates of P'(x';y'), the reflection point of P(x;y) in $M(m_1;m_2)$.
- 5) (6.5; -3) is the midpoint of DF, with D(-1; -2). Find, by computations, the point F.
- 1.10: We consider A(4;-6), $\vec{AB} = 3\vec{e_1} + 2\vec{e_2}$, $\vec{BC} = -5\vec{e_1} + 4\vec{e_2}$, $\vec{OD} = -\vec{CB}$ and $\vec{OE} = \vec{OD} \vec{BC}$. Determine the coordinates of the points B, C, D and E by computations.
- **1.11:** Let's consider A(-2;5), B(1;-3) and $C(\frac{3}{2};\frac{3}{2})$.
 - 1) Calculate the coordinates of the vertex D of the parallelogram with vertices ABCD.
 - 2) Calculate the coordinates of the midpoint M of the parallelogram.

1.12: Complete that table, each column being a separate question (M_{AB} is the midpoint of the segment AB):

A	(4; 9)	(0.5; -2)	(;)	(2;7)	(;)	(;)
В	(-2;5)	(;)	(0;7)	(;)	(-5.5;17)	(;)
M_{AB}	(;)	(3; 3.5)	(-6;2)	(;)	(;)	(1; -5)
\vec{AB}	()	()	()	$\begin{pmatrix} -1.5\\11 \end{pmatrix}$	$\begin{pmatrix} -6 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 6 \\ -4 \end{pmatrix}$

1.13: A parallelogram with vertices ABCD is given by the following information: A(-3;2), center M(-1;0), $\vec{AB} /\!\!/ \binom{1}{-3}$, $\vec{BM} /\!\!/ \vec{e_2}$.

- 1) Calculate the coordinates of the vertices B, C and D.
- 2) Check your answers thanks to a drawing.
- **1.14**: Given a triangle by A(3;2), B(-1;4) and C(0;-2). We consider a homothecy of centre P(-2;1) and dilation factor k=-2. Calculate the coordinates of the images A', B' and C' and verify with a drawing.
- 1.15: We consider the homothecy with ratio k = -5 that is such that the image of (-4, 7) is (2, 19). Determine by computations the coordinates of the center of that transformation.
- **1.16**: We consider the points A(-3;7), B(2;4) and C(-5;1).
 - 1) Determine the center of gravity of the triangle ABC.
 - 2) Determine the coordinates of D such that the center of gravity of ABD is (5; 2).
- **1.17:** We consider the line formed by the points $P(-2 + 3\lambda; 5 4\lambda)$, with $\lambda \in \mathbb{R}$, a parameter.

Calculate the coordinates of:

- 1) Point A, obtained with $\lambda = 0$
- 2) Point B, whose ordinate is 0
- 3) Point C, obtained with $\lambda = 1$
- 4) Point D, whose ordinate is the double of its abscissa
- 5) Point E, whose abscissa is 0
- 6) Point F, whose ordinate is 7
- 1.18: Find parametric and Cartesian equations for the following lines:
 - 1) l_1 through A(-2;3) and B(8;5).
 - 2) l_2 through A(-4;1) and parallel to Ox
 - 3) l_3 through O and parallel to the vector $\vec{d} = \begin{pmatrix} 2 \\ -5 \end{pmatrix}$.
- 1.19: Complete the following table, row by row:

Parametric equations	Cartesian equation	A point	A direction vector
$\begin{cases} x = 5 - 2\lambda \\ y = -1 + 3\lambda \end{cases}$			
	x + 4y - 10 = 0		
		A(-7;1)	$\begin{pmatrix} 6 \\ 5 \end{pmatrix}$
		A(0; 9)	$\begin{pmatrix} -2\\1 \end{pmatrix}$

- **1.20:** Given two lines $l_1: \left\{ \begin{array}{l} x=1-\lambda \\ y=2+2\lambda \end{array} \right.$ and $l_2: \left\{ \begin{array}{l} x=3+\mu \\ y=6+2\mu \end{array} \right.$
 - 1) Draw these lines after having determined a point and a direction vector for each of them.
 - 2) By looking at your drawing, determine the coordinates of their intersection point.
 - 3) How can we know that these two lines are secant without drawing them?
 - 4) Calculate the coordinates of the intersection point.
 - 5) Write the Cartesian equations of these two lines.
- 1.21: Given the triangle ABC with A(-5;2), B(2;7) and C(3;-4).
 - 1) Determine a Cartesian equation and parametric equations of the line through A and A', the midpoint of BC. That line is called the median through A and we denote it by m_A .
 - 2) Does the point D(10; 1) belong to the median?
- 1.22: We consider the lines $l_1: -x + 2y + 3 = 0$ and $l_2: 3x 4y 12 = 0$.
 - 1) Calculate the intersections of the lines with the axes.
 - 2) Give two direction vectors for each line
 - 3) Determine parametric equations for these two lines.
 - 4) What is the relative position of these two lines? Justify.
 - 5) Precisely draw these two lines.
- 6) Compute the coordinates of their intersection point. Check on your drawing.
- 1.23: Compute the coordinates of the intersection point of the following lines
 - 1) $l_1: \left\{ \begin{array}{ll} x=7+3\lambda \\ y=-1+2\lambda \end{array} \right.$ and $l_2: \left\{ \begin{array}{ll} x=-4-\mu \\ y=5+7\mu \end{array} \right.$
- 2) $l_1: \begin{cases} x = 7 + 3\lambda \\ y = -1 + 2\lambda \end{cases}$ and $l_2: x + 8y 5 = 0$
- 3) $l_1: 3x 2y + 6 = 0$ and $l_2: x + 8y 5 = 0$
- 1.24: The square ABCD is given by :

$$D(-7;2)$$
 $C \in l_1: 3x + y + 2 = 0$ $C \in l_2: \begin{cases} x = 7 + 3\lambda \\ y = -2 - 2\lambda \end{cases}$

Construct the square(s) and calculate the coordinates of the vertices A, B and C.

- 1.25: Given the line $l_m: 4x my + 2 = 0$. For which values of m (4 different questions):
 - 1) does the line l_m pass through the point A(2; -3)?
 - 2) is the line parallel to the y-axis?
 - 3) does the line have $\vec{t} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ as a direction vector?
 - 4) is it perpendicular to the line through B(5;4) and C(7;-1)?

1.26: The triangle ABC is given by its vertex A(3;1), its center of gravity G(2;3) and by C'(4;4), the midpoint of the segment AB. Determine the coordinates of the vertices B and C. An illustration of the situation may help.

1.27: The triangle ABC is given by its vertex A(1;1) and its center of gravity $G\left(\frac{7}{3};\frac{1}{3}\right)$. You're also told that \vec{BC} is parallel to $\vec{t}=\begin{pmatrix} -1\\4 \end{pmatrix}$ and that the line through A and B is $l_{AB}:5x+3y-8=0$.

Determine the coordinates of the vertices B and C with a drawing and then by computation.

1.28:

- 1) Show that if the quadrilateral ABCD is such that $\overrightarrow{AB} = \overrightarrow{DC}$, then it is a parallelogram.
- 2) Let ABCD be any quadrilateral. Let's name IJKL the midpoints of the sides. Proove "Varignon's theorem": IJKL is always a parallelogram (whatever the location of ABCD).
- **1.29:** Determine the coordinates of the vertices of the triangle ABC given that $l_{AB}: 3x 5y + 1 = 0$, $l_{AC}: x 9y 29 = 0$, C(11;?) and $\vec{BC} /\!\!/ \binom{2}{-1}$.
- **1.30**: Given the vectors $\vec{a} = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$, $\vec{c} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$ and $\vec{d} = \begin{pmatrix} -5 \\ -2 \end{pmatrix}$.
 - 1) Calculate their norm.
 - 2) Find the unit vector \vec{u} which has same direction as \vec{c} .
 - 3) Find a vector \vec{e} orthogonal to \vec{a} and that has the same length as \vec{a} .
 - 4) The vector $\vec{f} = \begin{pmatrix} k \\ -5 \end{pmatrix}$ is perpendicular to \vec{c} . What is the value of k?
 - 5) Calculate the scalar products $\vec{a} \bullet \vec{b}$, $\vec{b} \bullet \vec{c}$ and $\vec{b} \bullet \vec{d}$.
 - 6) What vectors among \vec{a}, \vec{c} and \vec{d} form an obtuse angle with \vec{b} ?
- 1.31: Determine the type of the triangle ABC with A(2;8), B(-4;3) and C(4;6). Then determine its perimeter and area.
- 1.32 : Given the vectors $\vec{a} = \begin{pmatrix} 6 \\ -8 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$
 - 1) Draw $\vec{b'}$ the orthogonal projection of \vec{b} on \vec{a} .
 - 2) Calculate the norm of \vec{b}' .
 - 3) Calculate the area of the triangle OAB, using at least two different methods.
 - 4) Determine the components of $\vec{b'}$.

1.33:

1) Given A(-1; -2) and B(7; 4) the vertices of the isosceles triangle ABC with base AB. Determine the coordinates of C so that the area of the triangle is 75. Give all the possible answers.

- 2) Given A(-1; -2) and B(7; 4) Find the coordinates of C so that ABC is a right triangle with area 20. Give all the possible answers.
- 3) Given A(-1; -2) and B(7; 4) Find the coordinates of C so that ABC is an isosceles triangle with area 30. Give all the possible answers.

1.34:

- 1) Calculate the angle between the vectors $\vec{a}=\left(\begin{array}{c} -5\\ 7 \end{array}\right)$ and $\vec{b}=\left(\begin{array}{c} 3\\ -2 \end{array}\right)$.
- 2) Calculate the acute angle between the lines a:3x-4y+12=0 and b:12x+5y-15=0.
- 3) Calculate the angles of the triangle with vertices A(2;8), B(-4;3) and C(4;6).
- 1.35: Find the Cartesian equations of the following lines:
 - 1) a through A(-2;3), direction vector $\vec{d} = \begin{pmatrix} -2\\5 \end{pmatrix}$.
 - 2) b through B(3; -1), normal vector $\vec{n} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.
 - 3) c through C(-6;0), perpendicular to the line a.
 - 4) d through D(5; 2), parallel to the line b.

1.36:

- 1) Find a direction vector and two points of $l_1: 3x 4y 12 = 0$
- 2) Find a normal vector and one point of $l_2: 5x + 3y + 9 = 0$
- 3) Find a normal vector of l_3 the line through A(-2; 5) and B(4; 1)
- 1.37: Given the line a: 3x 4y 17 = 0.
 - 1) Determine the Cartesian equation of the line b that is perpendicular to a and that passes through B(-3;6).
 - 2) Calculate the coordinates of the point $I = a \cap b$.
 - 3) Calculate the coordinates of the point C, symmetrical of B about the line a.
- 1.38: We consider the triangle with vertices A(6;0), B(0;4) and C(-2;0).
 - 1) Find the Cartesian equation of the perpendicular bisectors m_{AB} , m_{AC} and m_{BC} .
 - 2) Calculate the coordinates of M the intersection of the perpendicular bisectors.
 - 3) Determine the radius r of the circumcircle of the triangle ABC. Sketch the situation (unit : 2 squares).

- 1.39: We consider the line l given by its equation 4x 3y 24 = 0.
 - 1) Calculate the distance from l to the points O(0;0), B(11;-10) and C(9;4).
 - 2) Find the Cartesian equations of the lines e and f that are at distance 2 from the line l. Sketch the situation.
- 1.40: Given a: 4x + 3y 12 = 0 and b: 7x y 46 = 0. Calculate the coordinates of the points of b that are at distance 5 from the line a. Solve the problem with a drawing first.
- **1.41:** We consider the line a: 4x + 3y 24 = 0 and the line b that is parallel to a and passes through B(0; 13).
 - 1) Calculate the distance between a and b.
 - 2) Find the Cartesian equation of the line c formed by the points equidistant from a and b.
 - 3) Find the Cartesian equation of the line l whose distance to a is twice its distance to b. Also use a drawing.
- **1.42**: Find the Cartesian equation of the bisectors of the lines a: 3x 4y + 12 = 0 and b: 12x + 5y 15 = 0.
- **1.43**: Given the vertices A(-10, -8), B(6, 4) and C(11, -8) of a triangle.
 - 1) Calculate its area.
 - 2) Find the Cartesian equation of the internal bisectors of the triangles ABC. Determine the coordinates of the centre and the radius of the incircle.
 - 3) Calculate the coordinates of the contact point of the incircle and the side AB of the triangle. Sketch the situation.

1.44:

- 1) Find the equation of the circle centered at M(5;3) that has a radius equal to 5.
- 2) Determine the intersection points of the circle and the x-axis.
- 1.45: Do the following equations describe circles? If yes, give the coordinates of their centre and radius.

1)
$$x^2 + y^2 - 14x - 2y - 126 = 0$$

4)
$$3x^2 + 3y^2 + 7x - 10 = 0$$

2)
$$x^2 + y^2 + 10x + 14y + 123 = 0$$

$$5) \quad 2x^2 + 3y^2 + 7x - 10 = 0$$

3)
$$x^2 + y^2 + 8x - 16y + 80 = 0$$

6)
$$x^2 - y^2 - 14x - 2y - 126 = 0$$

1.46:

- 1) Write down the equation of the circle Γ with center (-7, 4) and radius 13.
- 2) The points $A(a_1; 9)$ and $B(-2; b_2)$ belong to the circle Γ . Calculate $a_1 (> 0)$ and $b_2 (< 0)$.

- 3) Determine the equation of the perpendicular bisector m of the line segment AB.
- 4) Verify that the centre C lies on the line m.
- 1.47: Determine the equation of the circle that passes through (-3;3), (-1;-3) and (5;3).
- **1.48**: Given the circle $\Gamma : (x-5)^2 + (y+3)^2 = 25$.
 - 1) Determine the relative position, with respect to the circle, of $P_1(7;-6)$, $P_2(8;1)$ and $P_3(1;-6)$.
 - 2) Determine the equations of the tangent to Γ parallel to $\vec{d} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. Name them t_1 and t_2 . Find the coordinates of the contact points T_1 and T_2 .
 - 3) Determine the relative position of l: -x+y+7=0 and Γ . Calculate the possible intersections.
- **1.49**: Determine the equation of the tangent to the circle $\Gamma: x^2 + y^2 + 10x + 2y + 13 = 0$ at the point T(-3; 2).
- **1.50**: Determine the intersection between the line l: x+y-4=0 and the circle $\Gamma: (x-1)^2+(y+3)^2=20$.
- **1.51**: Determine the equation of the circle centered at M(-2;3) and tangent to the line l: x + 2y = 0.
- **1.52**: Find the equations of the lines tangent to the circle $\Gamma: (x-2)^2 + (y+5)^2 17 = 0$ that are parallel to the line l: x-4y+10=0.
- **1.53**: Given the points P(-2;7), Q(2;3) and R(4;5). Prove that the triangle PQR is a right triangle. Determine the equation of the circle through P, Q and R.
- 1.54: Determine the centre and the radius of the incircle of the triangle formed by the lines $l_1: x+2=0, l_2: y-3=0$ and $l_3: 5x+12y-60=0$.
- **1.55**: Given the points A(-3;3) and B(4;0). Determine the coordinates of the points $P_1, P_2 \in l : y = x$ so that the triangle ABP is an isosceles triangle at B. Then, calculate the area of the quadrilateral AP_1BP_2 .
- **1.56**: We consider the circle $x^2 + y^2 10x + 16 = 0$ and the lines y = mx $(m \in \mathbb{R})$. For which values of m are the circle and the line secant? And tangent?
- 1.57: Determine the equation of the circles centered on the line l: 3x + 7y 39 = 0 and tangent to the lines a: 3x 4y + 12 = 0 and b: x = 0.
- 1.58: In each case, determine the points of intersection of the two circles below:
 - 1) $\Gamma_1: x^2 + y^2 = 25$ and $\Gamma_2: (x+1)^2 + (y-1)^2 = 29$
 - 2) $\Gamma_1 : (x+4)^2 + (y+5)^2 = 194$ and $\Gamma_2 : (x-3)^2 + (y-2)^2 = 40$
- **1.59**: Determine the equation of the lines that are tangent to the circle $\Gamma: (x-4)^2 + (y+1)^2 = 5$ and that pass through C(9;4).

1.24 Solutions

- 1.1:
- **1.2**: $\vec{c} = -0.8\vec{a} 2\vec{b}, \ \vec{d} = 1.5\vec{a} + 0.8\vec{b}, \ \vec{e} = -1.3\vec{a} + 1.5\vec{b}$
- 1.3: y = -2.4
- 1.4:
- 1.5:

1)
$$\vec{a} /\!\!/ \begin{pmatrix} -6 \\ -8 \end{pmatrix}$$
 $\vec{b} /\!\!/ \begin{pmatrix} 7 \\ -17.5 \end{pmatrix}$ $\vec{c} /\!\!/ \begin{pmatrix} \frac{11}{3} \\ -11 \end{pmatrix}$

2)
$$2\vec{a} - 3\vec{b} = \begin{pmatrix} 12 \\ -7 \end{pmatrix}$$
 $\frac{1}{3}\vec{a} + \frac{3}{2}\vec{c} = \begin{pmatrix} -2 \\ \frac{31}{3} \end{pmatrix}$ $-4(\vec{a} - \vec{b}) + 3(-\vec{b} + \vec{c}) = \begin{pmatrix} -20 \\ 7 \end{pmatrix}$

- 3) $\vec{c} = \frac{2}{23}\vec{a} + \frac{26}{23}\vec{b}$
- 4) $\vec{b} = -\frac{1}{13}\vec{a} + \frac{23}{26}\vec{c}$

1.6:

1)
$$\det(\vec{a}, \vec{b}) = -13 \neq 0 \implies \vec{a} \not\parallel \vec{b}$$
.

2)
$$\vec{c} = -\frac{29}{13}\vec{a} + \frac{20}{13}\vec{b}$$

- 3) m = -10.5
- 4) n = 1.5

1.7:
$$\vec{a} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} -2 \\ -1 \end{pmatrix}$$

1.8:
$$C = F = (-5, -3), D = H = (5, 3), E = G(1, 5).$$

The line segments AC, BD and OE are the medians of the triangle CDE. They intersect at the centre of gravity of the triangle.

1.9:

1)
$$A(7;5)$$
 $B(-4;1)$ \longrightarrow $\vec{AB} = \begin{pmatrix} -11 \\ -4 \end{pmatrix}$

$$A\left(5; -\frac{5}{3}\right) \quad B\left(2; \frac{1}{3}\right) \quad \longrightarrow \quad \vec{AB} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$

$$A\left(8.75; -2\right) \quad B\left(0; 3\right) \quad \longrightarrow \quad \vec{AB} = \begin{pmatrix} -8.75 \\ 5 \end{pmatrix} /\!\!/ \begin{pmatrix} 7 \\ -4 \end{pmatrix}$$

$$A\left(\frac{1}{2}; 3\right) \quad B\left(0.5; -1\right) \quad \longrightarrow \quad \vec{AB} = \begin{pmatrix} 0 \\ -4 \end{pmatrix} /\!\!/ \vec{e_2}$$

- 2) M(0.5; -2.5)
- 3) E(-4;-1)

- 4) $\vec{OP'} = 2 \cdot \vec{OM} \vec{OP}$ so $P'(2m_1 x; 2m_2 y)$.
- 5) F(14; -4)
- **1.10**: B(7; -4), C(2; 0), D(-5; 4), E(0; 0)
- **1.11:** D(-1.5; 9.5), M(-0.25; 3.25)

1.12:

A	(4; 9)	(0.5; -2)	(-12; -3)	(2;7)	(0.5; 19)	(-2; -3)
В	(-2;5)	(5.5; 9)	(0;7)	(0.5; 18)	(-5.5;17)	(4; -7)
M_{AB}	(1;7)	(3; 3.5)	(-6; 2)	(1.25; 12.5)	(-2.5; 18)	(1; -5)
$ec{AB}$	$\begin{pmatrix} -6 \\ -4 \end{pmatrix}$	$\begin{pmatrix} 5\\11 \end{pmatrix}$	$\begin{pmatrix} 12\\10 \end{pmatrix}$	$\begin{pmatrix} -1.5\\11 \end{pmatrix}$	$\begin{pmatrix} -6 \\ -2 \end{pmatrix}$	$\begin{pmatrix} 6 \\ -4 \end{pmatrix}$

- **1.13**: B(-1; -4), C(1; -2), D(-1; 4)
- **1.14**: A'(-12;-1), B'(-4;5), C'(-6;7)
- 1.15: Center(-3; 9)
- 1.16: $G_{ABC}(-2;4)$ and D(16;-5).
- **1.17**: $A(-2;5), B(\frac{7}{4};0), C(1;1), D(0.7;1.4, E(0;\frac{7}{3}), F(-3.5;7)$

1.18:

$$l_1: \left\{ \begin{array}{l} x = -2 + 10\lambda \\ y = 3 + 2\lambda \end{array} \right.$$
 or $-2x + 10y - 34 = 0$

$$l_2: \left\{ \begin{array}{l} x = -4 + \lambda \\ y = 1 \end{array} \right. \quad \text{or } y - 1 = 0$$

$$l_3: \left\{ \begin{array}{l} x = 2\lambda \\ y = -5\lambda \end{array} \right.$$
 or $5x + 2y = 0$

1.19:

Parametric equations	Cartesian equation	A point	A direction vector
$\begin{cases} x = 5 - 2\lambda \\ y = -1 + 3\lambda \end{cases}$	3x + 2y - 13 = 0	(5;-1)	$\begin{pmatrix} -2 \\ 3 \end{pmatrix}$
$\begin{cases} x = 10 - 4\lambda \\ y = \lambda \end{cases}$	x + 4y - 10 = 0	(10; 0)	$\begin{pmatrix} -4 \\ 1 \end{pmatrix}$
$\begin{cases} x = -7 + 6\lambda \\ y = 1 + 5\lambda \end{cases}$	5x - 6y + 41 = 0	A(-7;1)	$\begin{pmatrix} 6 \\ 5 \end{pmatrix}$
$\begin{cases} x = -2\lambda \\ y = 9 + \lambda \end{cases}$	x + 2y - 18 = 0	A(0; 9)	$\begin{pmatrix} -2\\1 \end{pmatrix}$

1.20: I(1;2). Secant as the direction vectors aren't parallel. $\vec{l_1} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \vec{l_2} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $l_1: 2x + y - 4 = 0, l_2: 2x - y = 0.$

1.21:
$$A'(2.5; 1.5), \vec{AA'} = \begin{pmatrix} 7.5 \\ -0.5 \end{pmatrix} \| \begin{pmatrix} 15 \\ -1 \end{pmatrix}.$$
 $x + 15y - 25 = 0 \begin{cases} x = -5 + 15\lambda \\ y = 2 - \lambda \end{cases}$. D belongs to the median.

1.22:

1)
$$l_1:(0;-1.5),(3;0).$$
 $l_2:(0;-3),(4;0)$

2)
$$l_1: \begin{pmatrix} 2\\1 \end{pmatrix} \parallel \begin{pmatrix} 4\\2 \end{pmatrix}$$
 $l_2: \begin{pmatrix} 4\\3 \end{pmatrix} \parallel \begin{pmatrix} -4\\-3 \end{pmatrix}$

3)
$$l_1: \left\{ \begin{array}{l} x=3+2\lambda \\ y=\lambda \end{array} \right.$$
 and $l_2: \left\{ \begin{array}{l} x=4\lambda \\ y=-3+3\lambda \end{array} \right.$

- 4) Secant as the direction vectors aren't parallel to each other.
- 6) I(6; 1.5)

1.23:
$$I_1(-\frac{52}{23}; -\frac{165}{23})(\lambda = -\frac{71}{23}, \mu = -\frac{40}{23})$$
 $I_2(\frac{151}{19}; -\frac{7}{19})(\lambda = \frac{6}{19})$ $I_3(-\frac{19}{13}; \frac{21}{26}).$

- **1.24**: First answer : A(-5, -3), B(0, -1). Second answer : A(-9, 7), B(-4, 9)
- 1.25: $m = -\frac{10}{3}, m = 0, m = \frac{4}{3}, m = 10.$
- **1.26**: A'(1.5; 4), C(-2; 1), B(5; 7).
- 1.27: B(4; -4), C(2; 4).

1.28:

1)
$$\vec{OB} - \vec{OA} = \vec{OC} - \vec{OD} \implies \vec{OB} - \vec{OC} = \vec{OA} - \vec{OD} \implies \vec{CB} = \vec{DA}$$

So it's a parallelogram.

2)
$$\vec{OI} = \frac{1}{2}(\vec{OA} + \vec{OB}) \ \vec{OJ} = \frac{1}{2}(\vec{OB} + \vec{OC}) \ \vec{OK} = \frac{1}{2}(\vec{OC} + \vec{OD}) \ \vec{OL} = \frac{1}{2}(\vec{OA} + \vec{OD})$$

 $\vec{IJ} = \frac{1}{2}(\vec{OB} + \vec{OC}) - \frac{1}{2}(\vec{OA} + \vec{OB}) = \frac{1}{2}(\vec{OC} - \vec{OA}) = \frac{1}{2}\vec{AC}$
 $\vec{LK} = \frac{1}{2}(\vec{OC} + \vec{OD}) - \frac{1}{2}(\vec{OA} + \vec{OD}) = \frac{1}{2}(\vec{OC} - \vec{OA}) = \frac{1}{2}\vec{AC}$.
 $\vec{IJ} = \vec{LK}$ so from the result 1) : it's a parallelogram.

1.29:
$$A(-7, -4), C(11, -2), B(3, 2)$$

1.30:

1)
$$\|\vec{a}\| = \sqrt{13}$$
 $\|\vec{b}\| = \sqrt{74}$ $\|\vec{c}\| = 5$ $\|\vec{d}\| = \sqrt{29}$

$$2) \quad \vec{u} = \left(\begin{array}{c} -4/5 \\ 3/5 \end{array} \right)$$

$$3) \quad \vec{e} = \pm \left(\begin{array}{c} 3 \\ 2 \end{array} \right)$$

4)
$$k = -\frac{15}{4}$$

5)
$$\vec{a} \cdot \vec{b} = -11$$
 $\vec{b} \cdot \vec{c} = 1$ $\vec{b} \cdot \vec{d} = -39$

6)
$$\vec{a}$$
 \vec{d}

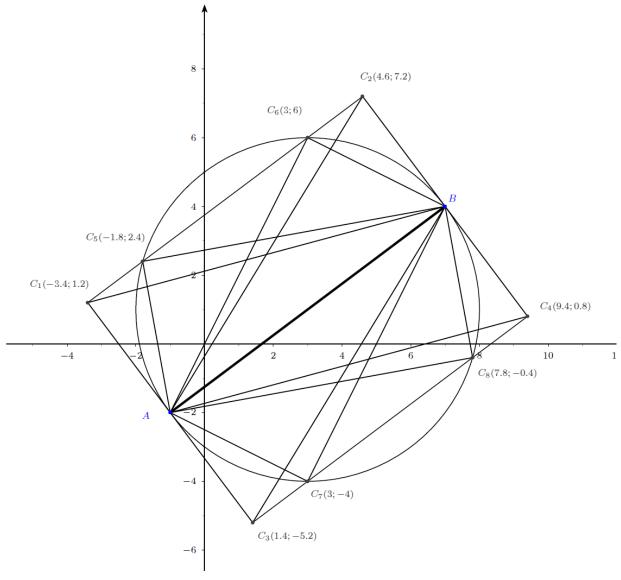
1.31: Obtuse
$$p = \sqrt{61} + \sqrt{8} + \sqrt{73} \cong 19.18$$

1.32: 2)
$$\|\vec{b}'\| = \frac{13}{5}$$
 3) $Area = 34$ 4) $\vec{b}' = \begin{pmatrix} 1.56 \\ -2.08 \end{pmatrix}$

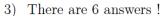
1.33:

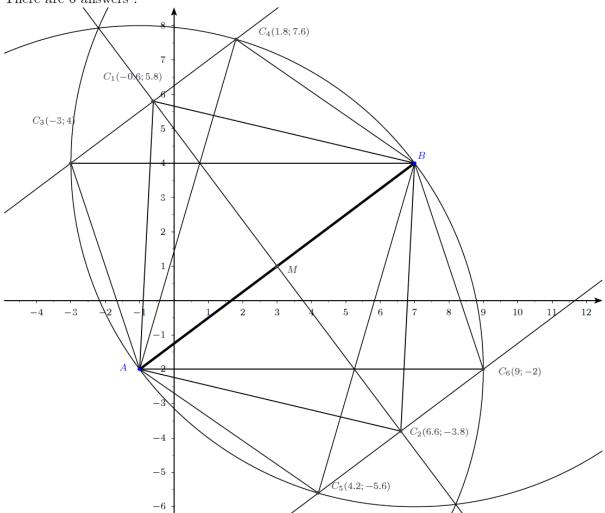
1)
$$C_1(-6;13)$$
 $C_2(12;-11)$

2) There are 8 answers!



Chapter 3 PLANE GEOMETRY





 $159.23^{\circ} / 75.75^{\circ} / \alpha \cong 95.19^{\circ}, \beta \cong 19.25^{\circ}, \gamma \cong 65.56^{\circ}$ 1.34:

1.35:

1)
$$a:5x+2y+4=0$$

$$3) \quad c: -2x + 5y - 12 = 0$$

2)
$$b: -4x + 3y + 15 = 0$$

4)
$$d: -4x + 3y + 14 = 0$$

1.36: 1)
$$\vec{l_1} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
, $(4;0)$, $(0;-3)$ 2) $\vec{n} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$, $(0;-3)$ 3) $\vec{n} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

1.37:

1)
$$b: 4x + 3y - 6 = 0$$
 2) $I(3; -2)$

2)
$$I(3:-2)$$

3)
$$C(9;-10)$$

41

1.38:

1)
$$m_{AB}: 3x - 2y - 5 = 0$$
 $m_{AC}: x = 2$ $m_{BC}: x + 2y - 3 = 0$

$$m_{AC}: x=2$$

$$m_{PC}: x + 2y - 3 = 0$$

2)
$$M(2;0.5)$$
 3) $r = \frac{\sqrt{65}}{2}$

1.39:
$$dist(d; O) = 4.8$$
 $dist(d; B) = 10$ $dist(d; C) = 0$ $e: 4x - 3y - 14 = 0$ $f: 4x - 3y - 34 = 0$

- 1.40: $P_1(7;3)$ $P_2(5;-11)$
- 1.41:
- 1) dist(a; b) = 3 2) c: 8x + 6y 63 = 0 3) d: 4x + 3y 34 = 0
- **1.42**: c: 21x + 77y 231 = 0 d: 99x 27y + 81 = 0
- 1.43:
 - 1) A = 126
 - 2) $b_A: x-3y-14=0$ $b_B: 11x-3y-54=0$ $b_C: 2x+3y+2=0$ $I\left(4;-\frac{10}{3}\right)$ $r=\frac{14}{3}$
 - 3) $C\left(\frac{6}{5}; \frac{2}{5}\right)$
- 1.44:
- 1) $(x-5)^2 + (y-3)^2 = 25$ 2) $P_1(1;0)$ $P_2(9;0)$
- 1.45:
 - 1) Yes C(7;1) $r = \sqrt{176}$ 4) Yes $C(-\frac{7}{6};0)$ $r = \frac{13}{6}$
 - 2) No $r^2 < 0$ 5) No (coeff of $x^2 \neq$ coeff of y^2)
 - 3) No r=0, but it's the point (-4;8) 6) No (coeff of $x^2 \neq$ coeff of y^2)
- **1.46**: $(x+7)^2 + (y-4)^2 = 169 \ a_1 = 5 \ b_2 = -8 \ m : 7x + 17y 19 = 0$
- 1.47: $(x-1)^2 + (y-1)^2 = 20$
- 1.48:
 - 1) P_1 inside P_2 on P_3 on
 - 2) $t_1: 4x 3y 4 = 0$ $t_2: 4x 3y 54 = 0, T_1(1, 0)$ $T_2(9, -6)$
 - 3) Secant $I_1(1;-6)$ $I_2(8;1)$
- 1.49: t: 2x + 3y = 0
- 1.50: (3;1) and (5;-1)
- 1.51: $(x+2)^2 + (y-3)^2 = 3.2$
- 1.52: x-4y-5=0 and x-4y-39=0

CHAPTER 3 PLANE GEOMETRY

1.53:
$$x^2 + (y-5)^2 = 10$$

1.54:
$$(x + \frac{13}{15})^2 + (y - \frac{62}{15})^2 = \frac{289}{225}$$

1.55:
$$P_1(7;7)$$
 and $P_2(-3;-3)$. Area=50

1.56: Secant for
$$m \in]-0.75; 0.75[$$
 and tangent for $m=\pm 0.75$

1.57:
$$(x+36)^2 + (y-21)^2 = 1296$$
 and $(x-\frac{18}{17})^2 + (y-\frac{87}{17})^2 = \frac{324}{289}$

1.58: 1)
$$(4;3)$$
 and $(-3;-4)$ 2) $(1;8)$ and $(9;0)$

1.59:
$$t_1: -x + 2y + 1 = 0(T_1(3;1))$$
 and $t_2: -2x + y + 14 = 0(T_2(6;-2))$