LDDR – Niveau 2: TE 21 Algebre Lineaire

3MG01 LINEAR ALGEBRA TEST 5 - B 2019.03.19 90' With « formulaire »

Name:

EXERCISE 1

10'

- Determine the values of k such that the matrix $M = \begin{pmatrix} 6 & k \\ k & -1 \end{pmatrix}$ has two different eigenvalues.
- 2) The vector $\binom{4}{3}$ is a λ -eigenvector of M. Determine the values of λ and of k.

EXERCICE 2 [17 pts]

In V_2 with basis $(\overrightarrow{e_1}, \overrightarrow{e_2})$, we consider the vector $\overrightarrow{a} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$.

- 1) The application r is the **rotation** by 180°. Determine its matrix R.
- 2) The application s is the **symmetry** about the axis parallel to \vec{a} . Determine its matrix S.
- 3) The application p is the orthogonal **projection** on \vec{a} . Determine its matrix P.
- 4) Give an eigenbasis of s and the eigenmatrix S' associated.
- 5) Give an eigenbasis of p and the eigenmatrix P' associated.
- 6) Without « row by column multiplications », determine

b)
$$P^2 =$$

b)
$$S^3 =$$

c)
$$SP =$$

d)
$$RP =$$

e)
$$S + I =$$

7) Give a precise and as simple as possible description of the transformation m with matrix M = RS.

EXERCICE 3 [6 pts] 10'

We consider f the vertical projection on the plane π : x + 2y - 3z = 0.

- 3) Determine the **second column** of the matrix of f, expressed in the standard basis.
- Determine the eigenvalues and eigenspaces of f, and give the eigenmatrix.

A linear application f from V_3 to V_3 is given by its matrix $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & 3 & -2 \end{pmatrix}$ (in the standard basis)

- 1) Determine the image of the vector $\vec{a} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ under f.
- 2) Determine the vector whose image under f is $\vec{b} = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$
- 3) The invariant* vectors of f form a subspace of V_3 .

 Determine its dimension and give a basis of that subspace.

*: a vector is invariant if it is equal to its image.

EXERCICE 5

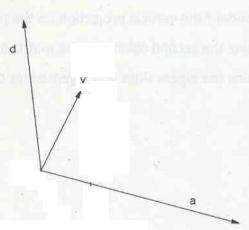
20'

We consider g a linear transformation with matrix $G = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$ (in the standard basis)

- 1) Determine the matrix of the composition g * g.
- 2) Check the result $p(\lambda) = \det(G \lambda I) = -\lambda^3 + 3\lambda^2$
- 3) Determine the eigenvalues and eigenspaces of g and give a geometrical description of g.

EXERCICE 6

- 1) Draw the image of \vec{v} under f: a perspective affinity with axis \vec{a} , direction \vec{d} and factor -2.
- 2) Determine the matrix of f in the basis (\vec{d}, \vec{a})



Exercise 4.

- a) Show that $f: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2y-x \\ 2x \end{pmatrix}$ is a linear application.
- b) Give the expression of the linear application $g: \begin{pmatrix} v_2 \to v_2 \\ x \\ y \end{pmatrix} \mapsto$ that corresponds to a rotation by +90° degrees around the origin.
- c) Give an application from V_3 to V_2 that is not a linear application and justify why : $\begin{pmatrix} V_3 \rightarrow V_2 \\ \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Exercise 5.

a) What is the dimension of the vector space M_{2x2} ?

We consider the matrices $A = \begin{pmatrix} 2 & 0 \\ 1 & -3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$.

Determine

1) tr(A)

the trace of A

2) det(B)

the determinant of B

- 3) A · B
- 4) tA

the transpose of A

- 5) Give a matrix $C \in M_{2x2}$ such that the subspace of M_{2x2} generated by the linear combinations of A, B, C has dimension 2. That subspace can be written $\{M \in M_{2x2} | M = \alpha A + \beta B + \gamma C, \quad \alpha, \beta, \gamma \in \mathbb{R} \}$
- b) In the vector space M_{2x2} of the « 2 by 2 » matrices, we consider the subset $\{M \in M_{2x2} | trace(M) \text{ is even }\}$. Determine whether it is a subspace of M_{2x2} or not.
- c) In the vector space M_{2x2} of the « 2 by 2 » matrices, we consider the subspace $\{M \in M_{2x2} | M \text{ is } symetric \}$. Determine its dimension and propose a basis.

Exercise 6.

In V_3 we consider three vectors v_1, v_2 and v_3 . The subspace F generated by these vectors may be of dimension 0,1,2 or 3.

Determine what condition(s) the vectors must satisfy for the subspace F to be of each of these 4 dimensions. In case a computation is needed to define the dimension indicate it.

$$\dim(F) = 0$$
 if...

$$\dim(F) = 1$$
 if...

$$\dim(F) = 2 \text{ if...}$$

$$\dim(F) = 3$$
 if...