Chapter 1

Calculus II

 \bigcirc

1.7 Exercises

1.1: Differentiate the following functions:

1)
$$f(x) = 8x^3 - 9x^2 + 11x - 5$$

4)
$$f(x) = \frac{5-7x}{9x+3}$$

$$2) \quad f(x) = \sin(x) \cdot x^2$$

5)
$$f(x) = \sqrt{x^2 + 2x - 5}$$

3)
$$f(x) = \frac{1}{4x^3 - 2}$$

$$6) \quad f(x) = \tan(5\sqrt{x})$$

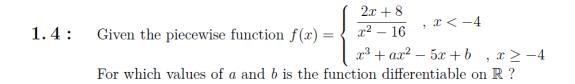
1.2: Determine the equations of the tangents to the given curves, at the given points:

1)
$$f(x) = x^3 - 2x + 7$$
 at the point whose abscissa is -2

2)
$$f(x) = \frac{4-x}{x^2}$$
 at the point(s) whose ordinate is 3

3)
$$f(x) = \cos(3x)$$
 at the point with abscissa $\frac{\pi}{6}$

1.3: Given the piecewise function $f(x) = \begin{cases} x^2 - 6x + k & , x \leq 3 \\ \frac{x^2 - 4x + 3}{x - 3} & , x > 3 \end{cases}$ For which value of k is that function continuous on \mathbb{R} ?



1.5: Determine the largest vertical distance between the graphs of the functions $f(x) = \frac{x^3}{8}$ and $g(x) = \sqrt{x}$.

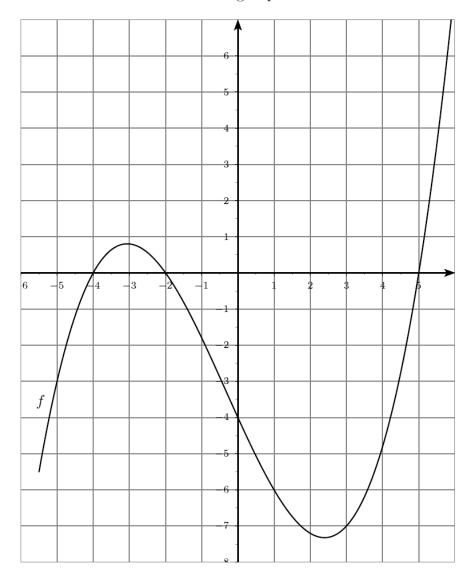
1) on the interval [0; 4]

2) on the interval [0;2]

1.6: Determine the minimal distance from the curve $f(x) = \frac{2}{1+x^2}$ to the origin.

Chapter 1 Calculus II

- 1.7: Here is the graph of a function f.
 - 1) Sketch the curve y = f'(x) using the given graph.
 - 2) Determine the equation of the curve f.
 - 3) On which interval(s) is it convex?
 - 4) What is the \ll maximal \gg decreasing slope ?



Chapter 1 Calculus II

1.8: Answer the following:

1) Determine the equation of the tangent to the following curves at the point whose abscissa is given:

a)
$$y = \ln(-x)$$
 at $x = -\frac{1}{3}$ b) $y = \ln(2x)$ at $x = \frac{1}{2}$

b)
$$y = \ln(2x)$$
 at $x = \frac{1}{2}$

2) Find the stationary points of the following functions and indicate their type. Sketch the curves.

a)
$$y = x - \ln(x)$$

a)
$$y = x - \ln(x)$$
 b) $y = \frac{1}{2}x^2 - \ln(2x)$ c) $y = x^2 - \ln(x^2)$

c)
$$y = x^2 - \ln(x^2)$$

3) Determine the equation of the normal to the curve $y = \ln(2x - 3)$ at x = 2.

1.9: Answer the following:

- 1) Differentiate the functions $f(x) = e^{3x}$, $g(x) = e^{-x}$, $h(x) = e^{3-2x}$ and $i(x) = e^{\sin(2x+3)}$
- 2) Determine the equation of the tangent to the following curves at the given abscissa:

a)
$$y = x - e^{2x}$$
 at $x = 0$

b)
$$y = e^{6-2x}$$
 at $x = 3$

3) Find all the stationary points of $y = 7x^2 - e^{x^2}$ and determine their type.

Determine the acute angle between the curves f and g at their intersection point :

1)
$$f(x) = e^{x+2}$$
 and $g(x) = e^{-x}$

2)
$$f(x) = e^{2x}$$
 and $g(x) = 2e^{3x}$

1.11: Differentiate $f(x) = 3^x \cdot x^3$, $g(x) = \frac{e^x - 1}{e^x + 1}$, $h(x) = 2^{\sqrt{x^2 + 1}}$ and $i(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

1.12 : Solve :

$$1) \quad 3 \cdot 2^x > 5^x$$

1)
$$3 \cdot 2^x > 5^x$$
 2) $\frac{e^x + e^{-x}}{2} = 2$ 3) $e^{2x} = 6 - e^x$

3)
$$e^{2x} = 6 - e^x$$

Chapter 1 Calculus II

1.13: Analyze, with the second derivative, the functions:

$$1) \quad f(x) = \frac{\ln^2(x)}{x}$$

3)
$$f(x) = (2x^2 - 4) \cdot e^{-x}$$

2)
$$f(x) = (x-1)^2 \cdot e^x$$

4)
$$f(x) = \frac{1}{x-3} \cdot e^{-x}$$

1.14: Find the value of c prescribed in Rolle's Theorem for $f(x) = x^3 - 12x$ on the interval [0; b].

 \bigcirc

1.15: Does Rolle's Theorem apply to the functions $f(x) = \frac{x^2 - 4x}{x - 2}$ and $g(x) = \frac{x^2 - 4x}{x + 2}$?

1.16: Check the mean value theorem with $f(x) = 2x^2 - 7x + 10$, a = 2 and b = 5.

1.17: If f'(x) = 0 at each point of the interval a; b[, prove that f is constant in this interval.

1.18: We consider the function $f(x) = x^3 - 6x$. Determine Δy , dy and $\Delta y - dy$. Then, find numerical values for them with x = 1 and $\Delta x = 0,01$.

1.19: Use differentials to approximate $\sqrt[3]{124}$ and $\sin(60^{\circ}1')$.

1.20: Use l'Hospital's rule, whenever possible:

$$1) \quad \lim_{x \to 0} \frac{\sin(2x)}{x} =$$

6)
$$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1} =$$

$$2) \quad \lim_{x \to 0} \frac{e^x}{x^2} =$$

7)
$$\lim_{x \to 1} \frac{x^5 - 2x^4 + x^3 + 2x^2 - 4x + 2}{x^3 - 3x + 2} =$$

$$3) \quad \lim_{x \to +\infty} \frac{x + \sin x}{x} =$$

8)
$$\lim_{x\to 0} \frac{x}{x+\sin x} =$$

4)
$$\lim_{x\to 0} \frac{3x}{x^2+1} =$$

9)
$$\lim_{x \to e} \frac{\ln(x) - 1}{x - e} =$$

$$5) \quad \lim_{x \to 0} \frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}} =$$

10)
$$\lim_{x \to 0} \frac{\ln(x^2 + 1)}{x} =$$