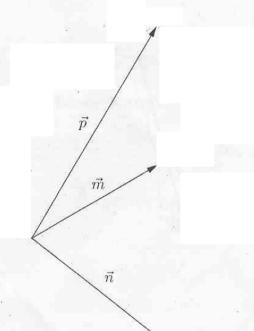
LDDR Niveau 1 : TE 1 Geometrie plan

1MG Level 1 PLANE GEOMETRY TEST 80 mn Name:

With calculator. Indicate your computations

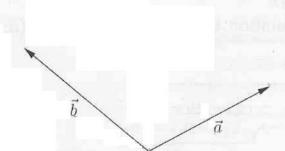

/ 40 pts

EXERCISE 1

1) In V_2 with basis $(\overrightarrow{e_1}, \overrightarrow{e_2})$, we consider the vectors $\vec{a} = \binom{6}{-4}$, $\vec{b} = \binom{10}{-15}$ and $\vec{c} = \binom{17}{-8}$.

Decompose, by computation, the vector \vec{c} in the basis $(\vec{a}; \vec{b})$.

2) Thanks to a drawing (here below), estimate as precisely as possible, the components of \vec{p} in the basis (\vec{m}, \vec{n}) .



3) Draw the following vectors, with clear constructions:

$$\vec{c} = -0.5\vec{a} + \frac{4}{3}\vec{b}$$

$$\vec{d} = -\sqrt{2} \; \vec{b}.$$

(calculator not allowed)

4) The point *B* is such that $\overrightarrow{BC} = 2 \overrightarrow{OA} - \overrightarrow{CO}$. Locate *B* with a clear drawing.

We consider the points A(3;7), B(10;-8) and D(-2;4).

- 1) Determine C so that ABCD is a parallelogram.
- 2) Give the coordinates of the center of that parallelogram.
- 3) D is the center of gravity of the triangle ABE. Compute the coordinates of E.

EXERCISE 3

[/12]

- 1) For what value(s) of $k \in \mathbb{R}$ are $\vec{a} = \binom{k}{3}$ and $\vec{b} = \binom{2k+1}{6+k}$ linearly independent?
- 2) Compute the coordinates of *B* given that (45, -54) is the midpoint of the **segment** \overrightarrow{AB} and that $\overrightarrow{BA} = \begin{pmatrix} -8 \\ 4 \end{pmatrix}$.
- 3) Give the Cartesian equation or the parametric equations of the median through C(5; 2) of the **triangle** OCD, with D(12; -4).
- 4) P'Q'R' are the midpoints of the sides of the **triangle** PQR. Compute the coordinates of the center of gravity of that triangle given the points P(3; 8) and P'(9; -7).

- 1) Fill the blanks and empty cells in the following table about **three lines**. You're not asked to write any computation.
- 2) Compute the coordinates of the intersection point of the lines 2) and 3).

	One point	A direction vector	Parametric equations	Cartesian equation	Slope- intercept equation
1)				Aloe	y = 2x - 5
2)	7			4x - 5y + 22 = 0	
3)	(-7;)	(-15)	$\begin{cases} x = 2 + \lambda \\ y = -5 + 3\lambda \end{cases}$		