1.9 Exercises

- 1.1 In the following situations, describe the population/sample, name and determine the type of the variable.
 - 1) To determine the socio-economic profile of the households living in Neuchâtel, we note the number of children per household in a sample of a thousand households.
 - 2) In Switzerland and according to the Federal Statistical Office for the year 2013, German is the language spoken most frequently among the population with a proportion of 63.5%, then with 22.5% French, with 8.2% Italian, with 0.5% Romansh and finally with 5.3% another language.
 - 3) In a school, we ask each student about their dropout rate, that is the number of low grades divided by the number of grades. We have:
 - a) Less than 1%

c) From 16% to 49.9%

b) From 1% to 15.9%

d) 4.50% and more

1. 2 In a survey, 820 Swiss citizens are asked about the bilateral treaties between Switzerland and the European Union. The answers are :

Answers	Absolute frequency	Relative frequency
Very useful	95	
Useful	342	
Harmful	210	
Very harmful	46	
No opinion	127	
Total		

- 1) Complete the distribution table and represent, by using an appropriate chart, the distribution.
- 2) Calculate the confidence level of these treaties, that is the percentage of citizens that estimate them useful or very useful.
- 1.3 On a road, the speed limit is 80km/h. One measures the speed of 50 vehicles:

```
84
     81
          76
                71
                     80
                          81
                                83
                                     84
                                          80
                                                83
                          82
74
     75
          92
                76
                     80
                                94
                                     73
                                          83
                                                83
          79
               97
                          82
                                                82
75
     81
                     78
                                76
                                     78
                                          82
78
     81
          91
                68
                     82
                          73
                                82
                                     79
                                                77
                                          75
83
     80
          77
                81
                     69
                          78
                                81
                                     83
                                          87
                                                87
```

- 1) Divide the data into classes of equal size and establish a distribution table.
- 2) Represent the organized data by using a histogram and a frequency polygon.
- 3) Complete: «Almost of the vehicles respects the speed limitation of 80km/h and % drive at a speed between 80km/h and 85km/h. By taking into account a tolerance of 5km/h, % of the vehicles are finable.»

YAY - LDDR 40

1.4 In a factory, during a quality control, one measures the diameter, in mm, of 50 bolts randomly selected. The results are:

Diameter [mm]	Frequency
[21.5; 21.8 [4
[21.8; 21.9 [6
[21.9; 22.0 [6
[22.0; 22.1 [13
[22.1;22.2[8
[22.2; 22.3 [7
[22.3; 22.5 [6
Total	50

- Represent these data by using a histogram as well as a cumulative frequency polygon.
- If the nominal value is 22mm, calculate the percentage of bolts that deviates of more than 0.3mm. Check the coherence of the result on the frequency polygon.
- 1.5 Answer the following:
 - Rewrite without using the sum notation : $\sum_{i=1}^{6} (x_i a)^2$
 - Rewrite using the sum notation: $3ax_1y_1z_1 + 3ax_2y_2z_2 + \cdots + 3ax_ky_kz_k$
 - Given that $\sum_{i=1}^{6} x_i = -4$ and that $\sum_{i=1}^{6} x_i^2 = 100$, calculate:

a)
$$\sum_{i=1}^{6} (2x_i + 3)$$

a)
$$\sum_{i=1}^{6} (2x_i + 3)$$
 b) $\sum_{i=1}^{6} x_i (x_i - 1)$ c) $\sum_{i=1}^{6} (x_i - 5)^2$

c)
$$\sum_{i=1}^{6} (x_i - 5)^2$$

The two variables x and y take the values x_i and y_i here below:

x	2	-5	4	-8
y	-3	-8	10	6

Calculate:

a)
$$\sum_{i=1}^{4} x_i y_i$$

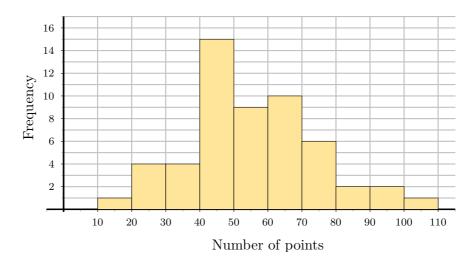
c)
$$\sum_{i=1}^{4} x_i^2 + y_i^2$$

b)
$$\sum_{i=1}^{4} x_i \cdot \sum_{i=1}^{4} x_i$$

d)
$$\sum_{i=1}^{4} x_i^2 + \sum_{i=1}^{4} y_i^2$$

- 1.6 For that exercise, we use the wording of the exercise 2.4.
 - Calculate the average diameter of the bolts and represent that value by a triangle under the x-axis of the histogram.
 - Determine the median diameter and mark that value by a vertical bar on the histogram
 - Determine the modal class. Is it representative in that situation? Justify your
 - Is it possible to have an idea of the shape of the distribution by using the mean, the median and the modal class?

- 1.7 The sets of data $S_1 = \{3, 4, 4, 4, 4, 4, 5\}$, $S_2 = \{1, 3, 4, 4, 5, 5, 6\}$ and $S_3 = \{1, 1, 4, 4, 6, 6, 6\}$ represent the grades of seven students at three different tests. Calculate the standard deviation of each set of data and interpret the results.
- 1.8 The number of points obtained by the 54 Swiss schools at the competition *Mathématiques* sans Frontières is represented by the histogram here below:



- 1) Calculate the mean \bar{x} and the standard deviation σ of these data and give an interpretation of these results. Place clearly these values on the histogram.
- 2) What is the standardized variable or standard score of a school that obtains 110 points?
- 3) What is the number of points of school whose standardized variable equals -2?
- 1.9 The table here below represents the evolution of the price of a loaf of bread in a bakery.

Year	2010	2011	2012	2013	2014	2015
x	1	2	3	4	5	6
p [CHF]	1.75	2	2.1	2.25	2.4	2.55

- 1) Place these data on a set of axes. Is it possible to use an adjustment method?
- 2) Let's call G_1 the average point of the first three values, G_2 the average point of the last three values. Calculate G_1 , G_2 and give the equation of the line of adjustment l_1 of Mayer.
- 3) Determine the equation of the adjustment line l_2 by using the least squares method.
- 4) Compare these two methods and give the probable price for 2018.

YAY - LDDR 42

1.10 Let's consider the table :

x	1	2	3	4
y	1	3	6	7

- 1) By solving a 2x2 system, find the regression line y = ax + b for the given data.
- 2) Check your result thanks to the formulas in your theory.
- 3) One can prove that a regression line obtained with the least squares method passes always through the point $P(\overline{x}; \overline{y})$. Check that result with the numerical values here above.

1.11 Given the following data:

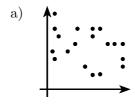
x	1	3	4	6	8	9	11	14
y	1	2	4	4	5	7	8	9

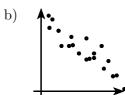
- 1) By using the least squares method, determine the regression line y = ax + b.
- 2) Find a new regression line by switching roles of x and y.
- 3) Verify that the intersection of these two lines is the point $P(\overline{x}; \overline{y})$.

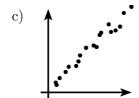
1. 12 The number of bacteria y per unit of volume in a cultured broth after x hours is given by the table :

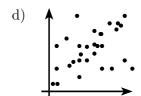
x	0	1	2	3	4	5	6
y	32	47	65	92	132	190	275

- 1) Thanks to a computer, draw the scatter plot and take note that there's no linear correlation between these two variables.
- 2) By stating that $y' = \ln(y)$, draw thanks to a computer, a new scatter plot with axes x and y' take note that this time there's a linear correlation.
- 3) By using a computer, determine the equation of the regression line y' = ax + b.
- 4) Determine and then draw the regression curve $y = \dots$ given that its form is $y = a \cdot b^x$.
- **1.13** Associate the correlation coefficients $r_1 = 0.44$, $r_2 = -0.91$, $r_3 = -0.36$ and $r_4 = 0.98$ to the scatter plots here below:









1.14 The table here below represents the braking distance of a car on a dry road depending on the car's speed.

,	$v [\mathrm{km/h}]$	40	50	60	70	80	90	100	110	120
	d [m]	20.29	28.42	35.57	45.75	58.94	70.12	95.15	98.17	113.19

- 1) Determine the correlation coefficient between v and d and the one between v and $z = \sqrt{d}$.
- 2) Estimate the braking distance of a car driving at 200km/h.

1.15 With a computer

One wants to analyse the progression of the records in the men's 100 metres. For that we have the data here below:

Year	1900	1912	1921	1930	1964	1983	1991	1999
x	0	12	21	30	64	83	91	99
t	10.80	10.60	10.40	10.30	10.06	9.93	9.86	9.79

After a first analyse, we state that $a = e^{-0.00924x}$ and $b = \ln(t)$ to model our problem. Thus, we obtain the table :

a	1.00	0.895	0.824	0.758	0.554	0.464	0.431	0.401
b	2.38	2.361	2.342	2.332	2.309	2.296	2.288	2.281

- 1) Calculate the equation of the regression line b = ma + h thanks to the least squares method.
- 2) Deduce that it is possible to model an expression of the form $t = e^{a \cdot e^{-0.00924x} + b}$ where a and b are two real numbers that must be found.
- 3) Thanks to that adjustment, what record one can expect in 2010?
- 4) Calculate $\lim_{x \to \infty} e^{0.154 \cdot e^{-0.00924x} + 2.221}$.
- 5) What can we conclude, by using that model, about the men's 100 metres records over the very long term?

1.16 Answer the following:

- 1) By using the same model as in the theory, establish the equations in order to find by the least squares method the parabola regression $y = ax^2$.
- 2) Use you model and find the parabola regression for the data:

x	0.2	-0.7	0.5	0.6	-0.4
y	0.1	1	0.5	0.7	0.3

- 1.17 How many different ways of sitting 7 people are there when
 - 1) they sit on a bench?
 - 2) they sit on chairs around a round table?
- 1.18 Determine the number of words (anagrams) that can be written with the letters of
 - 1) THEIR
- 2) UNUSUAL
- 3) SOCIOLOGICAL

YAy - LDDR