LDDR - Niveau 2: TE 20 Eqq.Diff - Taylor-Integral

 3MG Level 2
 CALCULUS
 TEST#4 A

 2019/02/15
 3MG01

With "formulaire"

Name: _

90'

Exercise 1.

- 1) Find all the possible values $k \in \mathbb{R}$ such that $y = f(x) = e^{kx}$ is the solution of the equation y'' 6y = 0.
- 2) Determine the solution of $y' = x^3y$ that satisfy f(0) = -2.
- 3) Solve $y' \frac{2}{x}y = 1 x^2 \cdot \ln(x)$

Exercise 2.

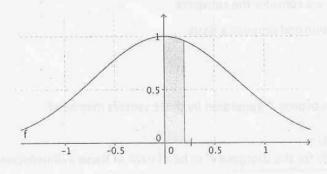
- 1) Determine by computations the 5 first terms of Taylor's expansion of $f(x) = \ln(1+x)$ around a = 0 (MacLaurin).
- 2) Determine the value of $A = \lim_{x \to 0} \frac{x \cdot \ln(1+x)}{1-\cos(x)}$ by using Taylor's series (formulaire allowed)

Exercise 3.

The surface $A = \int_0^{0.2} f(x) dx$ is represented, for $f(x) = e^{-x^2}$, a function that has no antiderivative!

From Taylor's expension for e^x that is $e^x = \sum_{k \ge 0} \frac{1}{k!} \cdot x^k = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots$ you can determine the one of f(x): "just" replace x by $-x^2$.

Use the three first (non zero) terms of that expansion to determine an approximation for the value of A, rounded to three digits.



Exercise 4.

- a) Show that $f: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 2y-x \\ 2x \end{pmatrix}$ is a linear application.
- b) Give the expression of the linear application $g: \begin{pmatrix} v_2 \to v_2 \\ x \\ y \end{pmatrix} \mapsto$ that corresponds to a rotation by +90° degrees around the origin.
- c) Give an application from V_3 to V_2 that is not a linear application and justify why : $\begin{pmatrix} V_3 \rightarrow V_2 \\ \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Exercise 5.

a) What is the dimension of the vector space M_{2x2} ?

We consider the matrices $A = \begin{pmatrix} 2 & 0 \\ 1 & -3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 2 \\ 5 & 4 \end{pmatrix}$.

Determine

1) tr(A)

the trace of A

2) det(B)

the determinant of B

- 3) A · B
- 4) tA

the transpose of A

- 5) Give a matrix $C \in M_{2x2}$ such that the subspace of M_{2x2} generated by the linear combinations of A, B, C has dimension 2. That subspace can be written $\{M \in M_{2x2} | M = \alpha A + \beta B + \gamma C, \quad \alpha, \beta, \gamma \in \mathbb{R} \}$
- b) In the vector space M_{2x2} of the « 2 by 2 » matrices, we consider the subset $\{M \in M_{2x2} | trace(M) \text{ is even } \}$. Determine whether it is a subspace of M_{2x2} or not.
- c) In the vector space M_{2x2} of the « 2 by 2 » matrices, we consider the subspace $\{M \in M_{2x2} | M \text{ is } symetric \}$. Determine its dimension and propose a basis.

Exercise 6.

In V_3 we consider three vectors v_1, v_2 and v_3 . The subspace F generated by these vectors may be of dimension 0,1,2 or 3.

Determine what condition(s) the vectors must satisfy for the subspace F to be of each of these 4 dimensions. In case a computation is needed to define the dimension indicate it.

$$\dim(F) = 0$$
 if...

$$\dim(F) = 1$$
 if...

$$\dim(F) = 2 \text{ if...}$$

$$\dim(F) = 3$$
 if...