Exercises 1.16

1.1: Whenever possible, compute the products $A \cdot B$ and $B \cdot A$.

1)
$$A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

2)
$$A = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 3 & 1 & 2 \\ 1 & 0 & 2 \end{pmatrix}$

3)
$$A = \begin{pmatrix} 0 & -1 & 5 \\ 2 & -2 & -3 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 4 \\ 0 & -1 \\ 3 & 2 \end{pmatrix}$

4)
$$A = \begin{pmatrix} 1 & -3 & 4 \\ -2 & 1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 7 & -4 & -3 \\ 5 & -1 & 0 \\ 2 & 0 & 0 \end{pmatrix}$

1.2: Let $(\vec{e_1}, \vec{e_2})$ be the standard basis of V_2 . Consider the vector $\vec{v} = 2\vec{e_1} - 3\vec{e_2}$.

- 1) Find the components of \vec{v} with respect to the basis $(\vec{e_1}, \vec{e_2}), (\vec{e_2}, \vec{e_1})$ and $(2\vec{e_1}, 6\vec{e_2}).$
- 2) Show that $(\vec{v_1}, \vec{v_2})$ with $\vec{v_1} = \vec{e_1} \vec{e_2}$ and $\vec{v_2} = \vec{e_1} + \vec{e_2}$ is a basis of V_2 .
- 3) Give the components of $\vec{u} = \vec{e_1} 5\vec{e_2}$ with respect to the basis $(\vec{v_1}, \vec{v_2})$.

1.3: We collect the vectors in V_3 whose components x, y, z satisfy the following conditions. Are the subsets obtained subspaces? If so indicate the dimension of the subspaces obtained and give a basis.

1)
$$z = 0$$

$$5) \quad x + y + 2z = 0$$

8)
$$\begin{cases} x + y - 2z = 0 \\ 2x + y - z = 0 \\ x + 2y - 5z = 0 \end{cases}$$

2)
$$z = 1$$

$$6) \quad x + y + 2z = 1$$

$$\begin{cases} x+y-2z=0\\ 2x+y-2z=0 \end{cases}$$

3)
$$x^2 + y^2 + z^2 = 1$$

4) $x = y = 2z$

7)
$$\begin{cases} x + y - 2z = 0 \\ x - y + 2z = 0 \end{cases}$$

7)
$$\begin{cases} x+y-2z=0 \\ x-y+2z=0 \end{cases}$$
 9)
$$\begin{cases} x+y-2z=0 \\ 2x+y-z=0 \\ x+2y-z=0 \end{cases}$$

In V_3 we consider the vectors $\vec{v_1} = 5\vec{e_1} - 2\vec{e_2} + \vec{e_3}$ and $\vec{v_2} = 3\vec{e_1} + \vec{e_2} - 5\vec{e_3}$. 1.4:

- 1) Explain why the set $(\vec{v_1}, \vec{v_2}, \vec{v_1} \times \vec{v_2})$ is a basis of V_3 .
- 2) Express $\vec{e_1}$ in this basis.

1.5: In V_3 , with the usual (orthonormal direct) basis, let's determine the dimension of the subspaces generated by these vectors. Check that the subspaces 3) and 4) are identical.

1)
$$\vec{v_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, $\vec{v_2} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

2)
$$\vec{v_1} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
, $\vec{v_2} = \begin{pmatrix} 1 \\ 2 \\ 5 \end{pmatrix}$, $\vec{v_3} = \begin{pmatrix} 5 \\ 3 \\ 4 \end{pmatrix}$

3)
$$\vec{v_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\vec{v_2} = \begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix}$

4)
$$\vec{v_1} = \begin{pmatrix} 4 \\ 6 \\ 7 \end{pmatrix}$$
, $\vec{v_2} = \begin{pmatrix} 4 \\ -6 \\ 1 \end{pmatrix}$

1.6: In V_3 we consider the subspace W of all linear combinations of the vectors $\vec{v_1} = \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix}$, $\vec{v_2} = \begin{pmatrix} -1 \\ -3 \\ -4 \end{pmatrix}$ and $\vec{v_3} = \begin{pmatrix} 1 \\ 2 \\ 2.5 \end{pmatrix}$ given with respect to the standard basis.

- 1) Show that $\vec{v_3}$ is a linear combination of $\vec{v_1}$ and $\vec{v_2}$.
- 2) Show that $(\vec{v_1}, \vec{v_2})$ is a basis of W.
- 3) Find the equation of the plane W.

1.7: Find a basis of the following subspaces of V_3 :

- 1) The plane 3x 2y + 5z = 0.
- 2) All vectors of the form $\vec{v_1} = \begin{pmatrix} c \\ a-c \\ c \end{pmatrix}$.

1.8: Let V be the vector space of polynomials of degree ≤ 2 .

- 1) Find the components of $p = 3x^2 4x + 5$ with respect to the basis $(1, x, x^2)$.
- 2) Show that the set of polynomials $p_1 = x^2 + 2x$, $p_2 = x + 2$ and $p_3 = x^2 + 3$ is a basis of V.
- 3) Find the components of $p = 3x^2 4x + 5$ with respect to the basis (p_1, p_2, p_3) .

- **1.9:** Let V be the vector space of polynomials of degree ≤ 2 .
 - 1) Show that the set W of polynomials which take the value 0 for x=a (fixed) is a subspace of V.
 - 2) Find a basis of W. Hint: a polynomial p such that p(x) = 0 for x = a can be factorized by (x - a).

- **1.10:** In the vector space M_{2x2} , we consider $A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 4 & -1 \\ 0 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} 7 & -1 \\ 1 & 3 \end{pmatrix}$.
 - 1) What is the dimension of M_{2x2} ? Justify your answer by proposing a basis.
 - 2) What can you deduce about the subspace generated by A, B and C?
 - 3) Check that A, B and C are linearly dependant.
 - 4) Propose two matrices D and E such that (A, B, D, E) is a basis of M_{2x2} .

1.11: In each case determine whether the application is linear or not. If possible, describe it geometrically.

1)
$$f: V_2 \to V_2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 \\ y \end{pmatrix}$$

6)
$$f: V_2 \to V_2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} -y \\ x \end{pmatrix}$$

2)
$$f: V_2 \to V_2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 0 \\ y \end{pmatrix}$$

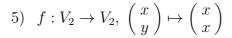
7)
$$f: V_1 \to V_2, \ x \mapsto \begin{pmatrix} x \\ x^2 \end{pmatrix}$$

3)
$$f: V_2 \to V_2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} y \\ x \end{pmatrix}$$

8)
$$f: V_2 \to V_1, \left(\begin{array}{c} x \\ y \end{array}\right) \mapsto x + 3y$$

4)
$$f: V_2 \to V_2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 \\ y+1 \end{pmatrix}$$

9)
$$f: V_3 \to V_2$$
, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+a \\ y-2z \end{pmatrix}$, where a is a fixed number.



1.12: Two linear transformations f and g from V_2 to V_2 are given by the images of the vectors $\vec{a} = \vec{e_1} + \vec{e_2}$ and $\vec{b} = -\vec{e_1} + 2\vec{e_2}$: $f(\vec{a}) = -\vec{e_1} + 6\vec{e_2}$, $f(\vec{b}) = -5\vec{e_1} + 6\vec{e_2}$, $g(\vec{a}) = 2\vec{e_1} - 6\vec{e_2}$ and $g(\vec{b}) = 7\vec{e_1} - 21\vec{e_2}$.

- 1) Determine the vectors $f(\vec{e_1})$, $f(\vec{e_2})$, $g(\vec{e_1})$, $g(\vec{e_2})$, $f(\vec{v})$, $g(f(\vec{v}))$, with $\vec{v} = 2\vec{e_1} \vec{e_2}$.
- 2) In the standard basis of V_2 , express the matrices F of f, G of g and M of g * f.
- 3) Use M to verify the components of $g(f(\vec{v}))$.

- **1.13:** Find the matrix, with respect to the standard basis, of each of the following linear transformation of V_2 and use this matrix to calculate the image of the vector $\vec{v} = 2\vec{e_1} 3\vec{e_2}$.
 - 1) Homothecy with factor k.
 - 2) Rotation by $+30^{\circ}$.
 - 3) Projection on the line 3x 2y = 0.
 - 4) Orthogonal projection on the axis a: x 3y = 0.
 - 5) Reflection in the axis a: x 3y = 0.
 - 6) Projection on the axis a, in the direction $\vec{d} = -\vec{e_1} + \vec{e_2}$.
 - 7) Perspective affinity with axis a, such that the image of point R(2;2) is R'(1;-1). Also determine its factor.

- **1.14:** Let V be the set containing the real functions of the form $f(x) = e^{-x} (a\cos(2x) + b\sin(2x))$, with a and $b \in \mathbb{R}$.
 - 1) Show that V is a vector space.
 - 2) Explain why the differentiation is a linear operation on V. Determine its matrix according to the basis (f_1, f_2) , with $f_1(x) = e^{-x} \cos(2x)$ and $f_2(x) = e^{-x} \sin(2x)$.

1.15: Let E be the vector space of the polynomials of degree ≤ 2 . Is the transformation $f: E \to \mathbb{R}, \ p \mapsto p(a)$ (where a is a fixed number) linear?

1.16: We consider E the vector space of the polynomials with degree ≤ 2 , and the application T defined by $T: E \to F$, T(p) = p', its derivative.

- 1) Describe F.
- 2) Propose a basis for E and for F. Determine the matrix of T.

1.17: Answer the following:

- 1) Determine the matrix S_{α} of the reflection in the axis that forms an angle α with the x-axis in V_2 .
- 2) Indicate the matrix R_{φ} of the rotation by an angle φ .
- 3) Determine $S_{\alpha} \cdot S_{\alpha}$ by first guessing and then computing.
- 4) Check that $S_{\alpha} \cdot S_{\beta} = R_{2(\alpha-\beta)}$.

- 1.18: Find the matrix, with respect to the standard basis, of each of the following linear transformation of \mathbb{R}^3 and use this matrix to calculate the image of the vector $\vec{v} = 2\vec{e_1} 3\vec{e_2} + 5\vec{e_3}$. Determine the eigenvalues, propose eigenvectors and give the eigenmatrix.
 - 1) Reflection in the plane x = y.
 - 2) Reflection in the y-axis.
 - 3) Rotation of +120° around the oriented axis given by $\vec{a} = \vec{e_1} + \vec{e_2} + \vec{e_3}$.
 - 4) Orthogonal projection onto the line through the origin and parallel to $\vec{a} = \vec{e_1} + \vec{e_2} + \vec{e_3}$.
 - 5) Orthogonal projection onto the yz-plane.
 - 6) Vertical projection onto the plane x + y z = 0.
 - 7) Orthogonal projection onto the plane x + y z = 0.
 - 8) Reflection in the plane x + y z = 0.
 - 9) Rotation of 90° about the x-axis and so that the vector $\vec{e_3}$ is mapped to $\vec{e_2}$.

1.19: Find the matrix of $f: V_3 \to V_2$, $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+2y \\ z-2y \end{pmatrix}$ with respect the standard basis and then use this matrix to calculate the image of the vector $\vec{v} = 3\vec{e_1} - 4\vec{e_2} - \vec{e_3}$.

1.20: In each case describe geometrically the operator on V_n given by its matrix with respect to the standard basis.

1)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 4) $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 7) $G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$

2)
$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 5) $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 8) $H = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

3)
$$C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 6) $F = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 9) $I = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0 \end{pmatrix}$

1.21: We consider V_3 , with the standard basis $(\vec{e_1}, \vec{e_2}, \vec{e_3})$.

1) Determine P the matrix of the orthogonal projection onto the plane x - y - z = 0.

We call I the matrix of the transformation $i: \vec{v} \mapsto \vec{v}$ (identity).

- 2) Determine I, Q = I P, P^2 and PQ.
- 3) Find the vectors that are constant under Q.
- 4) Find the vectors whose image under Q is the zero vector.
- 5) Deduce a geometrical interpretation of the transformation given by the matrix Q.

1.22: A linear application is given by the symmetric matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. Verify that there is at least one eigenvalue.

1.23 : Show that the characteristic polynomial of M (type 2×2) is

$$p(\lambda) = \lambda^2 - tr(M) \cdot \lambda + \det(M)$$

Generalization

$$Tr(M) = \sum \lambda_i = \lambda_1 + \lambda_2 + \dots + \lambda_n$$
 and $det(M) = \prod \lambda_i = \lambda_1 \cdot \lambda_2 \cdot \dots \cdot \lambda_n$

1.24: Describe the linear transformations associated to the matrices $F = \begin{pmatrix} 2 & -4 \\ 1 & -3 \end{pmatrix}$, $G = \begin{pmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{pmatrix}$ and $H = \begin{pmatrix} 1 & 4 & 5 \\ 0 & 0.75 & 6 \\ 0 & 0 & 0.5 \end{pmatrix}$.

1.25:When possible, determine the inverse matrix of

1)
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$

3)
$$C = \begin{pmatrix} 4 & 12 \\ 3 & 9 \end{pmatrix}$$

1)
$$A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}$$
 3) $C = \begin{pmatrix} 4 & 12 \\ 3 & 9 \end{pmatrix}$ 5) $E = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$2) \quad B = \left(\begin{array}{cc} 4 & -1 \\ 0 & 1 \end{array}\right)$$

$$4) \quad D = \left(\begin{array}{cc} a & -b \\ b & a \end{array}\right)$$

2)
$$B = \begin{pmatrix} 4 & -1 \\ 0 & 1 \end{pmatrix}$$
 4) $D = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ 6) $F = \begin{pmatrix} -3 & 1 & 6 \\ 2 & -6 & -10 \\ 0 & 2 & 4 \end{pmatrix}$

Give the interpretation of the transformation f, with matrix $F = \begin{pmatrix} -5/13 & 12/13 \\ 12/13 & 5/13 \end{pmatrix}$. Find the matrix of the transformation g such that g * f is the reflection in the axis y = x. What's the geometrical interpretation of g?

1.27:Answer the following:

- 1) Compute the inverse matrix of $A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 2 & 4 \\ 1 & 1 & 1 \end{pmatrix}$.
- 2) Determine m so that $B = \begin{pmatrix} 3 & 0 & 2m \\ m & 11 & -m \\ m-1 & 0 & 8 \end{pmatrix}$ is singular.
- 3) For the value(s) of m obtained at 2), give the geometrical interpretation of the transformation associated to B?

1.28: Answer the following:

- 1) Prove that $(AB)^{-1} = B^{-1}A^{-1}$.
- 2) Prove that $det(^tA) = det(A)$ (for dimensions 2 and 3).
- 3) Prove that the product of the eigenvalues of a matrix is equal to the determinant of that matrix.
- 4) Deduce from 3), that when the determinant of a matrix is zero then the transformation associated is (or contains) a projection.

Determine the eigenvalues and eigenvectors of the transformation f described, in a standard basis of \mathbb{R}^3 , by the matrix $F = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{pmatrix}$. Then, propose an eigenbasis and the associated matrix F_p .

1.30: A linear application f has matrix $F = \begin{pmatrix} 3 & -3 \\ 2 & 10 \end{pmatrix}$, in the standard basis $(\vec{e_1}, \vec{e_2})$.

- 1) Determine the eigenvalues and eigenvectors of F.
- 2) Choose an eigenbasis $(\vec{p_1}, \vec{p_2})$ and express the matrix of f in that basis (name it F_p).
- 3) Find the images of $\vec{a} = 2\vec{e_1} + \vec{e_2}$ and $\vec{b} = \frac{1}{2}\vec{p_1} + \frac{1}{3}\vec{p_2}$ under f: First: By working in $(\vec{e_1}, \vec{e_2})$ with the matrix F

Then : By working in $(\vec{p_1}, \vec{p_2})$ with the matrix F_p

- **1.31:** In the standard basis, we consider the application f with matrix $A = \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix}$.
 - 1) Compute A^{-1}, A^2, A^3 .
 - 2) Determine the eigenvalues and eigenvectors of f, f^{-1} , f * f and f * f * f.
 - 3) Choose an eigenbasis $(\vec{p_1}, \vec{p_2})$ and give the matrix B of f in that new basis.
 - 4) Compute B^{-1} , B^2 , B^3 and B^n .
 - 5) Determine the matrix P of the application p such that $(\vec{p_1}, \vec{p_2})$ has image $(\vec{e_1}, \vec{e_2})$.
 - 6) Compute P^{-1} .
 - 7) Use the eigenbasis of f and the matrices P and P^{-1} in order to determine A^n .

Check your previous formula for n = -1, n = 1, n = 2 and n = 3.

1.32: We consider the application f whose matrix in the standard basis is

$$A = \left(\begin{array}{ccc} 2 & 1 & 1\\ 1 & 9 & -1\\ -1 & -1 & 4 \end{array}\right).$$

- 1) Verify that it has three different eigenvalues, given that one of them is an integer.
- 2) Diagonalize A by expressing it in an eigenbasis. You don't have to find that eigenbasis.
- 3) Let's consider the application g = f * f 12f + 25i, where i is the identity. Find the eigenvalues of g by working in a good basis.

1.33: The application f is defined by its matrix $F = \begin{pmatrix} -7/5 & 0 & 4/5 \\ 0 & -1 & 0 \\ 4/5 & 0 & -13/5 \end{pmatrix}$. Determine the matrix of f^{-1} and the one of $(f * f)^{-1}$. Find \vec{v} such that $f(\vec{v}) = \vec{e_1} + 5\vec{e_2} - 22\vec{e_3}$.

1.34: Diagonalize the matrices $A = \begin{pmatrix} 2 & 4 \\ 3 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$.

- **1.35**: In V_3 with a standard basis, we consider a transformation given by its matrix $A = \begin{pmatrix} 1 & -4 & 8 \\ 8 & 4 & 1 \\ -4 & 7 & 4 \end{pmatrix}$
 - 1) Verify that $B = \frac{1}{9}A$ is an orthogonal matrix. Deduce the matrices B^{-1} and A^{-1} .
 - 2) Determine the eigenvalues and eigenvectors of B. Deduce the ones of A.
 - 3) Give the geometric transformation of B and A.

1.36: In the standard basis $(\vec{e_1}, \vec{e_2}, \vec{e_3})$, we consider the transformation f from V_3 in V_3 given by :

$$f(\vec{e_1}) = \vec{e_2} + \vec{e_3}, \ f(\vec{e_2}) = \vec{e_1} + \vec{e_3} \text{ and } f(\vec{e_3}) = \vec{e_1} + \vec{e_2}$$

- 1) Show that its possible to find an orthornormal basis of f formed of eigenvectors: $(\vec{p_1}, \vec{p_2}, \vec{p_3})$.
- 2) Explain then why the transformation t which maps the basis $(\vec{e_1}, \vec{e_2}, \vec{e_3})$ to $(\vec{p_1}, \vec{p_2}, \vec{p_3})$ is a rotation. Without doing the computations, explain how to find the matrix of t; its axis of rotation and the angle of that rotation.

1.37: We consider \vec{u} a fixed unit vector of V_3 and the the four following transformations:

$$i: \vec{v} \to \vec{v}, f: \vec{v} \to \vec{u} \times \vec{v}, g: \vec{v} \to (\vec{u} \bullet \vec{v})\vec{u}$$
 and $h = i - g$

- 1) Verify that f, g, h and i are linear applications.
- 2) Relatively to a standard basis $(\vec{u_1}, \vec{u_2}, \vec{u_3})$, the vector \vec{u} is given by $\vec{u} = a\vec{u_1} + b\vec{u_2} + c\vec{u_3}$, with $a^2 + b^2 + c^2 = 1$. Determine, in that basis, the matrices F, G and H of f, g and h.
- 3) Verify that f * f = -h.
- 4) Find the image of \vec{u} and of the vectors orthogonal to \vec{u} through the applications g and h.
- 5) Give a geometrical interpretation of g and of h. Deduce the equalities g * g = g, h * h = h and h * g = 0.

1.38: First part

In V_2 an operator is given by its matrix $M = \begin{pmatrix} 6 & k \\ k & -1 \end{pmatrix}$ with respect an orthonormal basis, k being a constant.

- 1) Show that, for any k, the operator has two different eigenvalues.
- 2) Find k so that the vector $\vec{a} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ is an eigenvector. Give the corresponding eigenvalue. For this value of k, check that any vector orthogonal to \vec{a} is also an eigenvector and give the corresponding eigenvalue.

Second part

In the space V_3 a linear transformation T is given by its matrix

F =
$$\begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
 with respect to the standard basis.

- 1) Find the matrices F^2 and F^3 . Is it possible to find immediately the matrix F^n ?
- 2) Check that the eigenvalues of T are -1, 0 and 1.
- 3) Find a basis $(\vec{p_1}, \vec{p_2}, \vec{p_3})$ consisting in eigenvectors of T.
- 4) What are the images under $T \circ T$ of each of the vectors $\vec{p_1}$, $\vec{p_2}$ and $\vec{p_3}$? Deduce, without any further calculations, the eigenvalues of $T \circ T$.
- 5) Describe geometrically the transformation $T \circ T$.

1.39: An affine transformation is given by its associated matrix $A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$ and by O'(-4;4) the image of the origin.

- 1) Determine the invariant points.
- 2) Choose a system $(\Omega, \vec{p_1}, \vec{p_2})$, where Ω is invariant and $(\vec{p_1}, \vec{p_2})$ forms an eigenbasis of A.
- 3) Give the formula of the affinity in that system.
- 4) Give a geometrical interpretation.

- 1.40: Determine the formula of the following affine transformations of the plane.
 - 1) Reflection in the line x y + 1 = 0.
 - 2) Perspective affinity with axis y = x + 1 such that the image of the origin is O'(2; -1).
 - 3) Translation with translation vector $\vec{t} = -2\vec{u_1} + 3\vec{u_2}$.
 - 4) Homothecy with centre $\Omega(\alpha; \beta)$ and factor λ .
 - 5) Rotation through 120° that maps A(-2;1) to A'(1;0). Also find the centre.

1.41: An affine transformation f is given by three points A(1;2), B(3;0), C(5;4) and their images A'(-10;-1), B'(12;13), C'(-2;3). Find the formula of f. Find the fixed points of f. Find the invariant directions of f.

- **1.42:** An affine transformation φ is given by $\begin{cases} x' = 0.8x 0.6y + 1 \\ y' = 0.6x + 0.8y 3 \end{cases}$
 - 1) Find the Cartesian equation of the curve Γ whose image is the parabola with equation $y=x^2$.
 - 2) Find the expression of the inverse affinity.
 - 3) Find the equation of the curve Γ' , image through φ of the circle with radius 1 centered at (1;3).
 - 4) Show that φ is a rotation. Calculate its angle and its center.

1.43: What's the centre of the rotation obtained by composing a rotation through 180° around (1;-1) and a rotation by -90° around (3;1)? Is the result the same if the order of the composition is changed?

